首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first part of the paper discusses the significance of using either concentration or accumulation values for expressing the results of investigations of lake sediment cores aimed at studying the history of heavy metal pollution. Neither the values for heavy metal concentration in the lake sediment, whether expressed per gram dry sediment or per gram soluble (organic) sediment, nor the values for their total annual accumulation per unit area of the lake bottom, can, on their own, provide an accurate picture of past pollution conditions, but when considered in combination they render a fairly reliable and detailed interpretation. The second part of the paper deals with Pb, Cd and Hg analyses of cores of varved sediments from several lakes in N. Sweden. Pb and Cd pollution increased during the second half of the 19th century. In most lakes, Hg pollution seems first to have started during the 20th century. Marked increases in both concentration and accumulation of heavy metals took place during the 20th century. For recent decades, the estimated accumulation rates of heavy metals from anthropogenic sources are: Pb 0.5–1.5 µg cm–2 yr–1, Cd 15–30 ng cm–2 yr–1 and Hg 1–2 ng cm–2 yr–1, Higher values were recorded in lakes affected by local emissions.  相似文献   

2.
Ollikainen  Minna  Simola  Heikki  Niinioja  Riitta 《Hydrobiologia》1993,269(1):405-413
Sedimentary diatom assemblages in two large oligotrophic clear-water lakes were analysed, to assess their present ecological state and possible eutrophication due to diffuse nutrient loading. The lakes Pyhäjärvi and Puruvesi (Finnish lake district) are proportionally large for their catchment areas which accounts for their long retention times (ca 7 and 11 yr) and oligohumic character. Pyhäjärvi was studied by pairwise comparison of surface sediment diatom assemblages collected in 1985 and 1990 at 12 sites from different parts of the lake. In Puruvesi, the stratigraphy of diatoms was analysed in two short cores from 8 m and 32 m depths.The diatom assemblages of the two lakes are rather similar, and quite distinct from the assemblages of the mesohumic large lakes of the area. Cyclotella kuetzingiana is the most common planktonic dia- tom, but Aulacoseira ambigua abounds in Pyhäjärvi at sites with local sources of eutrophication. A diverse assemblage of benthic forms, especially Fragilaria and Achnanthes spp. characterizes the shallow bottoms in both lakes.There was little change within the short-core diatom profiles of Puruvesi, but the floral composition of the 8-m and 32-m sites differed markedly. The 8-m site, with 60–70% of benthic forms, represents illuminated bottom, on which much of the buried algae have lived in situ, while the deeper site is true profundal, dominated by sedimented planktonic algae.In Pyhäjärvi there was a slight increase in the benthic diatoms from 1985 to 1990, coinciding with increased phosphorus and chlorophyll concentrations as well as Secchi depth lowering. We interprete this observation as a very early step of eutrophication, of which first the sessile algal communities of the illuminated bottom areas have benefited.  相似文献   

3.
Available phosphorus in lake sediments in The Netherlands   总被引:4,自引:3,他引:1  
Klapwijk  S. P.  Kroon  J. M. W.  Meijer  M -L. 《Hydrobiologia》1982,91(1):491-500
The amount of phosphorus available to algae in the sediments of four lakes in the western part of the Netherlands has been assessed by means of chemical extraction and bioassay techniques. In addition to direct chemical sediment analyses, extractions were carried out with an NTA column method and a stepwise NH4 Cl-NaOH-HCI shaking method, the latter supposedly separating the weakly bound, the Fe- and Al-bound and the Ca-bound phosphates in the sediments. Bioassays, with sediment as the sole source of P, were made withScenedesmus quadricauda in modified Skulberg's 28 medium to determine the amount of phosphates available to algae.The average total P concentration of the sediments varied from 0.8 to 3.6 mg P g–1 dry wt and correlated well with the net external P loading of the lakes. Uptake of P by algae in the bioassays varied from 0.4 to 36% — while NTA extracted 36–69% of the total P. The ratio NH4Cl extracted/ NaOH extracted/ HCI extracted phosphates is different from lake to lake, although in all lakes the highest extractions (27–62% of total P) are found in the NaOH fraction. However, in the peaty sediments of these lakes, the NaOH step extracted not only the Fe- and Al-bound phosphates but, also, large amounts of humus compounds. Hence, this fraction also contains non-available organic P.The results are related to soil type and chemical characteristics of the sediments, and compared with data from other authors. A positive correlation was found between phosphate available to algae and NTA- and NaOH-extractable P, but the correlation with total phosphorus was higher. Moreover, algal-extractable P proved to be positively correlated with total iron and clay content and negatively with the amount of organic matter.It is concluded that the sediments in the investigated lakes show great variability and that the chemical extraction techniques cannot replace the bioassays to assess the amount of phosphorus available to algae.  相似文献   

