首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Before fertilization, chromatins of both mouse oocytes and spermatozoa contain very few acetylated histones. Soon after fertilization, chromatins of both gametes become highly acetylated. The same deacetylation-reacetylation changes occur with histones of somatic nuclei transferred into enucleated oocytes. The significance of these events in somatic chromatin reprogramming to the totipotent state is not known. To investigate their importance in reprogramming, we injected cumulus cell nuclei into enucleated mouse oocytes and estimated the histone deacetylation dynamics with immunocytochemistry. Other reconstructed oocytes were cultured before and/or after activation in the presence of the highly potent histone deacetylase inhibitor trychostatin A (TSA) for up to 9 h postactivation. The potential of TSA-treated and untreated oocytes to develop to the blastocyst stage and to full term was compared. Global deacetylation of histones in the cumulus nuclei occurred between 1 and 3 h after injection. TSA inhibition of histone deacetylation did not affect the blastocyst rate (37% with and 34% without TSA treatment), whereas extension of the TSA treatment beyond the activation point significantly increased the blastocyst rate (up to 81% versus 40% without TSA treatment) and quality (on average, 59 versus 45 cells in day 4 blastocysts with and without TSA treatment, respectively). TSA treatment also slightly increased full-term development (from 0.8% to 2.8%). Thus, deacetylation of somatic histones is not important for reprogramming, and hyperacetylation might actually improve reprogramming.  相似文献   

3.
Trichostatin A (TSA, 17 nM), a specific and reversible inhibitor of histone deacetylase induced neurite network formation at and after 4 days. The networks were preserved for at least 3 weeks in the presence of TSA. Butyrolactone I (BLI, 23.6 microM), an inhibitor of cdc2 and cdk2 kinases, also induced neurite extension. Both compounds enhanced the acetylcholinesterase activity of the cells. Cell cycle progression of the cells was blocked by TSA (17 nM) at G1 phase alone. Furthermore, the level of histone hyperacetylation and p21(WAF1) expression in TSA-treated cells increased transiently. These findings suggest that the induction of the neuronal differentiation in Neuro 2a cells by these agents requires the cell cycle arrest at G1 phase, which is caused by inhibition of cycline dependent kinase, a target molecule of BLI and p21(WAF1).  相似文献   

4.
Here we report a detailed analysis of waves of histone acetylation that occurs throughout spermatogenesis in mouse. Our data showed that spermatogonia and preleptotene spermatocytes contained acetylated core histones H2A, H2B and H4, whereas no acetylated histones were observed throughout meiosis in leptotene or pachytene spermatocytes. Histones remained unacetylated in most round spermatids. Acetylated forms of H2A and H2B, H3 and H4 reappeared in step 9 to 11 elongating spermatids, and disappeared later in condensing spermatids. The spatial distribution pattern of acetylated H4 within the spermatids nuclei, analyzed in 3D by immunofluorescence combined with confocal microscopy, showed a spatial sequence of events tightly associated with chromatin condensation. In order to gain an insight into mechanisms controlling histone hyperacetylation during spermiogenesis, we treated spermatogenic cells with a histone deacetylase inhibitor, trichostatin A (TSA), which showed a spectacular increase of histone acetylation in round spermatids. This observation suggests that deacetylases are responsible for maintaining a deacetylated state of histones in these cells. TSA treatment could not induce histone acetylation in condensing spermatids, suggesting that acetylated core histones are replaced by transition proteins without being previously deacetylated. Moreover, our data showed a dramatic decrease in histone deacetylases in condensing spermatids. Therefore, the regulation of histone deacetylase activity/concentration appears to play a major role in controling histone hyperacetylation and probably histone replacement during spermiogenesis.  相似文献   

5.
6.
7.
Use of specific histone deacetylase inhibitors has revealed critical roles for the histone deacetylases (HDAC) in controlling proliferation. Although many studies have correlated the function of HDAC inhibitors with the hyperacetylation of histones, few studies have specifically addressed whether the accumulation of acetylated histones, caused by HDAC inhibitor treatment, is responsible for growth inhibition. In the present study we show that HDAC inhibitors cause growth inhibition in normal and transformed keratinocytes but not in normal dermal fibroblasts. This was despite the observation that the HDAC inhibitor, suberic bishydroxamate (SBHA), caused a kinetically similar accumulation of hyperacetylated histones. This cell type-specific response to SBHA was not due to the inactivation of SBHA by fibroblasts, nor was it due to differences in the expression of specific HDAC family members. Remarkably, overexpression of HDACs 1, 4, and 6 in normal human fibroblasts resulted in cells that could be growth-inhibited by SBHA. These data suggest that, although histone acetylation is a major target for HDAC inhibitors, the accumulation of hyperacetylated histones is not sufficient to cause growth inhibition in all cell types. This suggests that growth inhibition, caused by HDAC inhibitors, may be the culmination of histone hyperacetylation acting in concert with other growth regulatory pathways.  相似文献   

