共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular cloning and characterization of N-syndecan, a novel transmembrane heparan sulfate proteoglycan 总被引:3,自引:0,他引:3 下载免费PDF全文
D J Carey D M Evans R C Stahl V K Asundi K J Conner P Garbes G Cizmeci-Smith 《The Journal of cell biology》1992,117(1):191-201
A cDNA clone coding for a membrane proteoglycan core protein was isolated from a neonatal rat Schwann cell cDNA library by screening with an oligonucleotide based on a conserved sequence in cDNAs coding for previously described proteoglycan core proteins. Primer extension and polymerase chain reaction amplification were used to obtain additional 5' protein coding sequences. The deduced amino acid sequence predicted a 353 amino acid polypeptide with a single membrane spanning segment and a 34 amino acid hydrophilic COOH-terminal cytoplasmic domain. The putative extracellular domain contains three potential glycosaminoglycan attachment sites, as well as a domain rich in Thr and Pro residues. Analysis of the cDNA and deduced amino acid sequences revealed a high degree of identity with the transmembrane and cytoplasmic domains of previously described proteoglycans but a unique extracellular domain sequence. On Northern blots the cDNA hybridized to a single 5.6-kb mRNA that was present in Schwann cells, neonatal rat brain, rat heart, and rat smooth muscle cells. A 16-kD protein fragment encoded by the cDNA was expressed in bacteria and used to immunize rabbits. The resulting antibodies reacted on immunoblots with the core protein of a detergent extracted heparan sulfate proteoglycan. The core protein had an apparent mass of 120 kD. When the anti-core protein antibodies were used to stain tissue sections immunoreactivity was present in peripheral nerve, newborn rat brain, heart, aorta, and other neonatal tissues. A ribonuclease protection assay was used to quantitate levels of the core protein mRNA. High levels were found in neonatal rat brain, heart, and Schwann cells. The mRNA was barely detectable in neonatal or adult liver, or adult brain. 相似文献
2.
Kokenyesi R 《Journal of cellular biochemistry》2001,83(2):259-270
Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells. 相似文献
3.
Santiago B Baleux F Palao G Gutiérrez-Cañas I Ramírez JC Arenzana-Seisdedos F Pablos JL 《Arthritis research & therapy》2006,8(2):R43-8
The chemokine CXCL12 (also known as stromal cell-derived factor, SDF-1) is constitutively expressed by stromal resident cells
and is involved in the homeostatic and inflammatory traffic of leukocytes. Binding of CXCL12 to glycosaminoglycans on endothelial
cells (ECs) is supposed to be relevant to the regulation of leukocyte diapedesis and neoangiogenesis during inflammatory responses.
To improve our understanding of the relevance of this process to rheumatoid arthritis (RA), we have studied the mechanisms
of presentation of exogenous CXCL12 by cultured RA ECs. RA synovial tissues had higher levels of CXCL12 on the endothelium
than osteoarthritis (OA) tissues; in both, CXCL12 colocalized to heparan sulfate proteoglycans (HSPGs) and high endothelial
venules. In cultured RA ECs, exogenous CXCL12α was able to bind in a CXCR4-independent manner to surface HSPGs. Desulfation
of RA EC HSPGs by pretreatment with sodium chlorate, or by replacing in a synthetic CXCL12α the residues Lys24 and Lys27 by
Ser (CXCL12α-K2427S), decreased or abrogated the ability of the chemokine to bind to RA ECs. Ex vivo, synovial ECs from patients with either OA or RA displayed a higher CXCL12-binding capacity than human umbilical vein ECs
(HUVECs), and in HUVECs the binding of CXCL12 was increased on exposure to tumor necrosis factor-α or lymphotoxin-α1β2. Our findings indicate that CXCL12 binds to HSPGs on ECs of RA synovium. The phenomenon relates to the interaction of HSPGs
with a CXCL12 domain with net positive surface charge located in the first β strand, which encompasses a canonical BXBB HSPG-binding
motif. Furthermore, we show that the attachment of CXCL12 to HSPGs is upregulated by inflammatory cytokines. Both the upregulation
of a constitutive chemokine during chronic inflammation and the HSPG-dependent immobilization of CXCL12 in EC surfaces are
potential sites for therapeutic intervention. 相似文献
4.
