首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guo X  Deng F  Li L  Prud'homme RK 《Biomacromolecules》2008,9(6):1637-1642
We report the synthesis of biocompatible polymeric hydrogels based on poly(vinyl acetate) (PVAc) and poly(methyl vinyl ether-co-maleic anhydride) (PMVE-MA). These polymeric hydrogels show strong and tunable adhesion to both hydrophobic and hydrophilic surfaces and should be ideal candidates as bioadhesives for applications such as denture adhesion. PVAc was partially hydrolyzed and then mixed with PMVE-MA. Crosslinking between these two polymers through reactions between hydroxyl groups in partially hydrolyzed PVAc and maleic anhydride groups in PMVE-MA increased their compatibility and prevented phase separation so transparent hydrogels were formed. The adhesion of these polymeric hydrogels to hydrophobic and hydrophilic surfaces was tailored by regulating the degree of hydrolysis of PVAc and the molecular weights of the polymers. In the vicinity of critical gel point, where the elastic modulus G' and the viscous modulus G' scale as G' approximately G' approximately omega (0.3), polymeric hydrogels show optimal adhesion. Transparent gels are formed in mixed solvents of water and ethanol. The content of ethanol in the mixed solvent can be partially replaced by propylene glycol, glycerol, or poly(ethenyl glycol)-400, and the composition of appropriate mixed solvents can be determined by the calculation of solubility parameters.  相似文献   

2.
The graft copolymer, poly(maleic anhydride/styrene)-co-polyethylene was prepared. The copolymer immobilized bovine serum albumin (BSA), but the amount coupled appeared to be effected by the amount of styrene in the graft copolymer, temperature, and pH of the coupling medium. Competition existed between hydrolysis of the grafted anhydride groups and the protein. A graft copolymer with 66% add-on immobilized 4.5 mg/glucose oxidase/g copolymer, 4.6 mg alkaline phosphates/g copolymer and 0.2 mg cell of Bacillus stearothermophilus/g copolymer. A number of copolymers containing poly(maleic anhydride/vinyl acetate)-co-polyethylene were prepared to cover a range of grafting levels. These immobilized larger quantities of BSA, alkaline phosphatase, and cells of B. stearothermophilus than did the styrene graft copolymer. The copolymer was also hydrolyzed to release the hydroxyl group from the poly(vinyl acetate) component of the grafted chains. Using p-benzoquinone as the "activating agent," the copolymer coupled to BSA and to acid phosphatase. Using p-toluene-sulfonyl chloride, the copolymer was very effective in immobilizing trypsin.  相似文献   

3.
Li Y  Li Q  Li F  Zhang H  Jia L  Yu J  Fang Q  Cao A 《Biomacromolecules》2006,7(1):224-231
This study presents investigations on new approaches to novel biodegradable amphiphilic poly(L-lactide)-b-dendritic poly(L-lysine)s bearing well-defined structures. First, two new Boc-protected poly(L-lysine) dendron initiators G(2)OH 4 (generation = 2) and G(3)OH 6 (generation = 3) with hydroxyl end functional groups were efficiently derived from corresponding precursors 3 and 5 via methyl ester substitution with ethanolamine. Subsequently, two series of new diblock copolymers of poly(L-lactide)-b-dendritic Boc-protected poly(L-lysine)s (S1-S2, S3-S4) were prepared in chloroform through ring-opening copolymerization of poly(L-lactide)s with a metal-free catalyst of organic 4-(dimethylamino) pyridine (DMAP) in the presence of a corresponding new poly(L-lysine) dendron initiator. Further, molecular structures of the prepared new dendron initiators as well as those of poly(L-lactide)-b-dendritic Boc-protected poly(L-lysine)s bearing different dendron blocks and PLLA lengths were examined by means of nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), mass spectrometry (ESI-MS, MALDI-FTMS), and thermal gravimetric analysis (TGA). The results demonstrated successful formation of the synthetic precursors, functional dendron initiators, and new diblock copolymers. In addition, the very narrow molecular weight distributions (PDI = 1.10-1.14) of these poly(L-lactide)-b-dendritic Boc-protected poly(L-lysine)s further indicated their well-defined molecular structures. After the efficient Boc-deprotection for the dendron amino groups with TFA/CH(2)Cl(2), new diblock poly(L-lactide)-b-dendritic poly(L-lysine)s bearing lipophilic PLLA and hydrophilic dendritic PLL were finally prepared. It was noteworthy that the MALDI-FTMS result showed that no appreciable intermolecular chain transesterification happened during the ROP of L-lactide catalyzed by the DMAP. Moreover, self-assembly of these new biodegradable amphiphilic copolymers in diverse solvents were also preliminarily studied.  相似文献   

