首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Laminarin, a beta-1,3 glucan with single beta-glucose branches at position 6, was chemically sulfated to produce PS3 with a degree of sulfation of 2.4. PS3 has previously been shown to activate the salicylic acid (SA) signaling pathway in infiltrated tobacco and Arabidopsis thaliana leaf tissues. Here, we investigated whether PS3 induces systemic defense and resistance responses in tobacco. Using a radiolabeled compound, it was first demonstrated that PS3 remains strictly localized to the infiltrated tissues. PS3 is also resistant to beta-glucanase degradation. In transgenic PR1-beta-glucuronidase (GUS) tobacco plants, PS3 causes a strong increase in GUS activity in treated tissues but none in untreated leaves. PS3-infiltrated tissues challenged with tobacco mosaic virus (TMV) 8 d after elicitor application show a decrease in both the lesion number and the lesion size, whereas treatment with laminarin, the unsulfated native glucan, affected only the lesion number. PS3 does not induce systemic acquired resistance to TMV. PS3 and laminarin show synergistic effects in promoting the oxidative burst in tobacco cell suspensions and in increasing the expression of genes encoding O-methyltransferases of the phenylpropanoid pathway in tobacco plants. No synergistic effect was observed on the expression of either the SA-dependent acidic PR1 gene or the ethylene-dependent basic PR5 gene in tobacco plants.  相似文献   

2.
In this paper, we present the first detailed analysis of the modes of action of three purified, thermostable endo-beta-D-glucanases (EG V-VII) against a range of soluble beta-linked glucans. Studies indicated that EG V-VII, purified to homogeneity from a new source, the thermophilic fungus Talaromyces emersonii, are strict beta-glucanases that exhibit maximum activity against mixed-link 1,3;1,4-beta-D-glucans. Time-course hydrolysis studies of 1,4-beta-D-glucan (carboxymethylcellulose; CMC), 1,3;1,4-beta-D-glucan from barley (BBG) and lichenan confirmed the endo-acting nature of EG V-VII and verified preference for 1,3;1,4-beta-D-glucan substrates. The results suggest that EG VI and EG VII belong to EC 3.2.1.6, as both enzymes also exhibit activity against 1,3-beta-glucan (laminaran), in contrast to EG V. Although cellobiose, cellotriose and glucose were the main glucooligosaccharide products released, the range and relative amount of each product was dependent on the particular enzyme, substrate and reaction time. Kinetic constants (Km, Vmax, kcat and kcat/Km) determined for EG V-VII with BBG as substrate yielded similar Km and Vmax values for EG V and EG VI. EG VII exhibited highest affinity for BBG (Km value of 9.1 mg ml(-1)) and the highest catalytic efficiency (kcat/Km of 12.63 s(-1) mg(-1) ml).  相似文献   

3.
A combined rational and library approach was used to identify bisphosphonates (IC50 = 20 microM) and galactose type 1-N-iminosugar (IC50=45 microM) as novel motifs for selective inhibition of beta-1,4-galactosyltransferase (beta-1,4-GalT) and alpha-1,3-galactosyltransferase (alpha-1,3-GalT), respectively. Our results demonstrate that, though these two galactosyltransferases both utilize the same donor sugar-nucleotide (UDP-Gal), the difference in their mechanisms can be utilized to design donor sugar or nucleotide analogues with inhibitory activities selective for only one of the galactosyltransferases. Investigation of beta-1,4-GalT inhibition using UDP-2-deoxy-2-fluorogalactose (UDP-2-F-Gal), UDP, and bisphosphonates, also led to the observation of metal dependent inhibition of beta-1,4-GalT. These observations and the novel inhibitor motifs identified in this study pave the way for the design and identification of even more potent and selective galactosyltransferase inhibitors.  相似文献   