4.
Cumming  Brian F.  Smol  John P. 《Hydrobiologia》1993,(1):179-196
Diatoms were identified and enumerated from the surface sediments of 65 lakes located on the Cariboo and Chilcotin Plateaux (British Columbia, Canada). These lakes span a large gradient in lakewater ionic concentration (fresh through hypersaline) and composition, as well as other physical/chemical variables. Almost all of the study lakes had higher salinities in the late-summer than in the spring. The lakes with spring salinities >8 g l–1 showed the largest seasonal increases in salinity. Ionic composition was similar in the spring and late-summer for most lakes. Both ionic concentration (i.e. salinity) and composition were important environmental variables that could account for the different diatom floras in the lakes. Diatom assemblages characteristic of carbonate-dominated and sulfate-dominated waters were identified. Other variables such as water depth and phosphorus concentration were also important.The majority (87%) of diatom taxa had estimated salinity optima < 3 g l–1 Halophilic diatom taxa had broader tolerances to salinity when compared to the fresh water taxa, however taxa with narrow and broad tolerances could be identified across the salinity gradient. Species diversity was weakly but significantly correlated to lakewater salinity (r 2 = 0.18 to 0.3, P < 0.05).Salinity inference models were developed based on the relationship between the diatom assemblages and the spring, late-summer and average salinity. The correlations between the measured and diatominferred salinity, based on the spring (r = 0.95), late-summer (r = 0.94) and average (r = 0.95) salinity data, are high because there was an extremely strong correlation (r = 0.98) between the log transformed spring and late-summer measured salinities. These salinity reconstruction models provide a tool that can be used to infer past climatic changes as part of paleolimnological studies from appropriate closed-basin lakes in British Columbia.  相似文献   

5.
1. Pacific salmon are a textbook example of migratory animals that transfer nutrients between ecosystems, but little is known about how salmon‐derived nutrients (SDN) affect the biodiversity of recipient freshwater ecosystems. We examined paleolimnological records from six Alaskan lakes to define how changes in SDN from sockeye salmon (Oncorhynchus nerka) influenced sedimentary diatom community structure and beta‐diversity among lakes and through time. 2. Using an isotopic mixing model, we showed that SDN loading could account for >80% of the lake total nitrogen budgets and strongly regulated diatom community composition. Spatial dissimilarity in diatom communities was positively related to differences in SDN among lakes (r2 = 0.69, P < 0.01, n = 10). Likewise, temporal dissimilarity in diatom communities was positively related to differences in SDN in a sediment core with substantial variation in salmon spawner dynamics between 1700 and 1950 AD (r2 = 0.34, P < 0.01, n = 19). Finally, beta‐diversity metrics quantifying temporal turnover within each lake’s sediment record were also positively related to the variance in SDN loading among lakes (r2 = 0.88, P < 0.05, n = 5). Mean SDN was only negatively correlated to temporal diatom beta‐diversity. 3. Spatially subsidised systems often receive temporally variable resource inputs, and thus, it is not surprising that, unlike previous studies, we found that resource variability was the key driver of community composition and beta‐diversity. In habitats that receive strongly fluctuating external nutrient loads, environment heterogeneity may overweigh stochastic community processes. In addition, freshwater diatoms are characterised by great dispersal capabilities and short life cycles and therefore may be a more sensitive indicator for evaluating the role of resource variability than previously used model organisms. These results suggest that productivity–diversity relationship vary with the nature of nutrient loading and the life history of the community studied. 4. Overall, our study highlights that the transport of nutrients by sockeye salmon across ecosystem boundaries is a significant driver of algal community and biodiversity in nursery lakes, mainly through changing the magnitude of nutrient variation. As such, freshwater species diversity in regions like the U.S. Pacific Northwest may become impoverished where there have been long‐term declines in salmon populations and decreases in nutrient variability among lakes.  相似文献   

