首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tet(M) protein interacts with the protein biosynthesis machinery to render this process resistant to tetracycline by a mechanism which involves release of the antibiotic from the ribosome in a reaction dependent on GTP hydrolysis. To clarify this resistance mechanism further, the interaction of Tet(M) with the ribosome has been examined by using a gel filtration assay with radioactively labelled Tet(M) protein. The presence of GTP and 5′-guanylyl imido diphosphate, but not GDP, promoted Tet(M)-ribosome complex formation. Furthermore, thiostrepton, which inhibits the activities of elongation factor G (EF-G) and EF-Tu by binding to the ribosome, blocks stable Tet(M)-ribosome complex formation. Direct competition experiments show that Tet(M) and EF-G bind to overlapping sites on the ribosome.  相似文献   

2.
Ribosomal protection proteins (RPPs) confer bacterial resistance to tetracycline by releasing this antibiotic from ribosomes stalled in protein synthesis. RPPs share structural similarity to elongation factor G (EF-G), which promotes ribosomal translocation during normal protein synthesis. We constructed and functionally characterized chimeric proteins of Campylobacter jejuni Tet(O), the best characterized RPP, and Escherichia coli EF-G. A distinctly conserved loop sequence at the tip of domain 4 is required for both factor-specific functions. Domains 3-5: (i) are necessary, but not sufficient, for functional specificity; and (ii) modulate GTP hydrolysis by EF-G, while minimally affecting Tet(O), under substrate turnover conditions.  相似文献   

3.
Tet(O) belongs to a class of ribosomal protection proteins that mediate tetracycline resistance. It is a G protein that shows significant sequence similarity to elongation factor EF-G. Here we present a cryo-electron microscopic reconstruction, at 16 A resolution, of its complex with the E. coli 70S ribosome. Tet(O) was bound in the presence of a noncleavable GTP analog to programmed ribosomal complexes carrying fMet-tRNA in the P site. Tet(O) is directly visible as a mass close to the A-site region, similar in shape and binding position to EF-G. However, there are important differences. One of them is the different location of the tip of domain IV, which in the Tet(O) case, does not overlap with the ribosomal A site but is directly adjacent to the primary tetracycline binding site. Our findings give insights into the mechanism of tetracycline resistance.  相似文献   

4.
Mechanism of Tet(O)-mediated tetracycline resistance   总被引:8,自引:0,他引:8       下载免费PDF全文
Tet(O) is an elongation factor-like protein which confers resistance to the protein synthesis inhibitor tetracycline by promoting the release of the drug from its inhibitory site on the ribosome. Here we investigated the interaction of Tet(O) with the elongating ribosome and show, using dimethyl sulfate (DMS) probing and binding assays, that it interacts preferentially with the post-translocational ribosome. Furthermore, using an XTP-dependent mutant of Tet(O), we demonstrated that Tet(O) induces conformational rearrangements within the ribosome which can be detected by EF-Tu, and manifested as a stimulation in the GTPase activity of this elongation factor. As such, these conformational changes probably involve the ribosomal GTPase-associated center and, accordingly, Tet(O) alters the DMS modification pattern of the L11 region. Additionally, tetracycline binding is associated with an E(a) of 58 kJ/mol. These results suggest a model where both Tet(O) and tetracycline induce a conformational change in functionally opposite directions and the Tet(O)-induced conformation persists after it has left the ribosome; this prevents rebinding of the drug while allowing productive A-site occupation by a ternary complex in the presence of tetracycline.  相似文献   

5.
The tet(M) tetracycline resistance gene has been found in a wide variety of clinically important bacteria. It has been shown previously (Burdett, V. (1986) J. Bacteriol. 165, 564-569) that the tet(M) gene product mediates resistance at the level of protein synthesis as judged by in vitro assay. Using this assay, large amounts of protein were purified from an Escherichia coli overproducer expressing the gene under control of a T7 promoter. The purified activity consists of a single polypeptide of molecular weight 68,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and was confirmed to be the tet(M) gene product by amino-terminal sequence analysis. Purified Tet(M) has an associated ribosome-dependent GTPase with the specific activity being similar to that of the corresponding activity associated with elongation factor G. Since Tet(M) also displays substantial homology to elongation factor G throughout its length, Tet(M) may function as an analog of this elongation factor.  相似文献   