Zufeng Ding Xianwei Wang Magomed Khaidakov Shijie Liu Yao Dai Jawahar L. Mehta 《Biochemical and biophysical research communications》2012,426(1):106-111
BackgroundCell surface heparan sulfate proteoglycans (HSPG) play an important role in atherogenesis. We hypothesized that degradation of HSPG may increase the binding of atherogenic oxidized low density lipoprotein (ox-LDL) to endothelial cells, and result in extensive HSPG degradation as well as autophagy and apoptosis.MethodsPrimary human umbilical vein endothelial cells (HUVECs) were used to study the expression of lectin-like ox-LDL receptor-1 (LOX-1), HSPG, autophagy and apoptosis in response to ox-LDL and heparinase III (Hep III).ResultsAs expected, ox-LDL treatment resulted in LOX-1 expression, ox-LDL uptake and reactive oxygen species (ROS) generation. Ox-LDL treatment also resulted in a modest degradation of HSPG and increase in autophagy (expression of LC3, beclin-1 and Atg5) and apoptosis (enhanced expression of caspases and Bax, and reduced expression of Bcl-2 and Bcl-xL). The effects of ox-LDL were blocked by pretreatment of cells with LOX-1 antibody or apocynin, an NADPH oxidase inhibitor. Hep III alone caused HSPG degradation and slightly, but significantly, increased ROS generation, and induced autophagy and caspase expression. However, autophagy and apoptosis induced by Hep III were not affected by apocynin or LOX-1 antibody. Importantly, Hep III pretreatment of cells significantly enhanced ox-LDL-induced HSPG degradation, LOX-1 expression, ox-LDL uptake and ROS generation as well as autophagy and apoptosis.ConclusionThese data demonstrate that Hep III enhances the pro-atherosclerotic characteristics in HUVECs induced by ox-LDL. 相似文献
5.
6.
T Kojima C W Leone G A Marchildon J A Marcum R D Rosenberg 《The Journal of biological chemistry》1992,267(7):4859-4869
We have isolated heparan sulfate proteoglycans (HSPGs) from cloned rat microvascular endothelial cells using a combination of ion-exchange chromatography, affinity fractionation with antithrombin III (AT III), and gel filtration in denaturing solvents. The anticoagulantly active heparan sulfate proteoglycans (HSPGact) which bind tightly to AT III bear mainly anticoagulantly active heparan sulfate (HSact) whereas the anticoagulantly inactive heparan sulfate proteoglycans (HSPGinact) possess mainly anticoagulantly inactive heparan sulfate (HSinact). HSact and HSinact were also isolated by a combination of ion-exchange chromatography, treatment with protease and chondroitin ABC lyase, and affinity fractionation with AT III. HSact and HSinact have molecular sizes of about 25-30 kDa with the same overall composition of monosaccharides except that HSact exhibits about nine glucuronsyl 3-O-sulfated glucosamines/chain whereas HSinact possesses about three glucuronsyl 3-O-sulfated glucosamines/chain. Direct isolation of the AT III-binding site of HSact by exposing carbohydrate chains to Flavobacterium heparitinase in the presence of protease inhibitor revealed only a single interaction site which contained two to three glucuronsyl 3-O-sulfated glucosamine residues. The core proteins of HSPGact and HSPGinact were isolated by treatment with Flavobacterium heparitinase and purification by ion-exchange chromatography. The molecular sizes of the core proteins were established by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and their primary structures were examined by cleavage with trypsin or endopeptidase Glu-C as well as separation of peptides by reverse-phase high performance liquid chromatography. The results showed that both sets of core proteins exhibited three major components with molecular sizes of 50, 30, and 25 kDa, respectively. The 25-kDa species appears to be a proteolytic degradation product of the 30-kDa species. The peptide mapping revealed that HSPGact and HSPGinact possess extremely similar core proteins. 相似文献
7.
