首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meiotic maturation of Xenopus and sea star oocytes involves the activation of a number of protein-serine/threonine kinase activities, including a myelin basic protein (MBP) kinase. A 44-kDa MBP kinase (p44mpk) purified from mature sea star oocytes is shown here to be phosphorylated at tyrosine. Antiserum to purified sea star p44mpk was used to identify antigenically related proteins in Xenopus oocytes. Two tyrosine-phosphorylated 42-kDa proteins (p42) were detected with this antiserum in Xenopus eggs. Xenopus p42 chromatographs with MBP kinase activity on a Mono Q ion-exchange column. Tyrosine phosphorylation of Xenopus p42 approximately parallels MBP kinase activity during meiotic maturation. These results suggest that related MBP kinases are activated during meiotic maturation of Xenopus and sea star oocytes. Previous studies have suggested that Xenopus p42 is related to the mitogen-activated protein (MAP) kinases of culture mammalian cells. We have cloned a MAP kinase relative from a Xenopus ovary cDNA library and demonstrate that this clone encodes the Xenopus p42 that is tyrosine phosphorylated during oocyte maturation. Comparison of the sequences of Xenopus p42 and a rat MAP kinase (ERK1) and peptide sequences from sea star p44mpk indicates that these proteins are close relatives. The family members appear to be tyrosine phosphorylated, and activated, in different contexts, with the murine MAP kinase active during the transition from quiescence to the G1 stage of the mitotic cell cycle and the sea star and Xenopus kinases being active during M phase of the meiotic cell cycle.  相似文献   

2.
Two site-specific antibodies have been prepared by immunizing rabbits with chemically synthesized peptides derived from the partial cDNA-predicted amino acid sequence of extracellular signal-regulated kinase 1 (ERK1), which has been proposed to encode the microtubule-associated protein 2 (MAP2) kinase (Boulton, T. G., Yancopoulos, G. D., Gregory, J. S., Slauer, C., Moomaw, C., Hsu, J., and Cobb, M. H. (1990) Science 249, 64-67). With immunoprecipitation in the presence of sodium dodecyl sulfate (SDS) and Western blotting, an antibody to the peptide containing triple tyrosine residues (alpha Y91) resembling one of the insulin receptor autophosphorylation sites specifically recognized 42- and 44-kDa proteins. On the other hand, an antibody to the peptide corresponding to the COOH terminus portions (alpha C92) of the ERK1 cDNA gene product recognized the 44-kDa protein much more efficiently than the 42-kDa protein. With immunoprecipitation in the absence of SDS, alpha Y91 could barely recognize these two proteins and alpha C92 recognized the 44-kDa protein but failed to recognize the 42-kDa protein. Kinase assays in myelin basic protein (MBP)-containing gel, after SDS-polyacrylamide gel electrophoresis, revealed that insulin or 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated MBP kinase activity in alpha Y91 immunoprecipitates comigrated at molecular mass 42 and 44 kDa. On the other hand, the stimulated MBP kinase activity in alpha C92 immunoprecipitates comigrated only at molecular mass 44 kDa. Insulin stimulated the MBP kinase activity in gels and phosphorylation of these two proteins by greater than 10-fold with a maximal level at 5 min. Insulin and TPA rapidly stimulate the phosphorylation of the 42- and 44-kDa proteins via de novo threonine and tyrosine phosphorylation. Tryptic phosphopeptide mapping analysis of the 42- and 44-kDa proteins, respectively, revealed a single major phosphopeptide containing phosphothreonine and phosphotyrosine, which was common to both insulin- and TPA-stimulated phosphoproteins. Protein phosphatase 2A treatment of these two phosphoproteins caused a complete loss of kinase activity with selective dephosphorylation of phosphothreonine. These data strongly suggest that these two proteins are highly related to the mitogen-activated protein (MAP) kinase with an apparent molecular mass of 42 kDa (Ray, L. B., and Sturgill, T. W. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 3753-3757) and that these two immunologically similar but distinct MBP/MAP2 kinases may represent isozymic forms of MBP/MAP2 kinases. These data also demonstrate that insulin and TPA activate MBP/MAP2 kinase activity by de novo phosphorylation of threonine and tyrosine residues via a very similar pathway.  相似文献   

