首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The content of glial fibrillary acidic protein (GFAP) was studied in the brain structures of rats borne by intact females and females that underwent stress. In the offspring of stressed rats, the GFAP content in the brain gray and white matter on the 15th postnatal day noticeably dropped. On the 30th postnatal day, the GFAP content in the cortex and pons increased, while it somewhat decreased in the striatum and cerebellum. The results suggest that formation of the intermediate astrocyte filaments in the animals subjected to prenatal stress is markedly disturbed.  相似文献   

2.
Nedzvetsky  V. S.  Baydas  G.  Nerush  P. A.  Kirichenko  S. V. 《Neurophysiology》2002,34(2-3):190-193
Cell adhesion molecules play a diverse role in neural development, signal transduction, structural linkage to extracellular and intracellular proteins, synaptic stabilization, neurogenesis, and learning. Neural cell adhesion molecules (NCAM) are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. There are three major NCAM isoforms: NCAM 180, NCAM 140, and NCAM 120. Several studies reported that NCAM play a central role in memory formation. We investigated the effects of melatonin on the expression of NCAM in the hippocampus, cortex, and cerebellum of rats. The levels of NCAM isoforms were determined by Western blotting. After administration of melatonin for 7 days, the expression of NCAM 180 increased both in the hippocampus and in the cortex, as compared with the control. In contrast, in rats exposed to constant illumination for 7 days (a procedure that inhibits endogenous production of melatonin), levels of NCAM 180 dropped in the hippocampus and became undetectable in the cortex and cerebellum. Levels of NCAM 140 in the hippocampus of light-exposed rats also decreased. There was no change in the expression of NCAM 120 in any brain region. This is the first report indicating that melatonin exerts a modulatory effect on the expression of NCAM in brain areas related to realization of cognitive functions. Melatonin may be involved in structural remodeling of synaptic connections during memory and learning processes.  相似文献   

3.
The effect of chronic emotional stress and ethanol on NCAM and GFAP levels in cerebral cortex, hippocampus, striatum, cerebellum and medulla-ponts was investigated. We report about increase of NCAM and GFAP concentrations in the cerebral cortex and decline of the total protein contents in the investigated brain areas of middle-sleep rats under the stress conditions. Ethanol in the dose of 0.5 g/kg during 7 days evoked opposite changes of NCAM and GFAP concentration and elevation of the total protein level in medulla-pons. In the other brain areas level changes of only one (any) of the two investigated neurospecific proteins were observed. Ethanol injections to the stressed rats normalized the relative weights of adrenals and the level of total protein in the brain areas but didn't normalize the behavioral activity in an "open field" test. Besides, we observed a dramatic increase of GFAP level (over 10 times) in the medulla-pons which may be connected with glioses. These results suggest the specific changes of NCAM and GFAP contents under the chronic emotional stress which don't correlate with changes in the hypophysis-adrenals system.  相似文献   

4.
Neurological and structural changes are paralleled by cognitive deficits in diabetes mellitus. The present study was designed to evaluate the expression of neural cell adhesion molecules (NCAM) in the hippocampus, cortex and cerebellum and to examine cognitive functions in diabetic rats. Diabetes was induced in male albino rats via intraperitoneal streptozotocin injection. Learning and memory behaviors were investigated using a passive avoidance test and a spatial version of the Morris water maze test. NCAM expression was detected in the hippocampus, cortex and cerebellum by an immunoblotting method. The diabetic rats developed significant impairment in learning and memory behaviours as indicated by deficits in passive avoidance and water maze tests as compared to control rats. Expression of NCAM 180 and 120 kDa were found to be higher in hippocampus and cortex of diabetic rat brains compared to those of control, whereas expression of NCAM 140 kDa decreased in these brain regions. Our findings suggest that streptozotocin-induced diabetes impairs cognitive functions and causes an imbalance in expression of NCAM in those brain regions involved in learning and memory. Altered expression of NCAM in hippocampus may be an important cause of learning and memory deficits that occur in diabetes mellitus.  相似文献   