Follistatin, an activin-binding protein, associates with heparan sulfate chains of proteoglycans on follicular granulosa cells 总被引:6,自引:0,他引:6
Follistatin, an activin-binding protein secreted by cultured rat granulosa cells, was shown to associate with the cell surface by affinity labeling with 125I-activin. Addition of follistatin to the cultured cells demonstrated a typical ligand-binding saturation curve, suggesting that granulosa cells have a specific binding site for follistatin. This binding was markedly inhibited by heparin and heparan sulfate, but not by chondroitin sulfates A and C, keratan sulfate, and dermatan sulfate. When granulosa cells were treated with glycosaminoglycan-degrading enzymes before or after addition of follistatin to the cultures, heparinase and heparitinase treatments resulted in significant suppression of the binding, whereas treatment with chondroitinase ABC had no effect. A competition study of the binding using heparin derivatives demonstrated that follistatin seemed to recognize O-sulfate groups in the heparin molecule. Heparitinase-treated granulosa cells exhibited almost full responsiveness to activin, indicating that the enzyme treatment had no effect on activin and receptor interaction. These results suggest that follistatin/activin-binding protein binds to heparan sulfate side chains of proteoglycans on the granulosa cell surface to regulate the various actions of activin. 相似文献
8.
G Mertens J J Cassiman H Van den Berghe J Vermylen G David 《The Journal of biological chemistry》1992,267(28):20435-20443
Human aortic endothelial cells (HAEC) and human umbilical vein endothelial cells (HUVEC) were labeled with 35SO(4)2- for 48 h. The membrane-associated proteoglycans were solubilized from these monolayers with detergent and purified by ion-exchange chromatography on Mono Q, incorporation in liposomes, and gel filtration. The liposome-intercalated proteoglycans were 125I-iodinated and treated with heparitinase before SDS-polyacrylamide gel electrophoresis. Radio-labeled proteins with apparent molecular masses of 130, 60, 46, 35, and 30 kDa (HAEC) and 180, 130, 62, 43, and 35 kDa (HUVEC) were detected by autoradiography. Further characterization by affinity chromatography on immobilized monoclonal antibodies and by Northern blot analysis provided evidence for the expression of syndecan, glypican, and fibroglycan in human endothelial cells. Most of the heparan sulfate which accumulated in the subendothelial matrix was implanted on a 400-kDa core protein. This protein was immunologically related to perlecan and bound to fibronectin. Binding studies on immobilized antithrombin III suggested that all membrane-associated heparan sulfate proteoglycan forms had the capacity to bind to antithrombin III but that high affinity binding was more typical for glypican. Most of the proteoglycans isolated from the extracellular matrix also bound only with low affinity to antithrombin III. These results imply that glypican may specifically contribute to the antithrombotic properties of the vascular wall. 相似文献
9.