3.
We have approached the functioning of a MAP kinase, which is thought to be a "switch kinase" in the phosphorylation cascade initiated from various receptor tyrosine kinases including the insulin receptor. To do so, antipeptide antibodies were raised against the C-terminal portion of ERK1 (extracellular signal-regulated kinase 1), a protein kinase belonging to the family of MAP kinases. With these antipeptide antibodies, we observed the following: (i) a 44-kDa protein can be specifically recognized both under native and denaturing conditions; (ii) a 44-kDa phosphoprotein can be revealed in 32P-labeled cells; its phosphorylation is stimulated by insulin, sodium orthovanadate, and okadaic acid; (iii) a MBP kinase activity can be precipitated, which phosphorylates MBP on threonine residues, and which is stimulated by insulin, sodium orthovanadate, okadaic acid, and fetal calf serum; (iv) this MBP kinase activity appears to be correlated with the in vivo induced phosphorylation of the 44-kDa protein. We next studied the in vitro phosphorylation of this 44-kDa/ERK1-immunoreactive protein. A time- and manganese-dependent phosphorylation was stimulated by the in vitro addition of sodium orthovanadate. Phosphoamino acid analysis of the in vitro phosphorylated 44-kDa protein revealed both threonine and tyrosine phosphorylation. Importantly, this in vitro phosphorylation of MAP kinase results in activation of phosphorylation of added MBP substrate. As a whole, our data indicate that the 44-kDa phosphoprotein identified by our antipeptide antibodies very likely corresponds to a MAP kinase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Treatment of PC12 pheochromocytoma cells with nerve growth factor (NGF) or bradykinin leads to the activation of extracellular signal-regulated kinases ERK1 and ERK2, two isozymes of microtubule-associated protein 2 (MAP) kinase that are present in numerous cell lines and regulated by diverse extracellular signals. The activation of MAP kinase is associated with its phosphorylation on tyrosine and threonine residues, both of which are required for activity. In the present studies, we have identified a factor in extracts of PC12 cells treated with NGF or bradykinin, named MAP kinase activator, that, when reconstituted with inactive MAP kinase from untreated cells, dramatically increased MAP kinase activity. Activation of MAP kinase in vitro by this factor required MgATP and was associated with the phosphorylation of a 42- (ERK1) and 44-kDa (ERK2) polypeptide. Incorporation of 32P into ERK1 and ERK2 occurred primarily on tyrosine and threonine residues and was associated with a single tryptic peptide, which is identical to one whose phosphorylation is increased by treatment of intact PC12 cells with NGF. Thus, the MAP kinase activator identified in PC12 cells is likely to be a physiologically important intermediate in the signaling pathways activated by NGF and bradykinin. Moreover, stimulation of the activator by NGF and bradykinin suggests that tyrosine kinase receptors and guanine nucleotide-binding protein-coupled receptors are both capable of regulating these pathways.  相似文献   

5.
Clam oocytes are arrested naturally at the G2/M border in meiosis and contain an inactive 42 kDa ERK/MAP kinase, p42MAPK. Following fertilization, p42MAPK is rapidly phosphorylated on tyrosine residues and concomitantly activated. Both tyrosine phosphorylation and activation of p42MAPK begin within 2-3 min of fertilization, peak at approximately 15 min, then rapidly decline and disappear around the end of meiosis I. Neither the tyrosine phosphorylated form of p42MAPK nor p42MAPK activity reappears during meiosis II or the succeeding mitotic cell cycles. High doses of molybdate, a potent PTPase inhibitor, block the phosphorylation of p42MAPK and entry into the cell cycle. Lower doses of molybdate delay both p42MAPK phosphorylation and the release from cell cycle arrest, but once cells have re-entered the cell cycle, they continue with near-normal timing. These results argue that the transient activation of p42MAPK at fertilization is a one-time event linked to release from cell cycle arrest. In trying to reconcile this one-time activation of p42MAPK in clam embryos with the recurring, M-phase specific activation of MBP/MAP kinases reported in other systems, we show that cdc2 kinase contributes a major portion of the MBP kinase activity in mitotic extracts. Furthermore, a small fraction of p42MAPK and other related kinases are present in p13suc1-bound material, cautioning against the use of p13suc1 beads for experiments where, in addition to cdc2, the unaccounted presence of other kinase activities could be misleading.  相似文献   