4.
In this contribution, the principle of spontaneous surface segregation has been applied for the preparation of polypeptide-functionalized polystyrene microspheres. For that purpose, an amphiphilic diblock copolymer was introduced in the mixture styrene/divinylbenzene and polymerized using AIBN as initiator. During the polymerization, cross-linked particles were obtained in which the diblock copolymer was encapsulated. The amphiphilic diblock copolymers used throughout this study contain a hydrophilic polypeptide segment, either poly(L-lysine) or poly(L-glutamic acid) and a hydrophobic polystyrene block. After 4 h of polymerization, rather monodisperse particles with sizes of approximately 3-4 microm were obtained. Upon annealing in hot water, the hydrophilic polypeptides migrate to the interface, hence, either positively charged or neutral particles were obtained when poly(L-lysine) is revealed at the surface and exposed to acidic or basic pH, respectively. On the opposite, negatively charged particles were achieved in basic pH water by using poly(L-glutamic acid) as additive. The surface chemical composition was modified by changing the environment of the particles. Thus, exposure in toluene provoked a surface rearrangement, and due to its affinity, the polystyrene block reorients toward the interface.  相似文献   

5.
The polarity of polymer-actin complexes obtained by mixing F-actin with synthetic polymers carrying positive charges such as poly(L-lysine), x,y-ionene bromide polymers, and poly(N-[3-(dimethylamino)propyl]acrylamide) (PDMAPAA-Q) have been investigated. Actin complexes formed with poly(L-lysine) and PDMAPAA-Q, which carry charges on their side chains, show a higher polarity than those formed with x,y-ionene bromide polymers, which have charges on their chain backbones. All these polymer-actin complex gels show motility on the surfaces coated with myosin by coupling to adenosine 5'-triphosphate hydrolysis. A linear correlation between the polarity of polymer-actin complex gels and the motility is observed.  相似文献   

6.
The effects of poly(L-lysine) on the structural and thermotropic properties of dipalmitoylphosphatidylglycerol (DPPG) bilayers were studied with differential scanning calorimetry (DSC), X-ray diffraction and freeze-fracture electron microscopy. For thermal behavior, in the DPPG/poly(L-lysine) system the main transition temperature rises to 45.7 degrees C and the pretransition disappears in opposition to pure DPPG vesicles. An additional transition appears approximately at 36 degrees C for the DPPG/poly(L-lysine) system after incubation at 4 degrees C for two months. The incubated sample gives a X-ray diffraction pattern having several additional reflections in the range of 0.2-0.9 nm at 15 degrees C. These results suggest that even in the presence of poly(L-lysine) the DPPG bilayers form the subgel (Lc) phase after the long incubation at a low temperature. The X-ray diffraction measurements indicate that the structure of the Lc phase for DPPG/poly(L-lysine) system is different from that of pure DPPG bilayers. On the other hand, in the gel (L beta') phase, the wide-angle X-ray diffraction pattern suggests that the presence of poly(L-lysine) hardly affects the packing of hydrocarbon chains in the DPPG bilayers. The small-angle X-ray diffraction and freeze-fracture electron microscopy exhibit that the DPPG/poly(L-lysine) system forms a tightly packed multilamellar structure in which the poly(L-lysine) is intercalated between the subsequent DPPG bilayers.  相似文献   

7.
The principle of affinity chromatography was used for preparation of thromboresistant bilayer coatings. The outer biospecific layer containing epsilon-aminocaproic acid residues (from 2.2 up to 5.5 nmol/cm2) was synthesized using a copolymer of maleic anhydride with N-vinylpyrrolidone and L-lysine dihydrochloride or N-epsilon-tert-BOC-L-lysine. This surface can selectively adsorb plasminogen (fibrinolytic zymogen) from blood. The biospecific layer (from 2.0 up to 3.6 microg/cm2) was applied for covering chitosan (native or modified) or albumin interlayer. Such bilayer coatings (BCs) were stable and represented the insoluble polyelectrolyte complexes. BCs were proposed for bilayer modification of synthetic vascular grafts, polyethylene, and other materials contacting with blood. This technique allowed us to significantly reduce thrombogenic properties of polyethylene surfaces.  相似文献   