Molecular cloning of amphiglycan, a novel integral membrane heparan sulfate proteoglycan expressed by epithelial and fibroblastic cells 总被引:7,自引:0,他引:7 下载免费PDF全文
G David B van der Schueren P Marynen J J Cassiman H van den Berghe 《The Journal of cell biology》1992,118(4):961-969
We have synthesized an antisense oligonucleotide primer that matches a supposedly conserved sequence in messages for heparan sulfate proteoglycans with transmembrane orientations. With the aid of this primer we have amplified partial and selected full-length copies of a message from human lung fibroblasts that codes for a novel integral membrane heparan sulfate proteoglycan. The encoded protein is 198 amino-acids long, with discrete cytoplasmic, transmembrane, and amino-terminal extracellular domains. Except for the sequences that represent putative heparan sulfate chain attachment sites, the extracellular domain of this protein has a unique structure. The transmembrane and cytoplasmic domains, in contrast, are highly similar to the corresponding domains of fibroglycan and syndecan, the two cell surface proteoglycans that figured as models for the design of the antisense primer. This similarity includes the conservation of four tyrosine residues, one immediately in front of the stop transfer sequence and three in the cytoplasmic segment, and of the most proximal and most distal cytoplasmic sequences. The cDNA detects a single 2.6-kb message in cultured human lung fibroblasts and in a variety of human epithelial and fibroblastic cell lines. Polyclonal and monoclonal antibodies raised against the encoded peptide after expression as a beta-galactosidase fusion protein react with the 35-kD coreprotein of a cell surface heparan sulfate proteoglycan of human lung fibroblasts and decorate the surface of many cell types. We propose to name this proteoglycan "amphiglycan" (from the Greek words amphi, "around, on both sides of" and amphoo, "both") referring to its domain structure which extends on both sides of the plasmamembrane, and to its localization around cells of both epithelial and fibroblastic origin. 相似文献
10.
11.
Murthy KH Smith SA Ganesh VK Judge KW Mullin N Barlow PN Ogata CM Kotwal GJ 《Cell》2001,104(2):301-311
Vaccinia virus complement control protein (VCP) inhibits both pathways of complement activation through binding the third and fourth components. A homolog of mammalian regulators of complement activation, its ability to bind heparin endows VCP with additional activities of significance to viral infectivity. The structure of VCP reveals a highly extended molecule with a putative heparin recognition site at its C-terminal end. A second cluster of positive charges provides a possibly overlapping binding site for both heparin and complement components. Experiments suggested by the structure indicate that VCP can bind heparin and control complement simultaneously. This, the structure of any intact regulator of complement activation, along with attendant functional insights, will stimulate the design of new therapeutic inhibitors of complement. 相似文献
12.
Molecular cloning of a phosphatidylinositol-anchored membrane heparan sulfate proteoglycan from human lung fibroblasts 总被引:6,自引:12,他引:6 下载免费PDF全文
《The Journal of cell biology》1990,111(6):3165-3176
Two mAbs raised against the 64-kD core protein of a membrane heparan sulfate proteoglycan from human lung fibroblasts also recognize a nonhydrophobic proteoglycan which accumulates in the culture medium of the cells. Pulse-chase studies suggest that the hydrophobic cell- associated forms act as precursors for the nonhydrophobic medium- released species. The core proteins of the medium-released proteoglycans are slightly smaller than those of the hydrophobic cell- associated species, but the NH2-terminal amino acid sequences of both forms are identical. The characterization of human lung fibroblast cDNAs that encode the message for these core proteins and the effect of bacterial phosphatidylinositol-specific phospholipase C suggest that the hydrophobic proteoglycan is membrane-anchored through a phospholipid tail. These data identify a novel membrane proteoglycan in human lung fibroblasts and imply that the shedding of this proteoglycan may be related to the presence of the phospholipid anchor. 相似文献
13.
Nakamura T Aoki S Kitajima K Takahashi T Matsumoto K Nakamura T 《Biochimica et biophysica acta》2001,1518(1-2):63-72
Kringle domain, a triple-disulfide-linked domain, is conserved in diverse proteins which play important roles in various biological processes. We cloned Kremen, a novel member of kringle-containing proteins, using a newly developed unique strategy, 'Kringle-SAGE (serial analysis of gene expression)', which enables comprehensive analysis of kringle-containing proteins. Kremen is likely to be a type-I transmembrane protein composed of 473 amino acid residues. Kremen has a kringle domain, a WSC domain, and CUB domains in the extracellular region, while the intracellular region has no conserved motif involved in signal transduction. In the mouse embryo, the Kremen mRNA level, which was increased during embryonic development, was localized in the apical ectodermal ridge of limb buds, myotome, and sensory organs (e.g. optic vesicle, otic vesicle, nasal pit). In the adult mouse, Kremen mRNA was expressed in a variety of tissues with a relatively strong expression in the lung, heart, and skeletal muscle. Kremen mRNA expression in C2C12 and NIE-115 cells increased during respective differentiation into muscular and neural cells. These results suggest a potential role for Kremen in the regulation of cellular responses upon extracellular stimulus or cell-cell interaction in neuronal and/or muscle cells. Kringle-SAGE is expected to facilitate further elucidation of structure and functions of kringle proteins. 相似文献
14.