6.
Treatment of adipocytes with okadaic acid (a specific inhibitor of type 1 and 2a protein phosphatases) resulted in a rapid 8-10-fold stimulation of cell extract myelin basic protein (MBP) kinase activity (t1/2 = 10 min) and kinase activity toward a synthetic peptide RRLSSLRA (S6 peptide) (t1/2 = 5 min). Insulin brought about a smaller stimulation of these two activities (t1/2 = 2.5 min). MBP kinase activity from cells treated with okadaic acid or insulin was resolved by anion exchange chromatography into two well defined peaks; S6 peptide kinase activity was less well resolved. The two partially purified MBP kinases were inactivated by the protein tyrosine phosphatase CD45 or by protein phosphatase 2a (PP-2a). In contrast, partially purified S6 peptide kinase activity was inactivated only by PP-2a or protein phosphatase 1 (PP-1). Furthermore, a 38-kDa protein which co-eluted with one peak of MBP kinase and a 42-kDa protein which co-eluted with the other peak of MBP kinase were phosphorylated on tyrosine after treatment with okadaic acid. These findings illustrate several important points concerning regulation of MBP and S6 peptide kinases. First, these protein kinases are regulated by phosphorylation, and, second, in the absence of hormonal stimuli their activities are strongly suppressed by protein phosphatases. Lastly, the increased tyrosine phosphorylation accompanying the activation of MBP kinases following okadaic acid treatment suggests a role for PP-2a in events that are mediated by tyrosine phosphorylation.  相似文献   

7.
We have examined the time course of protein tyrosine phosphorylation in the meiotic cell cycles of Xenopus laevis oocytes and the mitotic cell cycles of Xenopus eggs. We have identified two proteins that undergo marked changes in tyrosine phosphorylation during these processes: a 42-kDa protein related to mitogen-activated protein kinase or microtubule-associated protein-2 kinase (MAP kinase) and a 34-kDa protein identical or related to p34cdc2. p42 undergoes an abrupt increase in its tyrosine phosphorylation at the onset of meiosis 1 and remains tyrosine phosphorylated until 30 min after fertilization, at which point it is dephosphorylated. p42 also becomes tyrosine phosphorylated after microinjection of oocytes with partially purified M-phase-promoting factor, even in the presence of cycloheximide. These findings suggest that MAP kinase, previously implicated in the early responses of somatic cells to mitogens, is also activated at the onset of meiotic M phase and that MAP kinase can become tyrosine phosphorylated downstream from M-phase-promoting factor activation. We have also found that p34 goes through a cycle of tyrosine phosphorylation and dephosphorylation prior to meiosis 1 and mitosis 1 but is not detectable as a phosphotyrosyl protein during the 2nd through 12th mitotic cell cycles. It may be that the delay between assembly and activation of the cyclin-p34cdc2 complex that p34cdc2 tyrosine phosphorylation provides is not needed in cell cycles that lack G2 phases. Finally, an unidentified protein or group of proteins migrating at 100 to 116 kDa increase in tyrosine phosphorylation throughout maturation, are dephosphorylated or degraded within 10 min of fertilization, and appear to cycle between low-molecular-weight forms and high-molecular-weight forms during early embryogenesis.  相似文献   

8.
We have studied the role of guanine-nucleotide binding regulatory proteins (G proteins) in the stimulation of inositol lipid breakdown during mitogenic activation of normal human T lymphocytes. The effect of the mitogen phytohemagglutinin (PHA) was compared with the action of two G-protein activators, fluoroaluminate (AlF4-) and guanosine-5'-O-thiotriphosphate (GTP gamma S). PHA and AlF4- stimulated the breakdown of inositol lipids via both the phospholipase A and C pathways when added to intact lymphocytes. PHA, AlF4- and GTP gamma S also triggered both these pathways when added to permeable lymphocytes. The magnitude of the response obtained with AlF4- and GTP gamma S was about four-fold less than with PHA. This difference was attributable to increases in cAMP elicited by AlF4- and GTP gamma S which inhibited the phospholipase pathways. AlF4-, GTP gamma S, and PHA all stimulated the phosphorylation of a 42 kDa protein on tyrosine residues. We propose a model for the early steps following mitogen binding, including sequential activation of a G protein, phospholipase C, protein kinase C and a tyrosine protein kinase. A parallel pathway involving G protein mediated activation of phospholipase A is also implicated.  相似文献   