6.
Argyrins, produced by myxobacteria and actinomycetes, are cyclic octapeptides with antibacterial and antitumor activity. Here, we identify elongation factor G (EF-G) as the cellular target of argyrin B in bacteria, via resistant mutant selection and whole genome sequencing, biophysical binding studies and crystallography. Argyrin B binds a novel allosteric pocket in EF-G, distinct from the known EF-G inhibitor antibiotic fusidic acid, revealing a new mode of protein synthesis inhibition. In eukaryotic cells, argyrin B was found to target mitochondrial elongation factor G1 (EF-G1), the closest homologue of bacterial EF-G. By blocking mitochondrial translation, argyrin B depletes electron transport components and inhibits the growth of yeast and tumor cells. Further supporting direct inhibition of EF-G1, expression of an argyrin B-binding deficient EF-G1 L693Q variant partially rescued argyrin B-sensitivity in tumor cells. In summary, we show that argyrin B is an antibacterial and cytotoxic agent that inhibits the evolutionarily conserved target EF-G, blocking protein synthesis in bacteria and mitochondrial translation in yeast and mammalian cells.  相似文献   

7.
Seo HS  Kiel M  Pan D  Raj VS  Kaji A  Cooperman BS 《Biochemistry》2004,43(40):12728-12740
Ribosome recycling factor (RRF) and elongation factor-G (EF-G) are jointly essential for recycling bacterial ribosomes following termination of protein synthesis. Here we present equilibrium and rapid kinetic measurements permitting formulation of a minimal kinetic scheme that accounts quantitatively for RRF and EF-G interaction on the Escherichia coli ribosome. RRF and EF-G (a) each form a binary complex on binding to a bare ribosome which undergoes isomerization to a more stable complex, (b) form mixed ternary complexes on the ribosome in which the affinity for each factor is considerably lower than its affinity for binding to a bare ribosome, and (c) each bind to two sites per ribosome, with EF-G having considerably higher second-site affinity than RRF. Addition of EF-G to the ribosome-RRF complex induces rapid RRF dissociation, at a rate compatible with the rate of ribosome recycling in vivo, but added RRF does not increase the lability of ribosome-bound EF-G. Added thiostrepton slows the initial binding of EF-G, and prevents both formation of the more stable EF-G complex and EF-G-induced RRF dissociation. These findings are relevant for the mechanism of post-termination complex disassembly.  相似文献   

8.
The prokaryotic ribosomal operon, str, contains open reading frames for the two elongation factors, elongation factor G (EF-G) and elongation factor Tu (EF-Tu), and ribosomal proteins S7 and S12. The DNA sequence and predicted amino acid sequence for S7 from Chlamydia trachomatis are presented and compared with homologues from other prokaryotes. Also, the relationship of the S7 gene to the open reading frames for ribosomal protein S12 and EF-G is described. Significant amino acid homology is also noted when the amino-terminal sequence of chlamydial EF-G is compared with the cytoplasmic tetracycline resistance factors, tetM and tetO, from streptococci and Campylobacter jejuni. Related findings and possible resistance mechanisms for the newly recognized tetracycline-resistant clinical isolates of C. trachomatis are discussed.  相似文献   

9.
Two hypersensitive and two resistant variants of elongation factor-G (EF-G) toward fusidic acid are studied in comparison with the wild type factor. All mutated proteins are active in a cell-free translation system and ribosome-dependent GTP hydrolysis. The EF-G variants with the Thr-84-->Ala or Asp-109-->Lys mutations bring about a strong resistance of EF-G to the antibiotic, whereas the EF-Gs with substitutions Gly-16-->Val or Glu-119-->Lys are the first examples of fusidic acid-hypersensitive factors. A correlation between fusidic acid resistance of EF-G mutants and their affinity to GTP are revealed in this study, although their interactions with GDP are not changed. Thus, fusidic acid-hypersensitive mutants have the high affinity to an uncleavable GTP analog, but the association of resistant mutants with GTP is decreased. The effects of either fusidic acid-sensitive or resistant mutations can be explained by the conformational changes in the EF-G molecule, which influence its GTP-binding center. The results presented in this paper indicate that fusidic acid-sensitive mutant factors have a conformation favorable for GTP binding and subsequent interaction with the ribosomes.  相似文献   