4.
Linear beta-1,3 glucans are elicitors of defense responses in tobacco   总被引:2,自引:0,他引:2  
Laminarin, a linear beta-1,3 glucan (mean degree of polymerization of 33) was extracted and purified from the brown alga Laminaria digitata. Its elicitor activity on tobacco (Nicotiana tabacum) was compared to that of oligogalacturonides with a mean degree of polymerization of 10. The two oligosaccharides were perceived by suspension-cultured cells as distinct chemical stimuli but triggered a similar and broad spectrum of defense responses. A dose of 200 microg mL(-1) laminarin or oligogalacturonides induced within a few minutes a 1.9-pH-units alkalinization of the extracellular medium and a transient release of H(2)O(2). After a few hours, a strong stimulation of Phe ammonia-lyase, caffeic acid O-methyltransferase, and lipoxygenase activities occurred, as well as accumulation of salicylic acid. Neither of the two oligosaccharides induced tissue damage or cell death nor did they induce accumulation of the typical tobacco phytoalexin capsidiol, in contrast with the effects of the proteinaceous elicitor beta-megaspermin. Structure activity studies with laminarin, laminarin oligomers, high molecular weight beta-1, 3-1,6 glucans from fungal cell walls, and the beta-1,6-1,3 heptaglucan showed that the elicitor effects observed in tobacco with beta-glucans are specific to linear beta-1,3 linkages, with laminaripentaose being the smallest elicitor-active structure. In accordance with its strong stimulating effect on defense responses in tobacco cells, infiltration of 200 microg mL(-1) laminarin in tobacco leaves triggered accumulation within 48 h of the four families of antimicrobial pathogenesis-related proteins investigated. Challenge of the laminarin-infiltrated leaves 5 d after treatment with the soft rot pathogen Erwinia carotovora subsp. carotovora resulted in a strong reduction of the infection when compared with water-treated leaves.  相似文献   

5.
6.
Modular glycoside hydrolases that attack recalcitrant polymers generally contain noncatalytic carbohydrate-binding modules (CBMs), which play a critical role in the action of these enzymes by localizing the appended catalytic domains onto the surface of insoluble polysaccharide substrates. Type B CBMs, which recognize single polysaccharide chains, display ligand specificities that are consistent with the substrates hydrolyzed by the associated catalytic domains. In enzymes that contain multiple catalytic domains with distinct substrate specificities, it is unclear how these different activities influence the evolution of the ligand recognition profile of the appended CBM. To address this issue, we have characterized the properties of a family 11 CBM (CtCBM11) in Clostridium thermocellum Lic26A-Cel5E, an enzyme that contains GH5 and GH26 catalytic domains that display beta-1,4- and beta-1,3-1,4-mixed linked endoglucanase activity, respectively. Here we show that CtCBM11 binds to both beta-1,4- and beta-1,3-1,4-mixed linked glucans, displaying K(a) values of 1.9 x 10(5), 4.4 x 10(4), and 2 x 10(3) m(-1) for Glc-beta1,4-Glc-beta1,4-Glc-beta1,3-Glc, Glc-beta1,4-Glc-beta1,4-Glc-beta1,4-Glc, and Glc-beta1,3-Glc-beta1,4-Glc-beta1,3-Glc, respectively, demonstrating that CBMs can display a preference for mixed linked glucans. To determine whether these ligands are accommodated in the same or diverse sites in CtCBM11, the crystal structure of the protein was solved to a resolution of 1.98 A. The protein displays a beta-sandwich with a concave side that forms a potential binding cleft. Site-directed mutagenesis revealed that Tyr(22), Tyr(53), and Tyr(129), located in the putative binding cleft, play a central role in the recognition of all the ligands recognized by the protein. We propose, therefore, that CtCBM11 contains a single ligand-binding site that displays affinity for both beta-1,4- and beta-1,3-1,4-mixed linked glucans.  相似文献   

7.
Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase (Fsbeta-glucanase) catalyzes the specific hydrolysis of beta-1,4 glycosidic bonds adjacent to beta-1,3 linkages in beta-D-glucans or lichenan. This is the first report to elucidate the crystal structure of a truncated Fsbeta-glucanase (TFsbeta-glucanase) in complex with beta-1,3-1,4-cellotriose, a major product of the enzyme reaction. The crystal structures, at a resolution of 2.3 angstroms, reveal that the overall fold of TFsbeta-glucanase remains virtually unchanged upon sugar binding. The enzyme accommodates five glucose residues, forming a concave active cleft. The beta-1,3-1,4-cellotriose with subsites -3 to -1 bound to the active cleft of TFsbeta-glucanase with its reducing end subsite -1 close to the key catalytic residues Glu56 and Glu60. All three subsites of the beta-1,3-1,4-cellotriose adopted a relaxed C(1)4 conformation, with a beta-1,3 glycosidic linkage between subsites -2 and -1, and a beta-1,4 glycosidic linkage between subsites -3 and -2. On the basis of the enzyme-product complex structure observed in this study, a catalytic mechanism and substrate binding conformation of the active site of TFsbeta-glucanase is proposed.  相似文献   