9.
Thrombin is known to evoke numerous inflammatory and proliferative responses in a wide variety of its target cells. Recent studies have demonstrated morphoregulatory and mitogenic effects of thrombin on astroglial cells (astrocytes). The present study deals with thrombin-induced activation of mitogen-activated protein (MAP) kinase in primary cultures of rat astrocytes. Treatment of serum-starved astrocytes with thrombin resulted in a rapid activation of tyrosine (Tyr) phosphorylation of a set of proteins including a prominent one with a molecular mass of 42 kDa (p42). The identity of p42 with MAP kinase was confirmed by MAP kinase-immunoreactivity of isolated [i.e., immunoprecipitated with anti-phosphotyrosine (PY) antibodies] p42 and by increased myelin basic protein (MBP) kinase activity present in MAP kinase immunoprecipitates of thrombin-treated cultures. Pertussis toxin (PTX) pretreatment failed to inhibit thrombin stimulation of p42 phosphorylation, indicating the lack of involvement of PTX sensitive G proteins in the mechanism of activation of MAP kinase by thrombin. Chronic exposure of cultures to phorbol 12-myristate 13-acetate to down-regulate PKC resulted in an attenuation of thrombin-induced p42 Tyr phosphorylation, although H-7, a known PKC inhibitor, failed to block thrombin effect. However, staurosporine, a nonspecific protein kinase inhibitor, prevented the activation of p42 phosphorylation. It is concluded that thrombin induces MAP kinase activation in astrocytes by a mechanism involving a staurosporine-sensitive pathway. © 1995 Wiley-Liss, Inc.  相似文献   

10.
《FEBS letters》1994,340(3):269-275
Treatment of Chinese hamster ovary (CHO) cells over-expressing the human insulin receptor (CHO-HIRc) with the insulin mimetic agent, vanadate, resulted in a dose- and time-dependent tyrosine phosphorylation of two proteins with apparent molecular sizes of 42 kDa (p42) and 44 kDa (p44). However, vanadate was unable to stimulate the tyrosyi phosphorylation of theβ-subunit of the insulin receptor. By using myelin basic protein (MBP) as the substrate to measure mitogen-activated protein (MAP) kinase activity in whole cell lysates, vanadate-stimulated tyrosyl phosphorylation of p42 and p44 was associated with a dose- and time-dependent activation of MAP kinase activity. Furthermore, affinity purification of cell lysates on anti-phosphotyrosine agarose column followed by immunoblotting with a specific antibody to MAP kinases demonstrated that vanadate treatment increased the tyrosyl phosphorylation of both p44mapk and p42mapk by several folds, as compared to controls, in concert with MAP kinase activation. In addition, retardation in gel mobility further confirmed that vanadate treatment increased the phosphorylation of p44mapk and p42mapk in CHO-HIRc. A similar effect of vanadate on MAP kinase tyrosyl phosphorylation and activation was also observed in CHO cells over-expressing a protein tyrosine kinase-deficient insulin receptor (CHO-1018). These results demonstrate that the protein tyrosine kinase activity of the insulin receptor may not be required in the signaling pathways leading to the vanadate-mediated tyrosyl phosphorylation and activation of MAP kinases.  相似文献   

11.
Two antipeptide antibodies, one against the peptide corresponding to residues 307-327 (alpha Y91) and one against the peptide corresponding to the C-terminal portion (alpha C92) of the deduced amino acid sequence of the extracellular signal-regulated kinase 1 (ERK1), precipitated two 41-kDa and/or two 43-kDa phospho-proteins from mitogen-stimulated Swiss 3T3 cells. Electrophoretic mobilities on two-dimensional gels of the immunoprecipitated 41- and 43-kDa phosphoproteins were similar to those of the 41- and 43-kDa cytosol proteins, whose increased tyrosine phosphorylation we and others had originally identified in various mitogen-stimulated cells (Cooper, J. A., Sefton, B. M., and Hunter, T. (1984) Mol. Cell. Biol. 4, 30-37; Kohno, M. (1985) J. Biol. Chem. 260, 1771-1779); phosphopeptide map analysis revealed that they were respectively identical molecules. All those phosphoproteins contained phosphotyrosine, and the more acidic forms contained additional phosphothreonine. Immunoprecipitated 41- and 43-kDa phosphoproteins had serine/threonine kinase activity toward myelin basic protein (MBP) and microtuble-associated protein 2 (MAP2). With the combination of two-dimensional gel electrophoresis and the kinase assay in MBP-containing polyacrylamide gels of the alpha Y91 immunoprecipitates, with or without phosphatase 2A treatment, we showed that only their acidic forms were active. These results clearly indicate that 41- and 43-kDa proteins, the increased tyrosine phosphorylation of which is rapidly and commonly induced by mitogen stimulation of fibroblasts, are family members of ERKs/MAP2 kinases and that phosphorylation both on tyrosine and threonine residues is necessary for their activation.  相似文献   