8.
Receptor activator of NFkappa-B ligand (RANKL) is essential for osteoclast formation, function, and survival. Although RANKL mRNA and protein levels are modulated by 1,25(OH)2D3 and other osteoactive factors, regulatory mechanisms remain unclear. In this study, we show that 2 kb or 2 kb plus exon 1 of a RANKL promoter sequence conferred neither 1,25(OH)2D3 response nor tissue specificity. The histone deacetylase inhibitors trichostatin A (TSA) and sodium butyrate (SB), however, strongly increased RANKL promoter activity. A series of 5'-deleted RANKL promoter constructs from 2,020 to 110 bp showed fourfold increased activity after TSA treatment. TSA also dose dependently enhanced endogenous RANKL mRNA expression with 50 microM of TSA treatment causing equivalent RANKL expression to that seen with 1 nM 1,25(OH)2D3. Using a chromatin immunoprecipitation (ChIP) assay we showed that TSA significantly enhanced association of both acetylated histone H3 and H4 on the RANKL promoter, with H4 > H3. A similar increase in acetylated histone H4 on the RANKL gene locus was seen after 1,25(OH)2D3 treatment, but ChIP assay did not reveal localization of VDR/RXR heterodimers on the putative VDRE of the RANKL promoter. To explore the role of H4 acetylation of 1,25(OH)2D3 stimulated RANKL, we added both TSA and 1,25(OH)2D3 together. While the combination further increased acetylation of H4 on the RANKL locus, surprisingly, TSA inhibited 1,25(OH)2D3-induced RANKL mRNA expression by 70% at all doses of 1 ,25(OH)2D3 studied. These results suggest that TSA increases of endogenous expression of RANKL involve enhanced acetylation of histones on the proximal RANKL promoter. Preventing deacetylation, however, blocks 1,25(OH)2D3 action on this gene. Chromatin remodeling is therefore involved in RANKL expression.  相似文献   

9.
Summary External application of 10 rig/ml (R)-trichostatin A (TSA), a potent and specific inhibitor of mammalian histone deacetylase, to the embryo of the starfish Asterina pectinifera inhibited development during the early gastrula stage before formation of mesenchyme cells. The TSA-sensitive period was limited to the mid-blastula stage before hatching. The pulse-chase experiment clearly demonstrated that TSA induced an accumulation of acetylated histone species in blastulae through inhibition of historic deacetylation. Similar blockage of development at the early gastrula stage was observed with n-butyrate, which has been known as a weak inhibitor of historic deacetylase. These results suggest an intimate role for historic acetylation-deacetylation equilibria in starfish development. Correspondence to: S. Ikegami  相似文献   

10.
11.
12.
13.
14.
15.
The mechanism of DNA hypermethylation-associated tumor suppressor gene silencing in cancer remains incompletely understood. Here, we show by chromatin immunoprecipitation that for three genes (P16, MLH1, and the O(6)-methylguanine-DNA methyltransferase gene, MGMT), histone H3 Lys-9 methylation directly correlates and histone H3 Lys-9 acetylation inversely correlates with DNA methylation in three neoplastic cell lines. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) resulted in moderately increased Lys-9 acetylation at silenced loci with no effect on Lys-9 methylation and minimal effects on gene expression. By contrast, treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5Aza-dC) rapidly reduced Lys-9 methylation at silenced loci and resulted in reactivation for all three genes. Combined treatment with 5Aza-dC and TSA was synergistic in reactivating gene expression through simultaneous effects on Lys-9 methylation and acetylation, which resulted in a robust increase in the ratio of Lys-9 acetylated and methylated histones at loci showing dense DNA methylation. By contrast to Lys-9, histone H3 Lys-4 methylation inversely correlated with promoter DNA methylation, was not affected by TSA, and was increased moderately at silenced loci by 5Aza-dC. Our results suggest that reduced H3 Lys-4 methylation and increased H3 Lys-9 methylation play a critical role in the maintenance of promoter DNA methylation-associated gene silencing in colorectal cancer.  相似文献   

16.
Post-translational modifications of core histone proteins play a key role in chromatin structure and function. Here, we study histone post-translational modifications during reentry of protoplasts derived from tobacco mesophyll cells into the cell cycle and evaluate their significance for progression through mitosis. Methylation of histone H3 at lysine residues 4 and 9 persisted in chromosomes during all phases of the cell cycle. However, acetylation of H4 and H3 was dramatically reduced during mitosis in a stage-specific manner; while deacetylation of histone H4 commenced at prophase and persisted up to telophase, histone H3 remained acetylated up to metaphase but was deacetylated at anaphase and telophase. Phosphorylation of histone H3 at serine 10 was initiated at prophase, concomitantly with deacetylation of histone H4, and persisted up to telophase. Preventing histone deacetylation by the histone deacetylase inhibitor trichostatin A (TSA) led to accumulation of protoplasts at metaphase-anaphase, and reduced S10 phosphorylation during anaphase and telophase; in cultured tobacco cells, TSA significantly reduced the frequency of mitotic figures. Our results indicate that deacetylation of histone H4 and H3 in tobacco protoplasts occurs during mitosis in a phase-specific manner, and is important for progression through mitosis.  相似文献   

17.
The histones of Plasmodium falciparum represent a potential new target for anti-malarial compounds. A naturally occurring compound, apicidin, has recently been shown to inhibit the in vitro growth of P. falciparum. Apicidin was shown to hyperacetylate histones, suggesting that its mode of action is through histone deacetylase inhibition. We have tested the ability of known histone deacetylase inhibitors, mammalian tumour suppressor compounds, and cytodifferentiating agents to inhibit the in vitro growth of a drug sensitive and resistant strain of P. falciparum. Seven of the tested compounds had microM IC50 values, and trichostatin A, a histone deacetylation inhibitor and cytodifferentiating agent, was active at low nM concentrations. One compound, suberic acid bisdimethylamide, which selectively arrests tumour cells as opposed to normal mammalian cells, had an in vivo cytostatic effect against the acute murine malaria Plasmodium berghei, and one round of treatment with the compound failed to select for resistant mutations. These results suggest a promising role for histone deacetylase inhibitors and cytodifferentiating agents as antimalarial drug candidates.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号