10.
The antibiotic sensitivity of the archaebacterial factors catalyzing the binding of aminoacyl-tRNA to ribosomes (elongation factor Tu [EF-Tu] for eubacteria and elongation factor 1 [EF1] for eucaryotes) and the translocation of peptidyl-tRNA (elongation factor G [EF-G] for eubacteria and elongation factor 2 [EF2] for eucaryotes) was investigated by using two EF-Tu and EF1 [EF-Tu(EF1)]-targeted drugs, kirromycin and pulvomycin, and the EF-G and EF2 [EF-G(EF2)]-targeted drug fusidic acid. The interaction of the inhibitors with the target factors was monitored by using polyphenylalanine-synthesizing cell-free systems. A survey of methanogenic, halophilic, and sulfur-dependent archaebacteria showed that elongation factors of organisms belonging to the methanogenic-halophilic and sulfur-dependent branches of the "third kingdom" exhibit different antibiotic sensitivity spectra. Namely, the methanobacterial-halobacterial EF-Tu(EF1)-equivalent protein was found to be sensitive to pulvomycin but insensitive to kirromycin, whereas the methanobacterial-halobacterial EF-G(EF2)-equivalent protein was found to be sensitive to fusidic acid. By contrast, sulfur-dependent thermophiles were unaffected by all three antibiotics, with two exceptions; Thermococcus celer, whose EF-Tu(EF1)-equivalent factor was blocked by pulvomycin, and Thermoproteus tenax, whose EF-G(EF2)-equivalent factor was sensitive to fusidic acid. On the whole, the results revealed a remarkable intralineage heterogeneity of elongation factors not encountered within each of the two reference (eubacterial and eucaryotic) kingdoms.  相似文献   

11.
The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance.  相似文献   

12.
Tet(M) protein interacts with the protein biosynthetic machinery to render this process resistant to the tetracycline in vivo and in vitro (V. Burdett, J. Biol. Chem. 266:2872-2877, 1991). To understand this process more completely, a mutant of Escherichia coli which is altered in the ability of Tet(M) to confer resistance has been identified. This mutation maps to miaA and displays phenotypes characteristic of previously isolated miaA mutations. The miaA gene product modifies A37 adjacent to the anticodon of several tRNA species. Both the mutant isolated in this work and previously isolated miaA mutants confer tetracycline sensitivity in the presence of functional Tet(M), both share a slow growth phenotype, and in neither case is a wild-type phenotype restored in trans by F'112 carrying the 89- to 98-min region of the chromosome. These similar phenotypes further substantiate the assignment of the mutation described here to the miaA locus.  相似文献   

13.
Escherichia coli elongation factor G blocks stringent factor   总被引:3,自引:0,他引:3  
E G Wagner  C G Kurland 《Biochemistry》1980,19(6):1234-1240
The relationship between the binding domains of elongation factor G(EF-G) and stringent factor (SF) on ribosomes was studied. The binding of highly purified, radioactively labeled, protein factors to ribosomes was monitored with a column system. The data show that binding of EF-G to ribosomes in the presence of fusidic acid and GDP or of the noncleavable analogue GDPCP prevents subsequent binding of SF to ribosomes. In addition, stabilization of the EF-G-ribosome complex by fusidic acid inhibits SF's enzymatic activities. Removal of protein L7/L12 from ribosomes leads to weaker binding of EF-G, while SF's binding and activity are unaffected. In the absence of L7/L12, EF-G-dependent inhibition of SF binding and function is reduced. The data presented in this report suggest that these two factors bind at overlapping, or at least interacting, ribosomal domains.  相似文献   

14.
Results of a first successful application of a direct photo-induced affinity modification of Tet repressor (TetR(D)) protein with tetracycline within a complex of known three-dimensional structure are described. The conditions of the modification have provided suitable yields of the modified complex and allowed characterization of the modified segments of the protein. The potential of tetracycline as a fine modifying reagent was established. In the complex of TetR(D) protein with tetracycline, the antibiotic modifies at least two segments, Ile59-Glu73 and Ala173-Glu183, which form a binding tunnel for the drug according to the X-ray analysis. These data open possibilities for the use of different tetracycline targets for structural studies in solution.  相似文献   

15.
Ribosome recycling, the disassembly of the posttermination complex after each round of protein synthesis, is an essential step in mRNA translation, but its mechanism has remained obscure. In eubacteria, recycling is catalyzed by RRF (ribosome recycling factor) and EF-G (elongation factor G). By using cryo-electron microscopy, we have obtained two density maps, one of the RRF bound posttermination complex and one of the 50S subunit bound with both EF-G and RRF. Comparing the two maps, we found domain I of RRF to be in the same orientation, while domain II in the EF-G-containing 50S subunit is extensively rotated (approximately 60 degrees) compared to its orientation in the 70S complex. Mapping the 50S conformation of RRF onto the 70S posttermination complex suggests that it can disrupt the intersubunit bridges B2a and B3, and thus effect a separation of the two subunits. These observations provide the structural basis for the mechanism by which the posttermination complex is split into subunits by the joint action of RRF and EF-G.  相似文献   

