首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The heavy chain isotype switch is mediated by a DNA rearrangement between a donor switch region (usually mu) and a recipient switch region (gamma, epsilon, or alpha). Switch regions lie upstream of the appropriate heavy chain constant region gene and are composed of simple sequences repeated in tandem. It is not known to what extent the tandemly repeated sequences are important to the heavy chain switch recombination, and to what extent other features of switch region sequences might contribute to the switch process. We studied switches to the gamma 3 isotype by sequencing the entire gamma 3 switch region. This switch region is composed of forty-four 49 base pair units repeated in tandem. These repeated units share modest homology with the mu switch region repeated elements. Evolution of the gamma 3 switch region seems to involve insertions and deletions of the 49mer elements. We also molecularly cloned rearranged switch regions from two gamma 3-expressing hybridomas and determined the DNA sequences at the mu-gamma 3 recombination sites. We located these switch recombination sites within the germ-line gamma 3 switch region, as well as switch recombination sites from two myelomas. All four sites are found in the 5' one-third of the gamma 3 switch region. We discuss some additional trends in the sequence data near these four recombination sites.  相似文献   

6.
Circular DNA is excised by immunoglobulin class switch recombination   总被引:28,自引:0,他引:28  
T Iwasato  A Shimizu  T Honjo  H Yamagishi 《Cell》1990,62(1):143-149
We have purified extrachromosomal circular DNAs from adult mouse spleen cells, and cloned into a phage vector the BamHl fragments hybridizing with C mu and S gamma 1 probes. We obtained 52 S mu+S gamma 1+ clones by screening 1.4 million phage clones derived from spleen cells stimulated with bacterial lipopolysaccharide and interleukin 4. We have identified the breakpoints of six clones that contain S gamma 1 and S mu sequences fused in the 5' to 3' orientation. All these switch recombination sites were assigned to the central repetitive sequences of the S mu and S gamma 1 regions. Since the common S mu-S gamma 1 sequences at the recombination sites are at most 2 bases long, typical homologous recombination cannot account for their joining. These findings provide direct evidence that mu-gamma 1 class switching can occur by the looping out and excision of chromosomal DNA, with formation of a circle.  相似文献   

7.
Immunoglobulin class switch involves a unique recombination event that takes place at the switch (S) region which is located 5' to each constant region (C) gene of the heavy (H) chain. For example, differentiation of the B lymphocyte from a mu-chain producer to an epsilon-chain producer is mediated by the switch recombination between the S mu and S epsilon regions. In order to elucidate the molecular mechanism for the switch recombination, we have determined nucleotide sequences surrounding the class switch recombination sites of the C epsilon and C gamma 3 genes and those in the 5' flanking regions of the C gamma 2a and C delta genes. The results indicate that the 5' flanking regions of all the CH genes except for the C delta gene contain the S regions which comprise tandem repetition of short unit sequences in agreement with the previous analyses of the S gamma 1, S gamma 2b, S mu, and S alpha regions. Comparison of the nucleotide sequences of all the S regions revealed that length as well as nucleotide sequences of the S regions vary among different classes of the CH gene, but they share short common sequences, (G)AGCT and TGGG(G). The nucleotide sequence of the S mu region is homologous to those of the other S regions in the decreasing order of the S epsilon, S alpha, S gamma 3, and (S gamma 1, S gamma 2b, s gamma 2a) regions. We have compared the nucleotide sequences immediately adjacent to the recombination sites of seven rearranged genes and have always fund tetranucleotides TGAG and/or TGGG, except for one case. Such tetranucleotides may constitute a part of the recognition sequence of a putative recombinase. These results provide further support for our previous proposal that the switch recombination may be facilitated by short common sequences dispersed in all the S regions.  相似文献   

8.
During development, B lymphocytes have the ability to switch from synthesis of IgM to immunoglobulins of another isotype such as IgG, IgA, or IgE. This class switching mechanism has been shown to involve DNA rearrangement and concomitant deletion of intervening CH genes. In our report, an EBV-transformed B lymphoblastoid cloned cell line is described that simultaneously expressed and secreted both IgM and IgE. DNA analysis showed the (nonproductive) rearrangement of one allele to gamma and (productive) rearrangement of the other allele to mu. Germ-line arrangement of the C epsilon gene was preserved on both alleles.  相似文献   