5.
We studied the effects of maternal stress (the so-called prenatal stress, PS, provided by immobilization of pregnant female Wistar rats for 1 h daily during the 15–21st gestational days) on the corticosterone response in the blood plasma evoked by infusion of 10 μg noradrenaline bitartrate into the III cerebral ventricle or by injection of β-1-24-corticotropin in 3-month-old male and female offspring. The animals were bearing an intracerebroventricular stainless steel guide cannula implanted eight to nine days before the experiment, and a Silastic catheter inserted into the external jugular vein 24 h prior to the experiment. Blood samples were periodically taken from conscious unrestrained rats (before and then 30, 60 and 90 or 120 min after noradrenaline or corticotropin challenge). In the male offspring PS augmented and prolonged an increase in the plasma corticosterone level resulting from adrenergic stimulation of the hypothalamus, as compared with that in non-stressed animals. In prenatally stressed female offspring tested in diestrus, there was no response of the hypothalamic-pituitary-adrenal (HPA) axis to intracerebroventricular noradrenaline stimulation, in contrast to what was observed in the control. Prenatal stress did not modify the adrenal cortex responsiveness to corticotropin either in male or in female offspring. The results demonstrate differential effects of PS on the adrenergic activation of the HPA axis in males and females. A decrease in the acute HPA stress-responsiveness in prenatally stressed male rats, which was demonstrated in an earlier study, and the maintenance or even enhancement of this effect in prenatally stressed females are not likely to be connected with the state of hypothalamic adrenergic reactivity.  相似文献   

6.
We studied the behavior of rats in an open-field test and the contents of neurospecific proteins [neural cell adhesion molecule (NCAM) and glial fibrillary acidic protein (GFAP)] in the brain cortex, hippocampus, striatum, midbrain, cerebellum, andpons Varolii 1, 12, 24, 120, and 168 h after a single X-ray irradiation session (dose of 0.25 Gy). Within the postirradiation period, manifestations of the behavioral activity of the animals were mostly suppressed, and the parameters related to the emotional state of the animals were influenced to a greater extent. The dynamics of the NCAM and GFAP contents were complex and dissimilar in the brain structures under study, but it was possible to observe some general regularities. Within early periods of time, 12 h after irradiation, the NCAM content increased in the cortex, hippocampus, and cerebellum. In these structures, it reached approximately 220, 170, and 150%, respectively, as compared with the control, while it dropped to about 40% in thepons Varolii. Changes in the GFAP content reached their maximum 24 h after irradiation; this index dropped to 29, 44, 34, and 67% in the striatum,pons Varolii, midbrain, and cerebellum, respectively, while it increased to 380% in the hippocampus. Later time intervals were characterized by smoother changes in the contents of the above neurospecific proteins. Seven days after irradiation, the NCAM content did not differ from initial values in the striatum and cerebellum and was higher than the control in the neocortex, hippocampus, and midbrain. Within this period, the GFAP level in the cerebellum and midbrain was relatively normalized, but it increased in the hippocampus and decreased in the pons and striatum. Therefore, the greatest postirradiation shifts in the NCAM and GFAP levels were observed in the structures of the limbic system, and this can be correlated with the data on testing the rats in an open field.  相似文献   

7.
We studied a protective effect of a course injections of melatonin on cognitive deficiency in rats with streptozotocin-induced diabetes (STZD). The mean time necessary for the fulfillment of the Morris' water test in animals with STZD after 7 days of testing was three times greater than the corresponding index in the control group. Rats with STZD, which were injected with 10 mg/kg melatonin daily for 21 days after introduction of STZ, demonstrated a significantly lower level of cognitive deficiency ((in these rats the mean time necessary for the test fulfillment was only 48% greater than that in the control animals). In rats with STZD, substantial changes in the content of NCAM isoforms in the brain structures (significant decreases in the NCAM180 content in the hippocampus, neocortex, and cerebellum, and in that of NCAM140 in the cerebellum) were observed. Course injections of melatonin into the rats with STZD promoted significant normalization of the composition of NCAM isoforms in the structures under study. The data obtained indicate that control of expression of separate NCAM isoforms can be one of the mechanisms through which melatonin prevents the development of cognitive deficiency in diabetic animals.  相似文献   