6.
  • 1 Stratigraphic analyses of inorganic geochemistry, pigments and fossil diatoms in a 0.7 m core of profundal sediments are used to reconstruct the limnological history of Harvey's Lake, Vermont, over the last 1000 years. The lake is moderately productive, deep (44 m) and clear, and the phytoplankton today is dominated by the blue-green alga, Oscillatoria rubescens. Sedimentary pigments unique to blue-green algae, oscillaxanthin and myxoxanthophyll, provide a detailed history of changes in the O. rubescens population. Accurate sediment chronology is derived from 210Pb, 137Cs and 14C dating and from the stratigraphy of pollen and sawmill wastes.
  • 2 Primary production increased in Harvey's Lake in 1780 following European settlement and again after 1945, as shown by greater accumulation of sedimentary pigments and diatom frustules, and changes in fossil algal assemblages. Blue-green algae first appeared in abundance about 1945, indicating nutrient enrichment from dairy wastes and shoreline development. Increased deposition of elements associated with classic minerals also suggests greater soil erosion during both of these intervals.
  • 3 Two episodes of increased sedimentary anoxia (1820–1920 and 1945–present) are marked in the sedimentary record by enhanced pigment preservation, changes in authigenic Fe and Mn stratigraphy,’and the development of laminated sediments. The earlier episode of oxygens depletion is correlated with the discharge of sawmill wastes into the lake, and the later episode is associated with increased primary production.
  • 4 Based on these data a new model for Fe and Mn sediment stratigraphy is proposed for lakes that do not undergo complete hypolimnetic anoxia.
  • 5 Fine-scale resolution of recent diatom and oscillaxanthin stratigraphy provides historical evidence for a long-term negative interaction between diatom and blue-green algal populations in Harvey's Lake.
  相似文献   

7.
This study aims to identify reference conditions (nutrient status and diatom assemblages) as required by the European Water Framework Directive (WFD) for stratified, carbonate-rich lowland lakes with a large watershed area (watershed area to lake volume ratio (WV) > 1.5 km2 10−6 m−3) and a retention time (RT) from 0.1 to 10 years (Central Baltic Lake-Type 1, German Lake-Type 10) in European ecoregion 14. Diatoms, pollen and geochemistry were analysed from sediment cores of six lakes from northern Germany representing different subtypes of Lake-Type 10 (varying WV and RT) and covering the past 290–1,750 years. Historic total phosphorus levels were inferred using diatom-based transfer functions selected from a merged European data set and from optimised data sets identified with the moving-window approach. Pollen and geochemical proxies were used to identify occurrence and intensity of anthropogenic catchment usage. Lake trophic state reference conditions and associated diatom assemblages were identified for three of the six study lakes. In contrast, according to fossil pollen assemblages, two lakes were already strongly impacted by intensive catchment usage when the oldest investigated sediments were laid down. Thus, reference conditions of these already eutrophic lakes could not be identified. Similarly, the lowermost samples of a core from the sixth lake showed signs of impact, and it remains unclear whether the identified dystrophic conditions occurred naturally or if they were due to the drainage of wetlands in Medieval times. Lakes with a relatively small WV (1.5–5.0 km2 10−6 m−3) and RT > 1 year were naturally oligotrophic to low mesotrophic and a typical, representative diatom assemblage was identified. In contrast, typical reference conditions or diatom assemblages for lakes with higher WV (5–18.6 km2 10−6 m−3) and RT < 1 year could not be identified as chemical precipitation and upstream lakes (nutrient sinks or sources) additionally influenced natural nutrient levels. Therefore, the reference situation of both trophic state and diatom assemblages in a lake may be strongly influenced by other modifying, limnological processes in addition to WV and RT. Overall, this study helps to implement the WFD by identifying reference conditions and by discussing the level of differentiation of lake types required to set reference conditions. Guest editors: K. Buczkó, J. Korponai, J. Padisák & S. W. Starratt Palaeolimnological Proxies as Tools of Environmental Reconstruction in Fresh Water  相似文献   