8.
Diethylenetriaminepentaacetic acid (DTPA), a strong chelating agent, was covalently linked to murine monoclonal anti-HLA IgG1 antibody (H-1) with the use of poly(L-lysine) (Mr 14,000) as a multivalent, intermediary carrier, via thiol-disulfide exchange reaction. The conjugates contained up to 42.5 mol DTPA per mol antibody, and retained over 90% of their antibody activity in vitro. The conjugates incorporated gadolinium (Gd) through an exchange reaction with Gd-EDTA, used to prevent colloid formation and nonspecific binding of the free metal. The IgG-poly(L-lysine)-DTPA-Gd had a greater effect per mol on proton relaxation rates than DTPA-Gd itself. Use of poly(L-lysine) as an intermediary carrier for attachment of chelating agents to IgG thus offers great potential for achieving high-specific-activity conjugates, particularly for use as biologically specific contrast agents in nuclear magnetic resonance imaging.  相似文献   

9.
The N-terminal sequence H-Met-Ser-Tyr-Asn-Leu-Leu-Gly-Phe-Leu-Gln-Arg-Ser-Ser-OH (FIF[1-13]) of human fibroblast interferon HuIFN-beta(Fi) has been synthesized using the solid-phase method. After esterification of N-tert-butyloxycarbonyl-O-benzyl-L-serine cesium salt with chloromethylated polystyrene-1% divinylbenzene (loading 0.25 mmol/g) the tridecapeptide was built up stepwise. Coupling reagents and N-tert-butyloxycarbonylamino acids were used in a six-fold excess. For the second coupling 1-hydroxybenzotriazole was added during carbodiimide and 4-nitrophenyl glutaminate or asparaginate couplings. Side chain functions were masked: O-benzylserine, O-(2,6-dichlorobenzyl)tyrosine and Ng-tosylarginine. After an acetylation step the N-protection was removed by trifluoroacetic acid/dichloromethane 1:1, and for neutralisation triethylamine/-chloroform 1:9 were used, both steps with a prewash. The Ng-tosyltridecapeptide was split-off from the resin by HBr in trifluoroacetic acid and purified by repetitive precipitations. After deprotection of the guanidino group of arginine with sodium in liquid ammonia, the peptide was precipitated from acetic acid/water, chromatographed on Sephadex G-25 coarse in acetic acid/water 1:1 and precipitated from acetic acid/ether and dimethylformamide/acetone. After purification by multiplicative counter-current distribution in butanol/-5% acetic acid/propanol 5:5:1 the tridecapeptide was pure according to chromatographic, electrophoretic, enzymatic and instrumental analyses. The peptide was investigated by circular dichroism in trifluoroethanol and hexafluoroacetonesesquihydrate and 13C-nuclear magnetic resonance, which revealed an alpha-helical conformation. In order to obtain a suitable antigen the tridecapeptide was coupled to poly(L-lysine) (molecular mass 37300) via N,N'-dicyclohexylcarbodiimide followed by dialysis. The resulting poly(L-lysine)-FIF[1-13] conjugate showed a loading of 17.8 mol FIF[1-13] per mol poly(L-lysine).  相似文献   

10.
11.
Dictyostelium myosin II heavy-chain kinase A (MHCK A) is activated by autophosphorylation. Heparin and DNA, as well as vesicles composed of phosphatidylserine or phosphatidylinositol, were found to increase the initial rate of MHCK A autophosphorylation 5-10-fold in a Ca(2+)-independent manner. The negatively charged molecules also increased the activity of the autophosphorylated MHCK A by about 2-fold. In contrast, positively charged polypeptides such as poly(D-lysine), poly(L-lysine), poly(L-arginine) and histones strongly inhibited (IC50 of 0.5 micrograms/ml) the activity of the active, autophosphorylated MHCK A. Similar levels of inhibition, on a weight basis, were observed for poly(L-lysine) fractions with molecular weights from 3800 to 150,000-300,000. The inhibition was competitive with respect to peptide substrate and mixed with respect to ATP. At much higher concentrations poly(L-lysine) also inhibited the ability of MHCK A to autophosphorylate. It is proposed that negatively charged compounds and autophosphorylation increase the activity of MHCK A by weakening the interaction between the catalytic domain and a positively charged autoinhibitory domain.  相似文献   