12.
13.
Mitogen-activated protein (MAP) kinase is a 42-kDa serine/threonine-specific protein kinase that requires phosphorylation on both tyrosine and threonine residues for activity. This enzyme is rapidly and transiently activated in quiescent cells after addition of various agonists, including insulin, epidermal growth factor, platelet-derived growth factor, and phorbol esters. We show here that addition of the growth factors thrombin or basic fibroblast growth factor to CCL39 fibroblasts rapidly induces tyrosine phosphorylation of the p42 MAP kinase protein and concomitantly stimulates MAP kinase enzymatic activity. To elucidate the signaling pathways utilized in this activation, we took advantage of the sensitivity of CCL39 cells to the toxin of bordetella pertussis, which ADP-ribosylates two Gi proteins in this cell system. We show that pretreatment of cells with the toxin inhibited thrombin stimulation of MAP kinase by greater than 75% but had no detectable effect on the stimulation induced by basic fibroblast growth factor. We also demonstrate that these two growth factors that synergize for mitogenicity are able to cooperate in activation of MAP kinase and that this synergism is partially sensitive to pertussis toxin. Finally, we describe a 44-kDa protein, the tyrosine phosphorylation of which appears to be coregulated with p42 MAP kinase. We conclude that p42 MAP kinase (and the pp44 protein) are at or are downstream from a point of convergence of two different receptor-induced signaling pathways and might well play a key role in integrating those signals.  相似文献   

14.
Activation of human neutrophils by the chemotactic peptide formyl-methionyl-leucyl-phenylalanine (fMLP) induces tyrosine phosphorylation of several polypeptides, including a prominent band of approximately 41 kDa. A polypeptide of identical electrophoretic mobility was recognized by a monoclonal antibody raised against a sequence corresponding to amino acids 325-345 of ERK-1, one of a family of mitogen-activated protein (MAP) kinases. To establish the possible identity of these polypeptides, extracts from control and fMLP-treated cells were immunoprecipitated with immobilized antiphosphotyrosine antibodies. Reactivity with anti-ERK-1 antibodies was observed only in the precipitate of chemoattractant-stimulated cells. These data imply that a MAP kinase constitutes at least part of the tyrosine-phosphorylated 41-kDa polypeptide. By using an in vitro renaturation assay, treatment of intact cells with fMLP was found to stimulate several protein kinases, including one of approximately 41 kDa. Renaturation of samples immunoprecipitated with antiphosphotyrosine antibodies revealed the presence of an active protein kinase in chemoattractant-stimulated, but not in control cells. The immunoprecipitated kinase comigrated with the 41-kDa tyrosine phosphorylated polypeptide and the anti-ERK-1 reactive band. We conclude that a MAP kinase closely related or identical to ERK-1 is tyrosine phosphorylated and activated when human neutrophils are stimulated by chemotactic peptides. The rapid phosphorylation of this kinase, which is apparent within seconds, is compatible with a role in the activation of the respiratory burst and/or other neutrophil responses.  相似文献   

15.
P D Adams  P J Parker 《FEBS letters》1991,290(1-2):77-82
Threonine and tyrosine residue phosphorylation of a 42 kDa protein identified as mitogen-activated protein kinase (MAP kinase) was stimulated in extracts from TPA-pretreated cells. It is further shown that TPA pretreatment leads to the enhancement of an activity that will induce reactivation of dephosphorylated/inactivated MAP kinase. This TPA-induced activity induces the threonine and tyrosine phosphorylation of p42 in extracts from unstimulated cells.  相似文献   