8.
Cores from Arctic and subarctic Canadian lakes were subjected to isotopic, chemical, micropaleontological, and geochronological analyses for the purpose of investigating mass-independent fractionation (MIF) of mercury isotopes. The cores preserved records of early twentieth century climatic warming (~1915–1940), subsequent cooling (~1940–1970), and renewed warming (~1970–2004) [phases W1, C1, and W2, respectively]. Per mil deviations of 199Hg/202Hg and 201Hg/202Hg ratios due to MIF (Δ199Hg and Δ201Hg values) correlated with biological and biogeochemical factors linked to geographical and temporal climatic variations but varied, in large part, independently of each other. Δ201Hg tended to increase from east to west. Among subarctic lakes this trend paralleled westward decreases in annual precipitation, diatom concentration, and the post-1990 organic carbon/pre-1900 organic carbon ratio, and Δ201Hg increased in the order C1 ≤ W1 < W2. Δ201Hg varied inversely with diatom concentration, but Δ199Hg increased with increasing abundance of cyanobacteria. Arctic lakes, however, showed a south-to-north decrease in Δ199Hg/Δ201Hg ratios, paralleling a decrease in annual precipitation and an increase in Chlorophyta and cyanobacteria. Δ-values of individual lakes depended on the abundances of specific phylogenetic groups of phytoplankton, pyrolysis products of organic matter, and manganese, and on the manganese/iron ratios of oxyhydroxides, displaying clear separation of data representing different climatic trends. These results suggest that MIF was caused by microorganisms, such as bacteria which decomposed dead phytoplankton and mediated oxidation-reduction reactions of manganese and iron, and that the nature and isotope-fractionating activities of the microflora varied with climate-related environmental and biotic factors, including the community structure of the phytoplankton.  相似文献   

9.
The aims of this study were to document the mainly chemical behaviour of two linked artificial lakes used for both stormwater management and recreation in the new town of Craigavon. Further, the understanding of their behaviour should help in their management and the design of other similar lakes.The lake mean total phosphorus (73 µg P l–1), nitrate (0.50 mg N l–1) and chlorophyll a (25 µg l–1) concentrations, Secchi depth (1.2 m) and the estimated total phosphorus loading (1.98 g m–2 a–1) all classify the main lake as eutrophic. An important source of the phosphorus load on the lakes is the urban area of Craigavon (52% of the total load). The interrelationships between total phosphorus, chlorophyll a and Secchi depth in the main lake are similar to those in natural ones. In addition, the lake follows the total phosphorus load — trophic state relationships (lake total phosphorus and chlorophyll a concentrations and Secchi depth) found to apply elsewhere. These two points indicate that the artificial lakes in Craigavon behave similarly to natural ones.  相似文献   

10.

Background

Although arctic lakes have responded sensitively to 20th-century climate change, it remains uncertain how these ecological transformations compare with alpine and montane-boreal counterparts over the same interval. Furthermore, it is unclear to what degree other forcings, including atmospheric deposition of anthropogenic reactive nitrogen (Nr), have participated in recent regime shifts. Diatom-based paleolimnological syntheses offer an effective tool for retrospective assessments of past and ongoing changes in remote lake ecosystems.

Methodology/Principal Findings

We synthesized 52 dated sediment diatom records from lakes in western North America and west Greenland, spanning broad latitudinal and altitudinal gradients, and representing alpine (n = 15), arctic (n = 20), and forested boreal-montane (n = 17) ecosystems. Diatom compositional turnover (β-diversity) during the 20th century was estimated using Detrended Canonical Correspondence Analysis (DCCA) for each site and compared, for cores with sufficiently robust chronologies, to both the 19th century and the prior ∼250 years (Little Ice Age). For both arctic and alpine lakes, β-diversity during the 20th century is significantly greater than the previous 350 years, and increases with both latitude and altitude. Because no correlation is apparent between 20th-century diatom β-diversity and any single physical or limnological parameter (including lake and catchment area, maximum depth, pH, conductivity, [NO3 ], modeled Nr deposition, ambient summer and winter air temperatures, and modeled temperature trends 1948–2008), we used Principal Components Analysis (PCA) to summarize the amplitude of recent changes in relationship to lake pH, lake:catchment area ratio, modeled Nr deposition, and recent temperature trends.

Conclusions/Significance

The ecological responses of remote lakes to post-industrial environmental changes are complex. However, two regions reveal concentrations of sites with elevated 20th-century diatom β-diversity: the Arctic where temperatures are increasing most rapidly, and mid-latitude alpine lakes impacted by high Nr deposition rates. We predict that remote lakes will continue to shift towards new ecological states in the Anthropocene, particularly in regions where these two forcings begin to intersect geographically.  相似文献   