8.
The synergistic interaction among three beta-specific glycosidases from the hyperthermophilic archaeon Pyrococcus furiosus, namely two endoglucanases (EglA and LamA) and an exo-acting beta-glucosidase (Bgl), on barley-glucan and laminarin, was examined. In addition to following glucose release and the generation of reducing sugar ends, the distribution and amounts of oligomeric products from beta-1,3- and beta-1,4-linked substrates were determined as a function of extent of hydrolysis at 98 degrees C. Positive interactions were noted between endo/exo glucanase combinations, leading to enhanced and rapid degradation of the larger complex carbohydrates to oligosaccharides. The EglA/LamA endo-acting combination was also synergistic in degrading barley-glucan. However, hydrolysis was most efficient when a blend of all three hydrolases was used, possibly due to the relief of product inhibition by the exoglyosidase. Furthermore, by monitoring the distribution of oligosaccharides present during hydrolysis, patterns of enzymatic attack could be followed in addition to determining the specific contributions of each hydrolase to the overall process.  相似文献   

9.
The regulation of beta-1,3 galactosyltransferase (3betaGalT) and beta-1,4 galactosyltransferase enzymatic (4betaGalT) activities in the mammary gland of the tammar wallaby (Macropus eugenii) have been characterised. These two beta-galactosyltransferases are active at different times during the lactation cycle and play a central role in regulating the carbohydrate composition in tammar milk, which changes progressively throughout lactation to assist the physiological development of the altrical young. The 4betaGalT activity was present at parturition and increased 3-fold by day 10 of lactation (d10L), whereas 3betaGalT activity was barely detectable at day d5L and then increased 6-fold by d10L. This increase in activity of both enzymes was sucking dependent. While 3betaGalT activity was not observed in the mammary gland prior to d7L, this activity was found in mammary explants from late pregnant tammar cultured with insulin, hydrocortisone and prolactin (IFP) and was further stimulated by the addition of tri-iodothyronine (T) and 17beta-oestradiol (E). The activity of 4betaGalT in these explants was stimulated maximally with IFP. These data suggest the temporal activity of both 3betaGalT and 4betaGalT is most likely regulated by both endocrine stimuli and factors intrinsic to the mammary gland.  相似文献   

10.
Two different strains of Trichoderma pseudokoningii (SE1 A8 and SE1 D81) and Trichoderma viride QM 9123 release into the medium different proportions of the total beta-glucosidase activity produced. This observation correlates with the degree of beta-1,3-glucanase binding to the cell wall found for each strain. DEAE-Sephadex ion-exchange chromatography revealed three peaks of beta-1,3-glucanase activity. These three enzymes (enzyme I, enzyme II, and enzyme III) differ in their extent of binding to the cell walls, their activity on isolated cell walls and Trichoderma beta-glucan, and their affinity for beta-glucan. Of these enzymes, enzyme II shows the largest variation in relative importance among the three strains and is located predominantly within the mural compartment. Enzyme II has the highest activity on and affinity for Trichoderma beta-glucan. Enzyme II is also the most active in releasing beta-glucosidase from cell walls of strain SE1 A8 (the strain excreting a high proportion of its beta-glucosidase into the culture fluid) as well as from strain SE1 D81 (little beta-glucosidase activity in the culture fluid). It is concluded that the action of beta-1,3-glucanase II on cell wall beta-glucan may be responsible for the in vivo release of cell wall bound beta-glucosidase into the culture fluid.  相似文献   

11.
An extracellular polysaccharide, AC-1, produced by Acetobacter polysaccharogenes is composed of beta-(1,4)glucan with branches of glucosyl residues. We found that AC-1 showed a strong activity to induce production of interleukin-12 P40 and tumor necrosis factor-alpha by macrophage cell lines in vitro. Cellulase treatment completely abolished the activity of AC-1 to induce tumor necrosis factor-alpha production by macrophages, whereas treatment of AC-1 with polymyxin B or proteinase did not affect the activity. Results of experiments using toll-like receptor (TLR) 4-deficient mice and TLR4-transfected human cell line indicated that TLR4 is involved in pattern recognition of AC-1. In vivo administration of AC-1 significantly reduced the serum levels of ovalbumin (OVA)-specific IgE and interleukin-4 production by T cells in response to OVA in mice immunized with OVA. AC-1, a soluble branched beta-(1,4)glucan may be useful in prevention and treatment of allergic disorders With IgE production.  相似文献   