12.
The purpose of this investigation was to characterize the in vitro stability and in vivo disposition of paclitaxel in rats after solubilization of paclitaxel into hydrotropic polymeric micelles. The amphiphilic block copolymers consisted of a micellar shell-forming poly(ethylene glycol) (PEG) block and a core-forming poly(2-(4-vinylbenzyloxy)-N,N-diethylnicotinamide) (P(VBODENA)) block. N,N-Diethylnicotinamide (DENA) in the micellar inner core resulted in effective paclitaxel solubilization and stabilization. Solubilization of paclitaxel using polymeric micelles of poly(ethylene glycol)-b-P(D,L-lactide) (PEG-b-PLA) served as a control for the stability study. Up to 37.4 wt % paclitaxel could be loaded in PEG-b-P(VBODENA) micelles, whereas the maximum loading amount for PEG-b-PLA micelles was 27.6 wt %. Thermal analysis showed that paclitaxel in the polymeric micelles existed in the molecularly dispersed amorphous state even at loadings over 30 wt %. Paclitaxel-loaded hydrotropic polymeric micelles retained their stability in water for weeks, whereas paclitaxel-loaded PEG-b-PLA micelles precipitated in a few days. Hydrotropic polymer micelles were more effective than PEG-PLA micelle formulations in inhibiting the proliferation of human cancer cells. Paclitaxel in hydrotropic polymer micelles was administered orally (3.8 mg/kg), intravenously (2.5 mg/kg), or via the portal vein (2.5 mg/kg) to rats. The oral bioavailability was 12.4% of the intravenous administration. Our data suggest that polymeric micelles with a hydrotropic structure are superior as a carrier of paclitaxel due to a high solubilizing capacity combined with long-term stability, which has not been accomplished by other existing polymeric micelle systems.  相似文献   

13.
Polymeric microsphere system has been widely used in tissue-regeneration matrix and drug delivery systems. To apply these biomaterials as novel cell supporting matrix for stem cell delivery, we have devised a novel method for the fabrication of nanostructured 3D scaffolds that growth factor loaded heparin/poly(L-lysine) nanoparticles were physically attached on the positively charged surface of PLGA microspheres precoated with low molecular weight of poly(ethyleneimmine) (PEI) via a layer-by-layer (LbL) system. Based on a previous study, we have prepared poly(lactide-co-glycolide) (PLGA) microspheres harboring heparin/poly(L-lysine) loaded with growth factors. Growth factor loaded heparin/poly(L-lysine) nanoparticles, which were simply produced as polyion complex micelles (PICM) with diameters of 50-150 nm, were fabricated in the first step. Microsphere matrix (size, 20 approximately 80 nm) containing TGF-beta 3 showed a significantly higher number of specific lacunae phenotypes at the end of the 4 week study in vitro culture of mesenchymal stem cells. Thus, growth factor delivery of PLGA microsphere can be used to engineer synthetic extracellular matrix. This PLGA microsphere matrix containing TGF-beta 3 showed promise as coatings for implantable biomedical devices to improve biocompatibility and ensure in vivo performance.  相似文献   

14.
Qiu GM  Xu YY  Zhu BK  Qiu GL 《Biomacromolecules》2005,6(2):1041-1047
A fluorescent, magnetic composite poly(styrene-maleic anhydride) microsphere, suitable for conjugation with polysaccharide, was synthesized using magnetite/europium phthalate particles as seeds by copolymerization of styrene and maleic anhydride. The magnetite/europium phthalate particles were wrapped up by poly(ethylene glycol), which improved the affinity between the seed particles and the monomers. The composite microspheres obtained, with a diameter of 0.15-0.7 microm, contain 586-1013 microg of magnetite/g of microsphere and 0.5-16 mmol surface anhydride groups/g of microsphere. Heparin was conjugated with the reactive surface anhydride groups on the surface of the microspheres by covalent binding to obtain a fluorescent, magnetic, polysaccharide-based microsphere. The microspheres not only retain their bioactivities but also provide magnetic susceptibility and fluorescence. They can be used as a carrier with magnetic orientation and fluorescence tracer for potent drug targeting. The orientation, tracer, and anticoagulation of the fluorescence, magnetic, polysaccharide-based microspheres were studied. The anticoagulant activity of the microspheres and heparin binding capacity reached 54,212.8 U and 607.1 mg/g of dry microspheres. The activity recovery was 50.2%. The anticoagulant activity of the microspheres increases with the increase of the conjugated heparin on the surface of the microspheres and the decrease of the microsphere size. Furthermore, The fluorescent, magnetic, polysaccharide-based microspheres can be easily transported to a given position in a magnetic field and traced via their fluorescence.  相似文献   