11.
We explored statistical relationships between the composition of littoral diatom assemblages and 21 chemical and physical environmental variables in 69 lakes and 15 river sites in the lowland of northeastern Germany. Canonical correspondence analysis with single treatment and with forward selection of environmental variables was used to detect 11 important ecological variables (dissolved inorganic carbon [DIC], Na + , total phosphorus [TP], dissolved organic carbon [DOC], total nitrogen [TN], pH, oxygen saturation, dissolved iron, SO42 ? , NH4 + , soluble reactive silicium) and maximum water depth or Ca2 + or soluble reactive phosphorus that most independently explain major proportions of the total diatom variance among the habitats. Monte Carlo permutation tests showed that each contributed a significant additional proportion (P < 0.05) of the variance in species composition. Together, these 11 most important environmental variables explained 34% of the total variance in species composition among the sites and captured 73% of the explained variance from the full 21 parameters model. Weighted‐averaging regression and calibration of 304 indicator taxa with tolerance down‐weighting and classic deshrinking was used to develop transfer functions between littoral diatoms and DIC, pH, TP, TN, and Cl ? . The DOC:TP ratio was introduced and a weighted‐averaging model was developed to infer allochthonous DOC effects in freshwater ecosystems. This diatom‐DOC/TP model was significant (P < 0.001) and explained 7.6% of the total diatom variance among the sites, surpassing the inferential power of the diatom‐TP‐transfer function (7.3% explained variance). The root‐mean‐square errors of prediction of the models were estimated by jack‐knifing and were comparable with published data sets from surface sediment diatom samples. The data set of littoral diatoms and environmental variables allows use of the diatom‐environmental transfer functions in biomonitoring and paleolimnological approaches across a broad array of natural water resources (such as floodplains, flushed lakes, estuaries, shallow lakes) in the central European lowland ecoregion.  相似文献   

12.
Recent palaeolimnology of three shallow Danish lakes   总被引:4,自引:0,他引:4  
Anderson  N. J.  Odgaard  B. V. 《Hydrobiologia》1994,(1):411-422
Recent eutrophication histories of three shallow lakes (mean depths <3 m) were studied using palaeolimnological methods. Freeze-cores were dated using 210Pb, 137Cs, 134Cs and 241Am. Resultant chronologies were problematical at two sites (Væng Sø and Vesterborg Sø) due to sediment-water interface mixing, indicated by uniform 137Cs profiles over the surface 20–30 cm. Sediments at Langesø and Vesterborg Sø have a high carbonate content, which together with the high mixing rate have resulted in diatom dissolution below 30 cm at Vesterborg Sø. Diatom stratigraphy indicates relatively small biological changes at both Væng Sø and Langesø both lakes have been eutrophic for at least the last 150–200 years. Væng Sø is dominated by planktonic diatoms together with high percentages of benthic Fragilaria spp., and Langesø by planktonic diatoms, especially Cyclostephanos dubius and Stephanodiscus parvus.Epilimnetic phosphorus concentrations were inferred using weighted averaging; at Væng Sø the diatom-inferred TP (DI-TP) concentrations were close to observed values in the early 1980s, but failed to record the post-biomanipulation decrease to 55 g l-1 after 1988, presumably due to the smoothing of the sediment record by resuspension and mixing. At Langesø two increases in DI-TP suggest a two-phase enrichment of the lake, initial eutrophication 1880, and hypertrophy after 1950. The recent DI-TP values are lower than the annual observed values, and reasons for this are discussed. Despite problems associated with sediment mixing, the sediment records of these shallow systems can still be used for monitoring and for environmental reconstructions.  相似文献   

13.
Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long‐term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole‐lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P < 0.01). A redundancy analysis (RDA) of the 41‐lake data set identified BiomEpiV as a significant (P < 0.05) variable in structuring sedimentary diatom assemblages. The MRT analysis classified the lakes into three groups. These groups were (A) high‐macrophyte, nutrient‐limited lakes (BiomEpiV ≥525 μg · L?1; total phosphorus [TP] <35 μg · L?1; 23 lakes); (B) low‐macrophyte, nutrient‐limited lakes (BiomEpiV <525 μg · L?1; TP <35 μg · L?1; 12 lakes); and (C) eutrophic lakes (TP ≥35 μg · L?1; six lakes). A semiquantitative model correctly predicted the MRT group of the lake 71% of the time (P < 0.001). These results suggest that submerged macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance.  相似文献   