9.
During B lymphocyte differentiation, immunoglobulin heavy chain constant region (CH) genes undergo a unique series of DNA recombination events culminating in the CH class switch. CH switch (S) regions are located 2 kb 5' of each CH gene except delta (i.e. mu, gamma 3, gamma 1, gamma 2b, gamma 2a, epsilon and alpha). We describe the structural features of the gamma 3 switch region. Hybridization experiments show that S gamma 3 has remarkable homology to both S mu and other S gamma regions while S mu possesses limited homology to the other S gamma sequences. However, S mu possesses extensive sequence homology with S epsilon and S alpha. The nucleotide sequence of S gamma 3 reveals higher densities of S mu repetitive sequences (GAGCT and GGGGT) and another S region common sequence (YAGGTTG) than observed for S gamma 1, S gamma 2b or S gamma 2a. In addition, the conservation of S mu like repetitive sequences in S gamma regions is correlated with the 5' leads to 3' gamma gene order (i.e. S gamma 3 greater than S gamma 1 greater than S gamma 2b greater than S gamma 2a). A model is presented which suggests that the unique features of S gamma 3 may allow for successive switches from C mu to any C gamma gene.  相似文献   

10.
11.
The mechanism and specificity of isotype switching operative in human B lymphocytes was investigated by a determination of immunophenotype and immunoglobulin heavy and light chain gene status in a panel of human Ig-, IgM, IgG, and IgA B cell malignancies. Regardless of specific tumor type or switched immunophenotype, isotype switching was accompanied by the rearrangement of the expressed CH gene downstream of VDJH, with concomitant deletion of upstream CH genes in all cases. On the allelically excluded chromosome, 25% of the IgG or IgA tumors have retained C mu, and 75% have deleted C mu. The 5' recombination breakpoints for both productive and excluded alleles lie within or near S mu, 3' of the enhancer. No correlation between the extent of allelically excluded CH deletions and the isotype produced by the tumor was observed. Excluded chromosome deletion endpoints were found 5', equal to, or 3' of productive chromosome deletion endpoints. Furthermore, we have identified at least one IgM+ tumor that has undergone abortive CH gene deletions and have observed several unanticipated switch region deletions and potential translocations. The data suggest that isotype switching in human B cells occurs by a nonsubclass- and nonclass-specific switch recombinase.  相似文献   

12.
We demonstrated that a subclone of an Abelson murine leukemia virus-transformed B-lymphoid cell line switched from mu to gamma 2b expression in vitro, by the classical recombination-deletion mechanism. In this line, the expressed VHDJH region and the C gamma 2b constant region gene were juxtaposed by a recombination event which linked the highly repetitive portions of the S mu and S gama 2b regions and resulted in the loss of the C mu gene from the intervening region. An additional recombination event in this subclone involved an internal deletion in the S mu region of the expressed (switched) allele. One end of this deletion occurred very close to the switch recombination point. Despite the recombination-deletion mechanism of switching, the gamma 2b-producing line retained two copies of the C mu gene and two copies of the sequence just 5' to the S gamma 2b recombination point. The possible significance of the retention of these sequences to the mechanism of class switching is discussed.  相似文献   

13.
During B lymphocytes differentiation, switches in the expression of heavy chain immunoglobulin constant region (CH) genes occur by a novel DNA recombination mechanism. We have investigated the requirements of the CH gene switch by characterizing two rearranged gamma 2b genes from a gamma 2b producing mouse myeloma (MPC-11). One of the two gamma 2b genes is present in 2-3 copies per cell (gamma 2b strong hybridizer) while the other is present in approximately 1 copy per cell (gamma 2b weak hybridizer). Genomic clones of the gamma 2b strongly hybridizing gene indicate that this is an abortive switch event between the S gamma 3 and S gamma 2b regions. However, clones of the gamma 2b weakly hybridizing gene suggest a functional rearrangement due to the presence of VH, JH and S mu sequences. The switch-recombination sites of these rearranged gamma 2b genes and those of other CH genes show a high degree of preference for the sequence AGGTTG 5' of either the S mu donor site or the appropriate CH S acceptor site. AGGTTG and its analogs are rare in the S mu region, are somewhat prevalent in s alpha and in the case of S mu are found 5' of a tandemly repeated DNA sequence (GAGCT, GGGGT) comprising most of S mu.  相似文献   