16.
During the translocation step of protein synthesis, a complex of two transfer RNAs bound to messenger RNA (tRNA-mRNA) moves through the ribosome. The reaction is promoted by an elongation factor, called EF-G in bacteria, which, powered by GTP hydrolysis, induces an open, unlocked conformation of the ribosome that allows for spontaneous tRNA-mRNA movement. Here we show that, in the absence of EF-G, there is spontaneous backward movement, or retrotranslocation, of two tRNAs bound to mRNA. Retrotranslocation is driven by the gain in affinity when a cognate E-site tRNA moves into the P site, which compensates the affinity loss accompanying the movement of peptidyl-tRNA from the P to the A site. These results lend support to the diffusion model of tRNA movement during translocation. In the cell, tRNA movement is biased in the forward direction by EF-G, which acts as a Brownian ratchet and prevents backward movement.  相似文献   

17.
The interaction of Tet repressor protein with the inducer tetracycline was studied by fluorescence measurements, equilibrium dialysis and nitrocellulose filter binding. The repressor-tetracycline complex was formed from two molecules of tetracycline and one Tet repressor dimer. Formation of the complex requires divalent cations, and results in drastic effects upon the fluorescence spectra of both compounds. The fluorescence of Tet repressor was quenched about 70%, while that of tetracycline was increased between three- and eightfold, depending upon pH. In addition, the emission maximum of the protein was shifted from 330 to 340 nm, and the excitation maximum of tetracycline dropped from 380 to 370 nm. The latter shift is accompanied by a similar change in the absorption spectra. An analogous effect was observed upon changing the environment of the drug by the addition of sodium dodecyl sulphate. These results suggest that tetracycline binds to a hydrophobic region of the protein. A new excitation band in the fluorescence spectrum of the complex is observed. This presumably arises from energy transfer from a tryptophan to the drug. The association rate constant for formation of the complex is 3.3(+/- 0.3) X 10(5) M-1 s-1, and the equilibrium association constant is 2.8(+/- 0.5) X 10(9) M-1. These results are discussed with respect to the biological function of the Tet repressor.  相似文献   

18.
Oxidative stress inhibits the repair of photodamaged photosystem II (PSII). This inhibition is due initially to the suppression, by reactive oxygen species (ROS), of the synthesis de novo of proteins that are required for the repair of PSII, such as the D1 protein, at the level of translational elongation. To investigate in vitro the mechanisms whereby ROS inhibit translational elongation, we developed a translation system in vitro from the cyanobacterium Synechocystis sp. PCC 6803. The synthesis of the D1 protein in vitro was inhibited by exogenous H2O2. However, the addition of reduced forms of elongation factor G (EF-G), which is known to be particularly sensitive to oxidation, was able to reverse the inhibition of translation. By contrast, the oxidized forms of EF-G failed to restore translational activity. Furthermore, the overexpression of EF-G of Synechocystis in another cyanobacterium Synechococcus sp. PCC 7942 increased the tolerance of cells to H2O2 in terms of protein synthesis. These observations suggest that EF-G might be the primary target, within the translational machinery, of inhibition by ROS.  相似文献   

19.
Tet(o) is an elongation factor-like protein found in clinical isolates of Campylobacter jejuni that confers resistance to the protein-synthesis inhibitor tetracycline. Tet(o) interacts with the 70S ribosome and promotes the release of bound tetracycline, however, as shown here, it does not form the same functional interaction with the 30S subunit. Chemical probing demonstrates that Tet(o) changes the reactivity of the 16S rRNA to dimethyl sulphate (DMS). These changes cluster within the decoding site, where C1214 is protected and A1408 is enhanced to DMS reactivity. C1214 is close to, but does not overlap, the primary tetracycline-binding site, whereas A1408 is in a region distinct from the Tet(o) binding site visualized by cryo-EM, indicating that Tet(o) induces long-range rearrangements that may mediate tetracycline resistance. Tetracycline enhances C1054 to DMS modification but this enhancement is inhibited in the presence of Tet(o) unlike the tetracycline-dependent protection of A892 which is unaffected by Tet(o). C1054 is part of the primary binding site of tetracycline and A892 is part of the secondary binding site. Therefore, the results for the first time demonstrate that the primary tetracycline binding site is correlated with tetracycline's inhibitory effect on protein synthesis.  相似文献   

20.
Novel mutants of elongation factor G   总被引:4,自引:0,他引:4  
A novel mutant form of elongation factor G (EF-G) in Escherichia coli is described. This variant EF-G restricts reading frame errors by a factor of 2 to 3 in vivo at two different positions in a lacIZ fusion. In addition, a conventional fusidic acid resistant (fusR) mutant of EF-G was compared with the restrictive mutant. Both mutants were characterized in vitro in a steady-state poly(U) translating system. The data indicate that the restrictive EF-G variant has an altered interaction with the ribosome both in vivo and in vitro. In contrast, the conventional fusR variant is altered in its interaction with GTP, which is evident in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号