14.
The diatom flora and limnology of lakes in the Amery Oasis,East Antarctica   总被引:2,自引:0,他引:2  
The diatom flora of three lakes in the ice-free Amery Oasis, East Antarctica, was studied. Two of the lakes are meltwater reservoirs, Terrasovoje Lake (31 m depth) and Radok Lake (362 m depth), while Beaver Lake (>435 m depth) is an epishelf lake. The lakes can be characterized as cold, ultra-oligotrophic and alkaline, displaying moderate (Radok and Terrasovoje lakes) to high (Beaver Lake) conductivities. There was no diatom phytoplankton present in any of the three lakes. While 34 benthic diatom taxa were identified from modern and Holocene sediments of Terrasovoje and Radok lakes, a 30-cm long sediment core recovered in Beaver Lake was barren. Five species (Luticola muticopsis, Muelleria peraustralis, Pinnularia cymatopleura, Psammothidium metakryophilum, P. stauroneioides) are endemic to the Antarctic region. All identified taxa are photographically documented and brief notes on their taxonomy, biogeography and ecology are provided. The most abundant diatom taxa are Amphora veneta, Craticula cf. molesta, Diadesmis spp, M. peraustralis and Stauroneis anceps. This is the first report on the diatom flora in lakes of the Amery Oasis.This revised version was published online in May 2004 with corrections to Figure 1.  相似文献   

15.
Chemical limnology of soft water lakes in the Upper Midwest   总被引:2,自引:0,他引:2  
Water samples from 36 lakes in northern Minnesota, Wisconsin, and Michigan were collected and analyzed during 1983–1984. All study lakes were dilute and had total alkalinities of less than 150 eq · L–1. Minnesota lakes have hydrologic inputs from the watershed and inputs of base cations derived from the watershed. Study lakes in Minnesota had higher total alkalinities, dissolved organic carbon, and noncarbonate alkalinity as a result of watershed inputs. Lakes in Michigan and Wisconsin were precipitation-dominated seepage lakes that have lower concentrations of base cations than lakes in Minnesota. All of the study lakes have lower sulfate concentrations than expected, based on atmospheric wet deposition and evapotranspiration.Pore water samples collected from one of the study lakes—Little Rock Lake—in Wisconsin were used to calculate diffusive fluxes between the sediment and water column. According to these calculations, the sediments were a source of total alkalinity and Ca2+ and a sink for SO4 2–. The sediment-water exchange of total alkalinity, Ca2+, and SO4 2– appears to be important in the whole-lake budgets of these ions for Little Rock Lake.  相似文献   

16.
1. Canonical correspondence analysis of a diatom and water chemistry dataset from fifty-nine maritime Antarctic lakes situated on Signy and Livingston Islands showed that nutrients and functions of nutrients (NH4+, chlorophyll a) accounted for a significant fraction of the variance in the diatom data. 2. Weighted averaging regression was used to construct a diatom-based transfer function for inferring chlorophyll a concentrations from sediment core diatom assemblages. 3. The transfer function was applied to 210Pb-dated sediment cores from three lakes (Moss, Sombre and Heywood) receiving different levels of nutrient input from fur seal populations, i.e. low, medium and high, respectively. 4. Moss Lake showed relatively stable reconstructed chlorophyll a values, and no evidence of recent eutrophication, agreeing with measured chlorophyll a concentrations at the site. 5. Changes in diatom assemblages and results of chlorophyll a reconstructions at Sombre Lake suggested that nutrient enrichment had occurred, which could be clearly linked to fluctuations in the measured water chemistry over the last 10–14 years. 6. Despite recorded increases in recent nutrient inputs there was no apparent diatom response at Heywood Lake.  相似文献   

17.
The pH history of lakes can be inferred from diatom remains in dated sediment cores. To derive transfer functions for pH inference in acidic lakes, we counted diatoms in surface-sediment from 31 soft-water lakes in n. New England (NE) and 36 in Norway (N), covering pH 4.4–7.1. Cluster analysis of each data set indicates that pH 6 is an upper limit for a group of similar diatom assemblages. For each set, we developed multiple linear regressions to relate three versions of the diatom data to pH of surface-waters: (1) relative frequencies of selected diatom taxa, (2) the first principal component (1 PC) of these frequencies, and (3) the frequencies of Hustedt pH groups. Also, simple linear regressions were developed for two versions: (1) Index B and (2) Index Alpha, both based on pH groups. Regressions were run separately for lakes with pH 6; these are most relevant for pH inference in acidic lakes. The best regressions (N: taxa & 1 PC taxa) have r2 0.69–0.91 and Se 0.24–0.31 pH units, the worst (NE: log alpha) have r2 0.27–0.57 and Se 0.51. In all cases, errors for NE are greater than N, partly due to greater diversity of NE lakes. Regressions based on pH groups (directly & by indices) have smaller r2 and larger Se than those based on taxa and 1 taxa. The Index Alpha is least useful because its requirement for alkaline diatom units is unsatisfied at many acidic lakes. Regressions based on taxa may give erratic pH inferences due to sensitivity to unusual frequencies of individual taxa; this effect is reduced by using 1 PC taxa. Four regressions based on pH 6 lakes were used for inferring pH in a 210Pb dated core from Nedre Målmesvatn, N (now pH 4.6). There is good agreement among three of the four (not for the regression based directly on taxa) that there has been a decrease of ca. 0.6 pH units starting in the late 1800's.  相似文献   