The cloned rat fat pad endothelial cell (RFP-EC) line synthesizes anticoagulantly active heparan sulfate proteoglycans (HSPGact) and anticoagulantly inactive heparan sulfate proteoglycans (HSPGinact), both of which exhibit 25-, 30-, and 50-kDa core proteins of extremely similar structure. The primary sequences of internal peptides obtained from HSPGinact core proteins and the NH2-terminal sequence analyses of the 25-kDa component from the HSPGinact core proteins demonstrate that the 30-kDa component is a previously unidentified species, designated as ryudocan, with the 25-kDa component representing a proteolytic degradation product, while the 50-kDa component is the rat homolog of syndecan (Saunders, S. Jalkanen, M., O'Farrell, S., and Bernfield, M. (1989) J. Cell Biol. 108, 1547-1556). Specific oligonucleotide probes were obtained for ryudocan and syndecan by polymerase chain reaction, and the corresponding cDNAs were isolated from a RFP-EC library. The cDNAs encode type I integral membrane proteins of 202 and 313 amino acids, respectively, which have homologous transmembrane and intracellular domains but very distinct extracellular regions. In particular, ryudocan exhibits only three potential glycosaminoglycan attachment sites within the extracellular region while syndecan has five glycosaminoglycan attachment sites within the same domain. Both species are expressed in RFP-EC lines, primary rat aortic smooth muscle cells and primary rat skin fibroblast cells. The levels of ryudocan and syndecan mRNA were measured by quantitative polymerase chain reaction in primary microvascular endothelial cells and closely associated non-endothelial cells isolated by cell sorting. Ryudocan and syndecan mRNAs were abundantly expressed in both populations representing about 0.1-0.5% of mRNA. 相似文献
15.
Understanding the process of wound healing will provide valuable insight for the development of new strategies to treat diseases associated with improper regeneration, such as blindness induced by corneal scarring. Heparan sulfate proteoglycans (HSPG) are not normally expressed in the corneal stroma, but their presence at sites of injury suggests their involvement in the wound healing response. Primary cultured corneal stromal fibroblasts constitutively express HSPG and represent an injured phenotype. Recently, nuclear localization of HSPG was shown to increase in corneal stromal fibroblasts plated on fibronectin (FN), an extracellular matrix protein whose appearance in the corneal stroma correlates with injury. One possible role for the nuclear localization of HSPG is to function as a shuttle for the nuclear transport of heparin-binding growth factors, such as basic fibroblast growth factor (FGF-2). Once in the nucleus, these growth factors might directly modulate cellular activities. To investigate this hypothesis, cells were treated with (125)I-labelled FGF-2 under various conditions and fractionated. Our results show that nuclear localization of FGF-2 was increased in cells plated on FN compared to those on collagen type I (CO). Interestingly, FGF-2-stimulated proliferation was increased in cells plated on FN compared to CO and this effect was absent in the presence of heparinase III. Furthermore, pre-treatment with heparinase III decreased nuclear FGF-2, and CHO cells defective in the ability to properly synthesize heparan sulfate chains showed reduced nuclear FGF-2 indicating that the heparan sulfate chains of HSPG are critical for this process. HSPG signaling, particularly through the cytoplasmic tails of syndecans, was investigated as a potential mechanism for the nuclear localization of FGF-2. Treatment with phorbol 12-myristate-13-acetate (PMA), under conditions that caused downregulation of protein kinase Calpha (PKCalpha), decreased nuclear FGF-2. Using pharmacological inhibitors of specific PKC isozymes, we elucidated a potential mode of regulation whereby PKCalpha mediates the nuclear localization of FGF-2 and PKCdelta inhibits it. Our studies suggest a novel mechanism in which FGF-2 translocates to the nucleus in response to injury. 相似文献
16.