14.
The immunoglobulin heavy chain isotype switch is mediated by a DNA rearrangement involving specific genomic segments referred to as switch regions. Switch regions are composed of tandemly repeated simple sequences. The role of the tandemly repeated structure of switch regions in the switch recombination process is not understood. We mapped eight recombination sites--six in the gamma 1 and two in the gamma 3 tandem arrays. In addition, we obtained molecular clones representing three of the six gamma 1 rearrangements, and determined the nucleotide sequences of the recombination sites in each. In general, the rearrangements are confined to the tandem repeat units, and are not clustered in a particular portion of either the gamma 3 or gamma 1 switch region. Nucleotide sequence analysis of one of the recombinant clones, gamma M35, reveals evidence for a successive switch event wherein a recombination between S mu and S gamma 3 was followed by recombination 57 bp downstream with S gamma 1. gamma 1 sequence data from the molecular clones we obtained, together with similar data from other investigators regarding the gamma 1, gamma 2b, and gamma 2a switch regions, reveals that recombinations tend to occur at homologous positions of the respective gamma-unit repeats, adjacent to the elements AGCT and GGGG found in each. This finding suggests that the cutting and religation step of the recombination process is mediated by a recombinase common to the four gamma-isotypes.  相似文献   

15.
Ig class switch recombination (CSR) occurs by an intrachromosomal deletional process between switch (S) regions in B cells. To facilitate the study of CSR, we derived a new B cell line, 1.B4.B6, which is uniquely capable of mu --> gamma3, mu --> epsilon, and mu --> alpha, but not mu --> gamma1 CSR at its endogenous loci. The 1.B4.B6 cell line was used in combination with plasmid-based isotype-specific S substrates in transient transfection assays to test for the presence of trans-acting switching activities. The 1.B4.B6 cell line supports mu --> gamma3, but not mu --> gamma1 recombination, on S substrates. In contrast, normal splenic B cells activated with LPS and IL-4 are capable of plasmid-based mu --> gamma1 CSR and demonstrate that this S plasmid is active. Activation-induced deaminase (AID) was used as a marker to identify existing B cell lines as possible candidates for supporting CSR. The M12 and A20 cell lines were identified as AID positive and, following activation with CD40L and other activators, were found to differentially support mu --> epsilon and mu --> alpha plasmid-based CSR. These studies provide evidence for two new switching activities for mu --> gamma1 and mu --> epsilon CSR, which are distinct from mu --> gamma3 and mu --> alpha switching activities previously described. AID is expressed in all the B cell lines capable of CSR, but cannot account for the isotype specificity defined by the S plasmid assay. These results are consistent with a model in which isotype-specific switching factors are either isotype-specific recombinases or DNA binding proteins with sequence specificity for S DNA.  相似文献   

16.
17.
We describe rearrangement events which alter expression from a productive VHDJH rearrangement in an Abelson murine leukemia virus-transformed pre-B cell line. One such rearrangement results in replacement of the initially expressed variable region gene by a site-specific join between the open reading frame of a LINE-1 repetitive element and a remaining JH segment. We discuss this event in the context of the 'accessibility' model of recombinase control, and with respect to similar rearrangements involved in oncogene activation. In another subclone of the same pre-B cell line, altered heavy chain expression resulted from a mu to gamma 2b class switch recombination which occurred by a recombination-deletion mechanism but involved a complex inversion. We provide evidence that the germline gamma 2b region is specifically expressed in pre-B cell lines and early in normal development. We propose that the predisposition of pre-B cell lines to switch to gamma 2b production may reflect a normal physiological phenomenon in which the switch event is directed by an increased 'accessibility' of the germline gamma 2b locus to switch-recombination enzymatic machinery. Our findings support the hypothesis that the apparently distinct recombination systems involved in variable region gene assembly and heavy chain class switching are both directed by the accessibility of their substrate gene segments.  相似文献   

18.
19.
Early in its differentiative pathway, a given B lymphocyte expresses immunoglobulin of the mu heavy chain class (IgM). Subsequent differentiative processes may involve rearrangement within the immunoglobulin heavy chain chromosomal locus to enable cells of the same lineage to synthesize immunoglobulins of other heavy chain classes (e. g. IgG, IgE or IgA), but with specificity for the same antigen as the original IgM molecule. Switch recombination, the molecular event which facilitates this chromosomal rearrangement, has been shown to occur between segments of DNA consisting of tandemly repeated unit sequences. These DNA segments have been functionally defined as switch regions. We have cloned the gamma 1 switch region from the BALB/c germline, and have demonstrated that significantly divergent sequence elements are interspersed among the tandemly repeated units characteristic of this switch region. We show that these unique elements exist in at least three copies within the switch segment, and discuss the implications of this novel and previously unreported primary structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号