18.
Most Ethiopian lakes are parts of closed drainage systems and collectively form an extensive salinity series, here treated comparatively for geographical, chemical and algal characteristics. Chemical data are presented for 28 lakes and numerous inflows, including original analyses for 15 lakes, in which total ionic concentration and electrical conductivity vary over 4 orders of magnitude. The principal determinant of a lake's position in the series is the open or closed nature of its individual drainage. At present there are three major closed systems (Awash R. — Afar drainage, northern rift lakes, southern rift lakes), numerous crater lakes with seepage -in and -out, and two cryptodepressions with marine inputs. Salinity is primarily determined by evaporative concentration, enhanced in lakes associated with past marine influence or recent volcanic activity by readily soluble materials in the catchment, and by some thermal-reflux pathways. However, anomalously dilute closed lakes exist, indicative of other processes of solute loss (e.g. past basin overflow, reverse weathering, seepage-out).There are strong positive correlations between increasing salinity and the concentrations of Na+, alkalinity and Cl-. The last is used, in conjunction with other analyses of atmospheric precipitation, to estimate the marine and denudative contributions and the evaporative concentration factor, and to distinguish trends of ionic species during evaporative concentration. With several exceptions, affected by past penetration of sea water into the Danakil and L. Assal cryptodepressions, the most saline lakes are soda lakes with HCO3 - + CO inf3 sup2- and Na+ predominant and Ca2+ and Mg2+ largely eliminated. Soluble reactive silicate and phosphate tend to increase in concentration along the salinity series, but the unknown dynamics of algal growth are likely to introduce variance. Concentrations in some lakes are extremely high, e.g. > 40 mg SiO2 l-1 and > 1 mg PO4-P l-1.Phytoplankters recorded from individual lakes are tabulated and where available the community biomass concentration as chlorophyll a is given. Lakes of high salinity-alkalinity are typically very productive in terms of phytoplankton biomass and photosynthetic rates (exceptions: the very deep L. Shala and the very saline L. Abhe), supported in part by relatively high concentrations of phosphorus and inorganic carbon. Many species are of restricted salinity-alkalinity range, being characteristic of waters where levels are low (e.g. desmids, Melosira spp.), intermediate (e.g. Planctonema lauterborni), or high (e.g. Spirulina platensis). Phytoflagellates are most strongly represented in waters with higher concentrations of the bivalent cations Ca2+ and Mg2+. The common cyanophyte Microcystis aeruginosa can tolerate a wide salinity range, here as elsewhere.  相似文献   

19.
20.
N. Ramaiah 《Polar Biology》1995,15(8):547-553
Bacterial biomass and heterotrophic potential (using 14C-labeled glucose, glutamic acid and sodium acetate) of water, ice and sediment microbial populations were studied from different lakes of the Schirmacher Oasis, Antarctica. Epifluorescence counts of total bacteria in these lakes were observed to be lower by a factor when compared to some of the ultraoligotrophic Antarctic lakes. Biovolumes of bacteria from different samples did not show significant variations, suggesting that regulatory factors were oligotrophy and low temperatures rather than microzoan grazing. Microbial uptake rates of glutamic acid were generally the fastest, followed by glucose and/or sodium acetate in the lakewater samples. The mean values of Vmax cell–1 for glutamic acid, sodium acetate and glucose were 3.81, 0.91 and 0.71 pgCh–1. Results of this study are potentially useful in recognizing the relative abundance and activity of limnetic microbial populations in the Schirmacher Oasis during summer — the active period of microbial growth — and for comparing their activities with other ecosystems elsewhere in continental Antarctica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号