15.
Structure of dipalmitoylphosphatidic acid (DPPA) bilayers in the presence of poly(L-lysine) is proposed from the results of X-ray diffraction obtained by a storage phosphor detector with a high resolution called an imaging plate. The small-angle X-ray diffraction pattern exhibits that DPPA/poly(L-lysine) complex forms a highly ordered multilamellar structure. The electron density profile of the DPPA/poly(L-lysine) complex draws that only one poly(L-lysine) layer is intercalated between the neighboring DPPA bilayers. The wide-angle X-ray diffraction pattern suggests that the presence of poly(L-lysine) hardly affects the nature of hydrocarbon chain packing in the DPPA bilayers. The X-ray reflection from the DPPA/poly(L-lysine) complex indicates that the poly(L-lysine) molecules adopt a beta-sheet conformation on the surface of the DPPA bilayers. The both surface areas occupied by a headgroup of the DPPA and by a lysine residue in poly(L-lysine) are estimated from the observed spacings. The number ratio of lysine residues to DPPA headgroups per unit area is greater than unity. Therefore, one DPPA headgroup interacts with more than one lysine residue electrostatically, i.e., the electric charge distributions in both the surface of a DPPA bilayer and the poly(L-lysine) beta-sheet are incommensurate.  相似文献   

16.
A differential fixation of poly(L-arginine) and poly(L-lysine) has been demonstrated by means of cellulose acetate electrophoresis and colorimetric titration. Electrophoresis showed that at pH 3.0 and concentrations between 0.025% and 2% the reagent interacts with poly(L-arginine) but not with poly(L-lysine). at pH 7.5, however, poly(L-lysine) also reacts, although at a higher concentration of tannic acid than was required to fix poly(L-arginine) at this pH. Colorimetric titration revealed that for poly(L-arginine) the reaction with tannic acid commences at pH 3.0 and is complete at pH 4.1 whereas for poly(L-lysine) the reaction commences at pH 3.5 and is complete at pH 4.9. It is suggested that the reaction is predominantly electrostatic. The results are discussed in relation to the use of tannic acid as a protein fixative in electron microscopy.  相似文献   

17.
《IRBM》2007,28(1):42-48
Dental implant-associated infections as peri-implantitis represent one of the major causes of osteointegration failures of oral implants. Adhesion of Porphyromonas gingivalis, one of the bacterial strains mainly involved in such infections, is tightly dependent on the topographical and/or physico-chemical properties of the implant surfaces. As a matter of fact, we showed that the grafting of one bioactive polymer such as poly(sodium styrene sulfonate) onto titanium implant surfaces allowed a sensitive decrease of Staphylococcus aureus adhesion (> 40%). The aim of the study consists in evaluating the adhesion of P. gingivalis onto titanium surfaces grafted with poly(sodium stryrene sulfonate) in order to elaborate implants exhibiting appropriate inhibiting properties towards the adhesion of periodontal pathogens. The grafting of poly(sodium stryrene sulfonate) onto titanium surfaces is carried out in two steps: chemical oxydation of titanium to initiate radical species then grafting of poly(sodium stryrene sulfonate) by radical polymerization. Chemical characterization of the surfaces is achieved by Fourier transformed infrared spectroscopy (FTIR). Bacterial adhesion was studied on grafted and non grafted (control) titanium surfaces, preadsorbed or not by plasmatic proteins. Protein adsorption as well as bacteria adhesion is followed by fluorescence spectroscopy by using proteins or bacteria previously labelled with fluorescence probes; the quantification of adsorption and bacteria adhesion are performed by image analysis. Results showed that protein adsorption is more important (~3 times) and that P. gingivalis adhesion is strongly inhibited (~73%) onto poly(sodium styrene sulfonate) grafted surfaces when compared to titanium control. Moreover, the inhibition of bacterial adhesion on grafted surfaces preadsorbed with plasma proteins is comparable to that observed on grafted surfaces preadsorbed with fibronectin. In conclusion, the obtained results evidenced that the grafting of titanium surface by poly(sodium styrene sulfonate) led to significant inhibition of P. gingivalis adhesion and that this inhibitory activity involved adsorbed proteins. Poly(sodium styrene sulfonate) grafted titanium surfaces present a high interest for the elaboration of oral implants in various clinical dental applications.  相似文献   