8.
The neurotoxic effects of thinner, a mixture including aromatic compounds (in particular, toluene) and widely used as an industrial solvent, were examined. Exposure of rats to high inhalation concentrations (3000 p.p.m.) of thinner for 45 days (1 h per day) significantly influenced the cognitive functions and levels of neural cell adhesion molecules (NCAM) in the hippocampus, cortex, and cerebellum of experimental animals. These exposures also caused dramatic increases in levels of LPO (malondialdehyde and 4-hydroxyalkenals) in these cerebral structures, while melatonin administration significantly reduced the LPO amounts in these brain regions. The level of NCAM (180 kDa) decreased significantly in the hippocampus and cortex of thinner-exposed rats. Furthermore, thinner-exposed rats showed cognitive deficits in the passive avoidance and Morris water maze tasks; these negative effects were considerably compensated in rats additionally chronically treated with melatonin. It is concluded that treatment with melatonin prevents the development of learning and memory deficits caused by thinner exposure, possibly by reducing oxidative stress and normalizing the neural plasticity.  相似文献   

9.
Major depression is characterized for symptoms at the psychological, behavioral and physiological levels. The chronic mild stress model has been used as an animal model of depression. The consumption of sweet food, locomotor activity, body weight, lipid and protein oxidation levels and superoxide dismutase and catalase activities in the rat hippocampus, prefrontal cortex and cortex were assessed in rats exposed to chronic mild stress. Our findings demonstrated a decrease on sweet food intake, no effect on locomotor activity, lack of body weight gain, increase in protein (prefrontal, hippocampus, striatum and cortex) and lipidic peroxidation (cerebellum and striatum), and an increase in catalase (cerebellum, hippocampus, striatum, cortex) and a decrease in superoxide dismutase activity (prefrontal, hippocampus, striatum and cortex) in stressed rats. In conclusion, our results support the idea that stress produces oxidants and an imbalance between superoxide dismutase and catalase activities that contributes to stress-related diseases, such as depression.  相似文献   

10.
The effect of prenatal stress on the time course of the corticosterone response to acute and chronic stress and on hematological and immunological parameters in the offspring were analized in the present study. Pregnant Sprague-Dawley rats were stressed daily for 2 hours during the last week of gestation, and female and male off-spring were studied during adulthood. Corticosterone response to acute immobilization stress was not significantly different in either control or prenatally stressed rats. However, after 10 days of immobilization stress the corticosterone response completely disappeared in the control animals but not in the prenatally stressed group: high levels of corticosterone were found during the first hour of stress, although they were lower than those found in acutely stressed rats. Adrenal hypertrophy in response to prenatal stress was observed in females but not in male offspring, and chronic stress only increased adrenal weights in the male control group. Prenatal stress decreased the total peripheral leukocyte count, altered its diferential count decreasing lymphocytes and increasing neutrophil and eosinhophil counts, and significantly reduced the percentage of peripheral lymphocyte T CD8+ subset in male offspring. Chronic stress also reduced the percentage of the peripheral T CD8+ lymphocyte subset in the control group but not in the prenatally stressed group. These results suggest that the exposure to stress during pregnancy alters the adaptative response of the hypothalamus-pituitary-adrenocortical axis to chronic stress and presumably the immune competence in the offspring.  相似文献   