12.
Salmonella newington lipopolysaccharide extracted from a cell paste grown up from a single smooth clone was fractionated by chromatography on DEAE-cellulose in the presence of 1% Triton X-100 into seven lipopolysaccharide fractions which differed in their degrees of polymerization of the repeating unit of the O-antigen side chain and in their substitution with ester phosphate. Several of the lipopolysaccharide fractions were hydrolyzed in 1% acetic acid at 100 °C to cleave the linkage between the polysaccharide and lipid A parts of the structure. The polysaccharide fractions from each of the purified lipopolysaccharides could be further fractionated on DEAE-cellulose columns to yield a number of peaks of polysaccharide having monosaccharide ratios quite distinct from those of the parent lipopolysaccharide. The results show a high degree of structural heterogeneity in the original lipopolysaccharide.  相似文献   

13.
The exo-beta-1,3-glucanase of Candida albicans (Exg) has a marked specificity for beta-1,3-glucosidic linkages as judged by the kinetic constants for p-nitophenyl beta-glucoside, beta-linked disaccharides of glucose (laminaribiose, gentiobiose, and cellobiose), oligosaccharides of the laminari series, laminarin and pustulan. The kcat/Km ratios for a series of laminari oligosaccharides from -biose to -heptaose showed that Exg has an extended substrate-binding site which contains at least five binding sites for sugar residues. Binding at position +2 (the third sugar residue) increases the kcat twofold while positions +3 and +4 lower the Km value further and thereby increase the catalytic efficiency. Exg catalyses an efficient transglucosylation reaction with high concentrations of laminari-oligosaccharides which specifically form beta-1,3 linkages and with yields up to 50%. The rate of the transglucosylation is concentration-dependent and can be more than 10 times faster than the hydrolytic reaction with excess donor substrates such as laminaritriose and laminarihexaose. The kinetics of Exg and the predicted substrate-binding site for up to five sugar residues are consistent with a recent structural analysis of the enzyme-binding site.  相似文献   

14.
A short, one-pot synthesis of alpha- and beta-spaglumic acids (N-acetyl-L-aspartyl-L-glutamic acids, NAAGA) has been developed based on ultrasound-promoted acetylation of aspartic acid, followed by dehydration, condensation with glutamic acid dibenzyl ester and hydrogenolysis. The alpha- and beta-peptides were separated by anion-exchange chromatography. The alpha-peptide shows a remarkable tendency to cyclize during methylation with diazomethane and yields cyclic N-acetylaspartylglutamic acid dimethyl ester, which could be hydrolysed to the hitherto unreported diketopiperazine dicarboxylic acid, cyclic spaglumic acid (cyclic NAAGA).  相似文献   

15.
In numerous vertebrate species including Japanese quail (Coturnix coturnix japonica), actions of testosterone (T) on neuroendocrine target tissues are mediated in part by conversion to estrogenic and androgenic metabolites. In order to assess which pathways were favored in each identified androgen target area in quail brain and whether there were discernible sex differences, we developed an assay for simultaneously quantifying aromatase, 5 alpha-, and 5 beta-reductase. In addition, we made the first definitive identification of aromatase in quail pituitary and compared all three enzyme activities in the pituitary of males and females. Enzymes were measured in tissue homogenates by the conversion of [3H]androstenedione to [3H]estrone, [3H]5 alpha-androstanedione, and 5 beta-androstanedione. Aromatase activity was restricted to limbic tissues (anterior hypothalamus greater than posterior hypothalamus greater than septum greater than archistriatum containing nucleus taenia) while hyperstriatum, cerebellum, and midbrain containing nucleus intercollicularis were aromatase-negative. Quail pituitary aromatized androgen at rates equivalent to anterior hypothalamus/pre-optic area (aHPOA). 5 alpha- and 5 beta-reductase were present in all tissues tested. Aromatase was significantly higher in aHPOA and pituitary of males, whereas 5 alpha-reductase was significantly higher in female pituitary. These data suggest that a complex of androgen-metabolizing enzymes controls the neuroanatomic (spatial) distribution of active hormone in neuroendocrine tissues and that quantitative differences between males and females may account for sex differences in behavior.  相似文献   

16.
Bacillus circulans IAM1165 produces three major extracellular beta-1,3-glucanases (molecular masses, 28, 42, and 91 kDa) during the stationary phase of growth. The 28- and 42-kDa enzymes were purified to homogeneity from the culture supernatant in this study. The properties of these two enzymes were examined, together with those of the 91-kDa enzyme previously isolated. The enzymatic properties of the 28- and 42-kDa beta-1,3-glucanases closely resemble each other. The enzymes belong to a category of endo type 1,3-beta-D-glucan glucanohydrolases. The enzymes were active at pH 4.0 to 7.0. The optimum temperature of the reactions was 60 degrees C when laminarin (a soluble beta-1,3-glucan) was used as the substrate at pH 7.0. The enzymes hydrolyzed barley glucan and lichenan (beta-1,3-1,4-glucans) more effectively than laminarin. Of the three enzymes, the 42-kDa enzyme lysed fungal cell walls the most effectively.  相似文献   