Characterization of a heparan sulfate proteoglycan that copurifies with the neural cell adhesion molecule 总被引:7,自引:0,他引:7
We have demonstrated previously that the neural cell adhesion molecule (NCAM) interacts with a neuronal heparan sulfate proteoglycan. The binding of this proteoglycan(s) by NCAM appears to be required for NCAM-mediated cell adhesion, although the mechanism is unclear. In the present study we show that a heparan sulfate proteoglycan copurifies with NCAM, and provide an initial biochemical characterization of the proteoglycan. The copurification of a heparan sulfate proteoglycan with NCAM was demonstrated following immunopurification of NCAM from a detergent extract of cell membranes derived from Na2(35)SO4-labeled neural retinal cells. A large-molecular-weight, 35SO4-labeled molecule copurified with NCAM isolated from these neural cell cultures, and was resistant to chondroitinase ABC treatment, but degraded completely by nitrous acid treatment. These results indicate that the molecule is a heparan sulfate proteoglycan. Although this proteoglycan copurifies with NCAM, it is not detected when the neuron-glia cell adhesion molecule (NgCAM) is immunopurified using the 8D9 monoclonal antibody. The heparan sulfate proteoglycan may also be a membrane-associated proteoglycan since it interacts with phenyl-Sepharose. Molecular weight characterization of the proteoglycan by gel filtration chromatography indicates a molecular weight of 400-520 kDa. The heparan sulfate glycosaminoglycan chains were shown to have an average molecular weight of approximately 40 kDa, and the polypeptide backbone was estimated to be 120 kDa by polyacrylamide gel electrophoresis. These data therefore demonstrate that a neuronal heparan sulfate proteoglycan copurifies with NCAM. 相似文献
17.
Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes 总被引:172,自引:0,他引:172
We have cloned a previously undescribed adhesion molecule, VCAM-1, which is induced by cytokines on human endothelial cells and binds lymphocytes. Using a novel method requiring neither monoclonal antibodies nor purified protein, VCAM-1-expressing clones were selected by adhesion to human lymphoid cell lines. VCAM-1 mRNA is present in endothelial cells at 2 hr after treatment with IL-1 or TNF-alpha and is maintained for at least 72 hr; leukocyte binding activity parallels mRNA induction. Cells transfected with VCAM-1 bind the human leukemia lines Jurkat, Ramos, Raji, HL60, and THP1, but not peripheral blood neutrophils. VCAM-1, which belongs to the immunoglobulin gene super-family, may be central to recruitment of mononuclear leukocytes into inflammatory sites in vivo. 相似文献
18.
Obunike JC Lutz EP Li Z Paka L Katopodis T Strickland DK Kozarsky KF Pillarisetti S Goldberg IJ 《The Journal of biological chemistry》2001,276(12):8934-8941
Lipoprotein lipase (LPL), the major enzyme responsible for the hydrolysis of circulating lipoprotein triglyceride molecules, is synthesized in myocytes and adipocytes but functions while bound to heparan sulfate proteoglycans (HSPGs) on the luminal surface of vascular endothelial cells. This requires transfer of LPL from the abluminal side to the luminal side of endothelial cells. Studies were performed to investigate the mechanisms of LPL transcytosis using cultured monolayers of bovine aortic endothelial cells. We tested whether HSPGs and members of the low density lipoprotein (LDL) receptor superfamily were involved in transfer of LPL from the basolateral to the apical side of cultured endothelial cells. Heparinase/heparinitase treatment of the basolateral cell surface or addition of heparin to the basolateral medium decreased the movement of LPL. This suggested a requirement for HSPGs. To assess the role of receptors, we used either receptor-associated protein, the 39-kDa inhibitor of ligand binding to the LDL receptor-related protein and the very low density lipoprotein (VLDL) receptor, or specific receptor antibodies. Receptor-associated protein reduced (125)I-LPL and LPL activity transfer across the monolayers. When the basolateral surface of the cells was treated with antibodies, only anti-VLDL receptor antibodies inhibited transcytosis. Moreover, overexpression of the VLDL receptor using adenoviral-mediated gene transfer increased LPL transcytosis. Thus, movement of active LPL across endothelial cells involves both HSPGs and VLDL receptor. 相似文献
19.