18.
Hollow (air-filled) microparticles, i.e., microbubbles, provide a promising novel vehicle for both local delivery of therapeutic agents and simultaneous diagnostic ultrasound echo investigations. In this paper, we describe the synthetic routes for decorating the polymeric shell of a poly(vinyl alcohol)-based microbubble with low and high molecular weight ligands with pharmacological relevance. Investigations on physical properties of microbubbles and surface chemical coupling with different cargo molecules such as L-cysteine, L-lysine, poly(L-lysine), chitosan, and beta-cyclodextrin were carried out by CD and NMR spectroscopies, confocal laser scanning microscopy, and microcalorimetry. The in vitro cytotoxicity and biocompatibility of the polymer microbubbles have been also determined toward different cell lines. The results are discussed in terms of the features shown by this device, i.e., injectability, long shelf life, ease of preparation, biocompatibility, loading and cargo capacities, and functional properties.  相似文献   

19.
The influence of poly(L-lysine) binding on the coupled activities of nitrate-sensitive H+-ATPase in isolated corn ( Zea mays L. cv. FRB73) root tonoplast vesicles was investigated. The addition of membrane-impermeable poly(L-lysine) caused a slow increase in light scattering of the tonoplast suspension. Electron microscopy showed that the increase was the result of an aggregation of the vesicles. In the presence of 75 m M KCl, a concentration sufficient to sustain near optimal ATP hydrolysis, poly(L-lysine) slightly enhanced the hydrolysis activity but significantly inhibited proton pumping of the H+-ATPase. Inhibition increased with the average molecular mass of poly(L-lysine) and reached a maximum at 58 kDa. When total osmolarity was kept constant, the replacement of sucrose by KCl enhanced both ATP hydrolysis and proton pumping activities. However, enhancement of proton pumping was significantly greater than that of ATP hydrolysis. An increase in KCl, but not K2SO4, significantly relieved poly(L-lysine)-induced inhibition of proton pumping. Kinetic analysis indicated that poly(L-lysine) did not significantly affect the proton leakage of the tonoplast membranes under different energetic conditions. These results suggest that the electrostatic interaction between poly(L-lysine) and the negative charges on the exterior surface of tonoplast vesicles could change the coupling ratio of ATP hydrolysis to proton pumping. Thus, the surface charge of the tonoplast membrane may be involved in the regulation of these two activities.  相似文献   

20.
Evidence for targeted gene delivery to Hep G2 hepatoma cells in vitro   总被引:7,自引:0,他引:7  
G Y Wu  C H Wu 《Biochemistry》1988,27(3):887-892
We have developed a system for targeting foreign DNA to hepatocytes in vitro using a soluble DNA carrier that takes advantage of receptor-mediated endocytosis to achieve internalization. The idea is based on the fact that hepatocytes possess a unique receptor that binds and internalizes galactose-terminal (asialo)glycoproteins. To create a targetable carrier system that could bind DNA in a nondeforming manner, we used poly(L-lysine) to bind DNA in a strong but noncovalent interaction. An asialoglycoprotein, asialoorosomucoid (AsOR), was chemically coupled to poly(L-lysine) to form an asialoorosomucoid-poly(L-lysine) conjugate. Various proportions of conjugate to DNA were tested to determine conditions that maximized DNA content in a soluble complex and that limited solubility of complexes. To test the targetable gene delivery system, AsOR-poly(L-lysine) conjugate was complexed to the plasmid pSV2 CAT containing the gene for chloramphenicol acetyltransferase (CAT) driven by an SV-40 promoter. We tested this complex using a model system consisting of human hepatoma cell line Hep G2 [asialoglycoprotein receptor (+)], hepatoma SK-Hep 1, IMR-90 fibroblasts, and uterine smooth muscle [receptor (-)] cells. Each cell line was incubated with 0.2 micron filtered AsOR-poly(L-lysine)-DNA complex or controls consisting of DNA plus AsOR, DNA plus poly(L-lysine), or DNA alone. Cells were assayed for the presence of CAT activity as a measure of gene transformation. SK-Hep 1, IMR-90, and smooth muscle [receptor (-)] cells produced no detectable acetylated chloramphenicol derivatives under any of these conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号