17.
Sulfated laminarin (PS3) has been shown previously to be an elicitor of plant defense reactions in tobacco and Arabidopsis and to induce protection against tobacco mosaic virus. Here, we have demonstrated the efficiency of PS3 in protecting a susceptible grapevine cultivar (Vitis vinifera cv. Marselan) against downy mildew (Plasmopara viticola) under glasshouse conditions. This induced resistance was associated with potentiated H2O2 production at the infection sites, upregulation of defense-related genes, callose and phenol depositions, and hypersensitive response-like cell death. Interestingly, similar responses were observed following P. viticola inoculation in a tolerant grapevine hybrid cultivar (Solaris). A pharmacological approach led us to conclude that both callose synthesis and jasmonic acid pathway contribute to PS3-induced resistance.  相似文献   

18.
Microtubules provide structural support for a cell and play key roles in cell motility, mitosis, and meiosis. They are also the targets of several anticancer agents, indicating their importance in maintaining cell viability. We have investigated the possibility that alterations in microtubule structure and tubulin polymerization may be part of the cellular response to DNA damage. In this report, we find that gamma-radiation stimulates the production and polymerization of alpha-, beta-, and gamma- tubulin in hematopoeitic cell lines (Ramos, DP16), leading to visible changes in microtubule structures. We have found that this microtubule reorganization can be prevented by caffeine, a drug that concomitantly inhibits DNA damage-induced cell cycle arrest and apoptosis. Our results support the idea that microtubule polymerization is an important facet of the mammalian response to DNA damage.  相似文献   

19.
Alpha-, beta- and gamma-cyclodextrins are cyclic hexamers, heptamers, and octamers of glucose, respectively, and thus are hydrophilic; nevertheless, they have the ability to solubilize lipids through the formation of molecular inclusion complexes. The volume of lipophilic space involved in the solubilization process increases with the number of glucose units in the cyclodextrin molecule and, consequently, cyclodextrins were found to have different effects on human erythrocytes: (a) in the induction of shape change from discocyte to spherocyte the potency was observed to be alpha greater than gamma, but with beta-cyclodextrin hemolysis occurred before the change was complete; (b) in the increase of fluorescence intensity of 1-anilinonaphthalene-8-sulfonate in cyclodextrin-pretreated membranes, the observed potency was beta much greater than gamma greater than alpha; (c) in the release of potassium and hemoglobin, the potency was beta greater than alpha greater than gamma. The potencies of cyclodextrin for solubilizing various components of erythrocytes were alpha greater than beta much greater than gamma for phospholipids, beta much greater than gamma greater than alpha for cholesterol and beta much greater than gamma greater than alpha for proteins. The solubilization potencies were derived from concentration/final-effect curves. The above processes occurred without entry of solubilizer into the membrane, since (a) beta-[14C]cyclodextrin did not bind to erythrocytes and (b) cyclodextrins did not enter the cholesterol monolayer. A study of the [3H]cholesterol in erythrocytes indicated that beta-cyclodextrin extracted this lipid from membrane into a new compartment located in the aqueous phase which could equilibrate rapidly with additional erythrocytes. Therefore, the effects of cyclodextrins differ from those of detergents which first incorporate themselves into membranes then extract membrane components into supramolecular micelles.  相似文献   

20.
A gene encoding a beta-1,3-1,4-glucanase (CelA) belonging to family 5 of glycoside hydrolases was cloned and sequenced from the Bacillus subtilis A8-8. The open-reading-frame of celA comprised 1499 base pairs and the enzyme was composed of 500 amino acids with a molecular mass of 55 kDa. The recombinant beta-1,3-1,4 glucanase was purified by GST-fusion purification system. The pH and temperature optima of the enzyme were 8.0 and 60 degrees C, respectively. The enzyme was stable within pH 6.0-9.0. It was stable up to 60 degrees C and retained 30% of its original activity at 70 degrees C for 60 min. It hydrolyzed lichenan, CMC, xylan, laminarin, avicel and pNPC, but was inactive towards cellobiose. The enzyme activity was markedly activated by Co2+ and Mn2+, but was strongly inactivated by Fe3+. The truncated gene, devoid of cellulose-binding domain (CBD) showed 60% of activity and bound to avicel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号