The vacuolar proton-ATPase (V-ATPase) is a ubiquitous ATP-driven H(+) transporter that functions in numerous cell processes. Accumulating evidence shows important roles of V-ATPase in tumor metastasis and antigen presentation of dendritic cells (DC). A novel V-ATPase associated protein, designated as DVA9.2 (dendritic cell-derived V-ATPase associated protein of 9.2 kDa), has been identified from a human DC cDNA library by large-scale random sequencing. Full length cDNA of DVA9.2 encodes an 81-residue protein that shares 70-80% homology with human V-ATPase subunit M9.2. Distant relationship is also found with Vma21p, a yeast protein required for V-ATPase assembly. DVA9.2 contains a conserved domain, ATP synthase subunit H (pafm05493), and two membrane-spanning helices. DVA9.2 mRNA is detectable in several human tumor cell lines as well as some human normal cells and tissues. Moreover, the inducible expression of DVA9.2 mRNA in DC during maturation is observed. DVA9.2 displays integration with membrane and main localization in lysosome, endoplasmic reticulum and Golgi-associated organelles, only less at the plasma membrane. In addition, DVA9.2 is co-localized with V(0)-sector subunit a. Silencing of DVA9.2 by small interfering RNA (siRNA) does not affect the V-ATPase activity in cell membrane fractions or attenuate the migration and invasion in breast cancer MDA-MB-231 cells. These results indicate that DVA9.2, as a novel V-ATPase-associated protein, is not essential for the activity of V-ATPase complex and may be involved in functions of DC. 相似文献
20.
Molecular cloning and characterization of STAMP1, a highly prostate-specific six transmembrane protein that is overexpressed in prostate cancer 总被引:3,自引:0,他引:3
Korkmaz KS Elbi C Korkmaz CG Loda M Hager GL Saatcioglu F 《The Journal of biological chemistry》2002,277(39):36689-36696
We have identified a novel gene, six transmembrane protein of prostate 1 (STAMP1), which is largely specific to prostate for expression and is predicted to code for a 490-amino acid six transmembrane protein. Using a form of STAMP1 labeled with green fluorescent protein in quantitative time-lapse and immunofluorescence confocal microscopy, we show that STAMP1 is localized to the Golgi complex, predominantly to the trans-Golgi network, and to the plasma membrane. STAMP1 also localizes to vesicular tubular structures in the cytosol and colocalizes with the early endosome antigen 1 (EEA1), suggesting that it may be involved in the secretory/endocytic pathways. STAMP1 is highly expressed in the androgen-sensitive, androgen receptor-positive prostate cancer cell line LNCaP, but not in androgen receptor-negative prostate cancer cell lines PC-3 and DU145. Furthermore, STAMP1 expression is significantly lower in the androgen-dependent human prostate xenograft CWR22 compared with the relapsed derivative CWR22R, suggesting that its expression may be deregulated during prostate cancer progression. Consistent with this notion, in situ analysis of human prostate cancer specimens indicated that STAMP1 is expressed exclusively in the epithelial cells of the prostate and its expression is significantly increased in prostate tumors compared with normal glands. Taken together, these data suggest that STAMP1 may have an important role in the normal prostate cell as well as in prostate cancer progression. 相似文献