11.
We studied the reactions of the adrenal cortex to corticotropic and central noradrenergic stimulations in mature adult male and female rats which, in the final week of the prenatal period, developed under conditions of an artificial increase in the level of glucocorticoids in the maternal organism (everyday injections of 50 µg/kg of hydrocortisone acetate suspension to pregnant females). Experiments were carried out on unanesthetized offsprings of both sexes under conditions of free behavior; the level of corticosterone was repeatedly measured in the blood plasma with 30-min-long intervals within a 90 to 120 min period after injection of a stimulating agent. There was practically no adrenocortical reaction to infusion of adrenaline into the cerebral ventricle III in males whose mothers were injected with hydrocorticosterone acetate in the pregnancy period. At the same time, males born by intact mothers demonstrated a significant increase in the corticosterone level 30 min after the above-mentioned infusion. Noradrenergic stimulation increased the corticosterone concentration in the blood plasma in female offspring of both control and experimental groups, but the dynamics of reactions in females prenatally treated by hydrocortisone acetate demonstrated certain specificity (the reaction was longer, and the corticosterone level in the blood was higher even at the 90th min after noradrenaline infusion). At the same time, there were no changes in the sensitivity of the adrenal cortex to β-1-24-corticotropin either in males or in females of all observed groups. These results show that an artificial increase in the level of glucocorticoid hormones in the blood of a pregnant female and fetus modifies the noradrenergic reaction of the hypothalamo-hypophyseal-adrenocortical system, but the direction of the respective changes in offspring males and females is opposite to that observed in prenatally stressed animals.Neirofiziologiya/Neurophysiology, Vol. 37, No. 1, pp. 21–25, January–February, 2005.  相似文献   

12.
Dietary restriction increases life span and protects distinct organisms against a series of diseases, among which, those related to oxidative stress, like neurodegenerative diseases. Interferences in the maternal environment are known to reprogram the offspring metabolism response, impacting in the risk of chronic diseases development in adulthood. We aimed to assess the effects of 40% food restriction on reactive species levels, enzymatic and non-enzymatic antioxidant defenses, and oxidative damage parameters in the cerebellum and total cerebral cortex of pregnant rats and their offspring. Dams and pups showed oxidative modulation caused by food restriction in both structures. Dichlorofluorescein oxidation, reflecting reactive species levels, was reduced in the cerebellum of dams and offspring, while the cerebral cortex was not affected. Decreased mitochondrial superoxide levels were found in the cerebellum and cerebral cortex of pups, while nitric oxide was increased in the cortex. We also measured the activities of important antioxidant enzymes responsible by reactive oxygen species elimination. Superoxide dismutase activity was increased in the cerebellum of dams and in both structures of pups, while it was decreased in dams’ cerebral cortex. Both brain structures were affected concerning to catalase, glutathione peroxidase, and glutaredoxin activities, which were reduced in pups and dams. Non-enzymatic defenses were decreased in pups, while dams showed an adaptive pattern in the cerebellum and no alteration in the cerebral cortex. Even though the results suggest increased oxidative status, lipids and proteins were not oxidatively affected. Our data suggest that intrauterine food restriction may disrupt oxidative status, impairing the antioxidant network.  相似文献   

13.
14.
We studied the effects of i.p. injection of melatonin in pharmacotherapeutic doses and of constant illumination (a melatonin synthesis-suppressing factor) on the behavior of rats in the open-field test and on the content of the main isoforms of neural cell adhesion molecule (NCAM) in the hippocampus, cerebellum, and neocortex of these animals. In the studied brain structures of the rats kept under conditions preventing the melatonin synthesis, we observed suppression of the behavioral activity of animals and a decrease in the expression of the NCAM180 isoform. In rats injected with 10 mg/kg melatonin, changes in the behavioral activity were insignificant. In the hippocampus and neocortex of rats of this group, the NCAM180 content increased. Our experiments showed that melatonin can be involved in the control of balance of the expression of different NCAM isoforms. Such a balance is a crucial factor determining plastic rearrangements of the synaptic contacts.  相似文献   

15.
Dosenko  V. E.  Prudnikov  I. M.  Tsyvkin  V. N.  Moibenko  A. A.  Miller  E. D. 《Neurophysiology》2004,36(2):111-115
We studied the proteasomal activity in synaptosomes obtained from tissues of the cerebral cortex, cerebellum, and hippocampus, as well as in the cytoplasm of cells of these brain structures, of rats subjected to long-lasting immobilization stress. It was demonstrated that the chymotrypsin-like activity of proteasomes in synaptosomes of the cerebral cortex and hippocampus of stressed animals was significantly higher (380 and 560%, respectively) as compared with that observed in control rats. The chymotrypsin-like and peptidylglutamyl peptide hydrolase activities of proteasomes in the cytoplasm of cortical cells under stress conditions also increased (210 and 180%, respectively). These data show that the activity of a multicatalytic proteolytic complex is sharply increased in synaptic terminals of cells of the cerebral cortex and hippocampus of stressed animals. The above complex plays a crucial role in the utilization of short-lived proteins whose molecules form receptors and ion channels; the amount of such proteins is especially great in synaptic terminals.  相似文献   