16.
The subcellular distribution and regulation of MAP kinase isoforms in chicken hepatoma DU249 cells was investigated with antibodies directed against peptides patterned after sequences in the mitogen-activated protein (MAP) kinases, sea star p44mpk, and rat p44erk1. MonoQ chromatography of cytosol from these cells afforded the resolution of at least four peaks of myelin basic protein (MBP) phosphotransferase activity, but only one of these (peak II) was stimulated in extracts from phorbol ester-treated cells. A 40- to 41-kDa (p41) doublet on Western blots detected with three different MAP kinase antibodies was coincident with peak II, and it probably corresponded to the avian homolog of p42mapk/erk2. Immunofluorescent studies with DU249 cells and chicken embryo fibroblasts revealed that most of the cross-reactive protein with at least two different MAP kinase antibodies was distributed in the nucleus. Subcellular fractionation studies confirmed a predominantly nuclear localization for p41 MAP kinase. Nocodazole arrest of DU249 cells was exploited for the detection of an M-phase-activated MBP kinase that was resolved from p41 MAP kinase by phenyl-Superose chromatography. Western blotting analysis with antibodies for the cdc2-encoded protein kinase and p13suc1-agarose binding studies allowed positive identification of this MBP kinase as p34cdc2.  相似文献   

17.
Growth hormone (GH) influences a number of tissue-specific biological activities in diverse cell types. However, little is known about the biochemical pathway by which the signal initiated by GH binding to its cell-surface receptor is transduced. The GH receptor has been reported to be phosphorylated on tyrosine in 3T3-F442A cells, a cell line in which GH promotes differentiation and inhibits mitogen-stimulated growth; however, it is not known whether tyrosine phosphorylation plays a role in GH signal transduction. We report that GH treatment of 3T3-F442A cells resulted in the rapid tyrosine phosphorylation of at least four proteins. These included 42- (pp42) and 45-kDa (pp45) proteins immunologically related to ERK1 (extracellular signal-regulated kinase 1), a member of a family of serine/threonine protein kinases that are phosphorylated on tyrosine in response to mitogens. Prolonged phorbol ester pretreatment attenuated the tyrosine phosphorylation of pp42 and pp45 in platelet-derived growth factor-treated cells, but not in GH-treated cells. Maximal GH-stimulated tyrosine phosphorylation of pp42 and pp45 coincided with peak levels of a 42-kDa renaturable MBP kinase activity in lysates of GH-treated cells resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The observation that multiple cellular proteins are rapidly phosphorylated on tyrosine in response to physiological concentrations of GH suggests that tyrosine phosphorylation plays a role in GH signal transduction. Moreover, the stimulation of tyrosine phosphorylation of ERK-related proteins by GH suggests that mitogens and nonmitogens may employ common phosphotyrosyl proteins in the activation of ultimately distinct cellular programs.  相似文献   

18.
Effect of several vanadium salts, sodium orthovanadate, vanadyl sulfate and sodium metavanadate on protein tyrosine phosphorylation and serine/threonine kinases in chinese hamster ovary (CHO) cells overexpressing a normal human insulin receptor was examined. All the compounds stimulated protein tyrosine phosphorylation of two major proteins with molecular masses of 42 kDa (p42) and 44 kDa (p44). The phosphorylation of p42 and p44 was associated with an activation of mitogen activated protein (MAP) kinase as well as increased protein tyrosine phosphorylation of p42mapk and p44mapk. Vanadinm salts also activated the 90 kDa ribosomal s6 kinase (p90rsk) and 70 kDa ribosomal s6 kinase (p70s6k). Among the three vanadium salts tested, vanadyl sulfate appeared to be slightly more potent than others in stimulating MAP kinases and p70s6k activity. It is suggested that vanadium-induced activation of MAP kinases and ribosomal s6 kinases may be one of the mechanisms by which insulin like effects of this trace element are mediated.Abbreviations eIF-4 eukaryotic protein synthesis initiation factor-4 - GRB-2 growth factor receptor bound protein-2 - GSK-3 Glycogen Synthase Kinase-3 - IRS-1 insulin receptor substrate-1 - ISPK insulin stimulated protein kinase - MAPK mitogen activated protein kinase, also known as - ERK extracellular signal regulated kinase - MAPKK mitogen activated protein kinase kinase, also known as-MEK, MAPK or ERK kinase - PHAS-1 phosphorylated heat and acid stable protein regulated by insulin - PI3K phosphatidyl inositol 3-kinase - PP1-G protein phosphatase-glycogen bound form - PTK protein tyrosine kinase - PTPase protein tyrosine phosphatase - rsk ribosomal s6 kinases - shc src homology domain containing protein - SOS son of sevenless  相似文献   