16.
The effect of daily immobillisation stress in female rats on the 15th to 18th days of pregnancy upon synthesis enzyme for neurosteroids of alpha-reductase in their male offspring brain, was studied. A decrease in the enzyme activity in the cortex and hypothalamus of male foetuses occurred within 24 hr following the latest stress, whereas it was increased in the cortex of newborn offspring. An enhancement of the 5 alpha-reductase activity in the cortex, hippocampus and hypothalamus was also found in prenatally stressed males on the 5th day of life. A decrease in the testosterone and progesterone contents in the blood plasma of the animals under study was revealed on the 19th day of their embryonic life as well as in newborn rats, the blood level of progesterone, at that, remained decreased even at the age of 5 days. A possible part ofneurosteroids in action of prenatal stress upon sexual differentiation of the brain is discussed.  相似文献   

17.
The male offspring of mice stressed by crowding during the final third of pregnancy showed reductions in sexual behavior and fertility. When paired with receptive females, their latencies to mount and to achieve intromission and ejaculation were greater than controls, and 30% of them failed to ejaculate in the 100-min test. When housed continuously for 4 days with females, 31% of them failed to impregnate their partners, compared with 4% of controls. The sexual receptivity of the untreated females paired with prenatally stressed males was not affected. Resting testosterone levels of prenatally stressed males did not differ from those of controls, and the pattern of rise and fall of testosterone during a 60-min interaction with a female showed only minor differences. The results suggest a central, rather than peripheral, mediation of the behavioral effects of prenatal stress.  相似文献   

18.
The effects of immobilization stress from 15th to 19th days of gestation on pathological state development in the model of post-traumatic stress disorder in adult female offspring were studied. The results showed that prenatally stressed female rats as well as control rats demonstrated long-term high anxiety and hypersensitive glucocorticoid feedback in the stress-restress model. Enhanced depressive-like behaviour was found only in prenatally stressed females. The findings were discussed in the light of HPA axis alteration and risk factors for development of post-traumatic stress disorder.  相似文献   

19.
We found that chronic lithium diet affects the sensitivity of neuroleptic receptors and the content of amino acids in the brain, and that the changes in adult animals differ from those in young rats. Pregnant rats were kept on lithium diet (pellets with 0.21% Li2CO3 and 0.21% NaCl) during the gestation period and the offspring were kept on lithium for six weeks after delivery. Control rats were kept on normal diet under identical conditions. In corpus striatum and cerebral cortex of lithium-treated young rats a reduction in apparent dissociation constant and no change in (3H)spiperone total binding sites were found, suggesting a sensitization of the neuroleptic receptor; this result was unlike that obtained with adult lithium-treated rats, where the total number of binding sites was decreased. The lithium content of brain was very high (2.32 meq/kg of wet weight), whereas in the serum only 0.75 meq/l was recorded. K+ and Na+ levels increased by 20% and 9% respectively in the brain and remained at normal levels in the serum. Analysis of free amino acids in the cerebral cortex, midbrain, and cerebellum showed increases in GABA and glycine levels in all three regions, a significant increase in taurine in midbrain, and an increase in lysine in cerebral cortex and cerebellum. The results indicate that the effect of chronic dietary lithium given during pregnancy on the neuroleptic receptor in young rats is different from that in adult animals. It produces an increase in the number of the neuroleptic receptor sites instead of the decline in the number of binding sites found in adult rats. It remains to be established whether this effect is related more to the age of the animal tested or to the stage of development of the CNS at which the lithium was administered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号