19.
Activation of Mitogen-Activated Protein Kinases in Oligodendrocytes   总被引:2,自引:1,他引:1  
Abstract: The proliferation and differentiation of oligodendrocyte progenitors are stringently controlled by an interacting network of growth and differentiation factors. Not much is known, however, about the intracellular signaling pathways activated in oligodendrocytes. In this study, we have examined the activation of m itogen-a ctivated p rotein (MAP) kinase [also called e xtracellular s ignal-r egulated protein k inases (ERKs)] in primary cultures of developing oligodendrocytes and in a primary oligodendrocyte cell line, CG4, in response to platelet-derived growth factor (PDGF) and basic fibroblast growth factor. MAP kinase activation was determined by an in-gel protein kinase renaturation assay using myelin basic protein (MBP) as the substrate. The specificity of MAP kinase activation was further confirmed by an immune complex kinase assay using anti-MAP kinase antibodies. Stimulation of oligodendrocyte progenitors with the growth factors PDGF and basic fibroblast growth factor and a protein kinase C-activating tumor promoter, phorbol 12-myristate 13-acetate, resulted in a rapid activation of p42mapk (ERK2) and, to a lesser extent, p44mapk (ERK1). Immunoblot analysis with anti-phosphotyrosine antibodies revealed an increased Tyr phosphorylation of a 42-kDa phosphoprotein band cross-reacting with anti-MAP kinase antibodies. The phosphorylation of p42mapk in PDGF-treated oligodendrocyte progenitors was preceded by a robust autophosphorylation of the growth factor receptor. Immunoblot analysis with anti-pan-ERK antibodies indicated the presence of ERK-immunoreactive species other than p42mapk and p44mapk in oligodendrocytes. The presence of some of the same pan-ERK-immunoreactive species and certain renaturable MBP kinase activities was also demonstrable in myelin preparations from rat brain, suggesting that MAP kinases (and other MBP kinases) may function not only during oligodendrogenesis but also in myelinogenesis.  相似文献   

20.
Mitogen-activated protein (MAP) kinase is a serine/threonine-specific protein kinase which is activated in response to various mitogenic agonists (e.g., epidermal growth factor, insulin, and the tumor promoter tetradecanoyl phorbol acetate [TPA]) and requires both threonine and tyrosine phosphorylation for activity. This enzyme has recently been shown to be identical or closely related to pp42, a protein which becomes tyrosine phosphorylated in response to mitogenic stimulation. Neither the kinases which regulate MAP kinase/pp42 nor the in vivo substrates for this enzyme are known. Because MAP MAP kinase is activated and phosphorylated in response both to agents which stimulate tyrosine kinase receptors and to agents which stimulate protein kinase C, a serine/threonine kinase, we have examined the regulation and phosphorylation of this enzyme in 3T3-TNR9 cells, a variant cell line partially defective in protein kinase C-mediated signalling. In this communication, we show that in the 3T3-TNR9 variant cell line, TPA does not cause the characteristically rapid phosphorylation of pp42 or the activation and phosphorylation of MAP kinase. This defective response is not due to the absence of the MAP kinase/pp42 protein itself because both tyrosine phosphorylation of MAP kinase/pp42 and its enzymatic activation could be induced by platelet-derived growth factor in the 3T3-TNR9 cells. Thus, the defect in these variant cells apparently resides in some aspect of the regulation of MAP kinase phosphorylation. Since the 3T3-TNR9 cells are also defective with respect to the TPA-induced increase in ribosomal protein S6 kinase, these in vivo results reinforce the earlier in vitro finding that MAP kinase can regulate S6 kinase activity. These findings suggest a key role for MAP kinase in a kinase cascade cascade involved in the control of cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号