首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
5'-AMP-activated protein kinase (AMPK) was recently suggested to regulate pyruvate dehydrogenase (PDH) activity and thus pyruvate entry into the mitochondrion. We aimed to provide evidence for a direct link between AMPK and PDH in resting and metabolically challenged (exercised) skeletal muscle. Compared with rest, treadmill running increased AMPKalpha1 activity in alpha(2)KO mice (90%, P < 0.01) and increased AMPKalpha2 activity in wild-type (WT) mice (110%, P < 0.05), leading to increased AMPKalpha Thr(172) (WT: 40%, alpha(2)KO: 100%, P < 0.01) and ACCbeta Ser(227) phosphorylation (WT: 70%, alpha(2)KO: 210%, P < 0.01). Compared with rest, exercise significantly induced PDH-E(1)alpha site 1 (WT: 20%, alpha(2)KO: 62%, P < 0.01) and site 2 (only alpha(2)KO: 83%, P < 0.01) dephosphorylation and PDH(a) [ approximately 200% in both genotypes (P < 0.01)]. Compared with WT, PDH dephosphorylation and activation was markedly enhanced in the alpha(2)KO mice both at rest and during exercise. The increased PDH(a) activity during exercise was associated with elevated glycolytic flux, and muscles from the alpha(2)KO mice displayed marked lactate accumulation and deranged energy homeostasis. Whereas mitochondrial DNA content was normal, the expression of several mitochondrial proteins was significantly decreased in muscle of alpha(2)KO mice. In isolated resting EDL muscles, activation of AMPK signaling by AICAR did not change PDH-E(1)alpha phosphorylation in either genotype. PDH is activated in mouse skeletal muscle in response to exercise and is independent of AMPKalpha2 expression. During exercise, alpha(2)KO muscles display deranged energy homeostasis despite enhanced glycolytic flux and PDH(a) activity. This may be linked to decreased mitochondrial oxidative capacity.  相似文献   

2.
Rosiglitazone (RSG) is an insulin-sensitizing thiazolidinedione (TZD) that exerts peroxisome proliferator-activated receptor-gamma (PPARgamma)-dependent and -independent effects. We tested the hypothesis that part of the insulin-sensitizing effect of RSG is mediated through the action of AMP-activated protein kinase (AMPK). First, we determined the effect of acute (30-60 min) incubation of L6 myotubes with RSG on AMPK regulation and palmitate oxidation. Compared with control (DMSO), 200 microM RSG increased (P < 0.05) AMPKalpha1 activity and phosphorylation of AMPK (Thr172). In addition, acetyl-CoA carboxylase (Ser218) phosphorylation and palmitate oxidation were increased (P < 0.05) in these cells. To investigate the effects of chronic RSG treatment on AMPK regulation in skeletal muscle in vivo, obese Zucker rats were randomly allocated into two experimental groups: control and RSG. Lean Zucker rats were treated with vehicle and acted as a control group for obese Zucker rats. Rats were dosed daily for 6 wk with either vehicle (0.5% carboxymethylcellulose, 100 microl/100 g body mass), or 3 mg/kg RSG. AMPKalpha1 activity was similar in muscle from lean and obese animals and was unaffected by RSG treatment. AMPKalpha2 activity was approximately 25% lower in obese vs. lean animals (P < 0.05) but was normalized to control values after RSG treatment. ACC phosphorylation was decreased with obesity (P < 0.05) but restored to the level of lean controls with RSG treatment. Our data demonstrate that RSG restores AMPK signaling in skeletal muscle of insulin-resistant obese Zucker rats.  相似文献   

3.
Skeletal muscle hormone-sensitive lipase (HSL) activity is increased by contractions and increases in blood epinephrine (EPI) concentrations and cyclic AMP activation of the adrenergic pathway during prolonged exercise. To determine the importance of hormonal stimulation of HSL activity during the onset of moderate- and high-intensity exercise, nine men [age 24.3 +/- 1.2 yr, 80.8 +/- 5.0 kg, peak oxygen consumption (VO2 peak) 43.9 +/- 3.6 ml x kg(-1) x min(-1)] cycled for 1 min at approximately 65% VO2 peak, rested for 60 min, and cycled at approximately 90% VO2 peak for 1 min. Skeletal muscle biopsies were taken pre- and postexercise, and arterial blood was sampled throughout exercise. Arterial EPI increased (P < 0.05) postexercise at 65% (0.45 +/- 0.10 to 0.78 +/- 0.27 nM) and 90% VO2 peak (0.57 +/- 0.34 to 1.09 +/- 0.50 nM). HSL activity increased (P < 0.05) following 1 min of exercise at 65% VO2 peak [1.05 +/- 0.39 to 1.78 +/- 0.54 mmol x min(-1) x kg dry muscle (dm)(-1)] and 90% VO2 peak (1.07 +/- 0.24 to 1.91 +/- 0.62 mmol x min(-1) x kg dm(-1)). Cyclic AMP content also increased (P < 0.05) at both exercise intensities (65%: 1.52 +/- 0.67 to 2.75 +/- 1.12, 90%: 1.85 +/- 0.65 to 2.64 +/- 0.93 micromol/kg dm). HSL Ser660 phosphorylation (approximately 55% increase) and ERK1/2 phosphorylation ( approximately 33% increase) were augmented following exercise at both intensities, whereas HSL Ser563 and Ser565 phosphorylation were not different from rest. The results indicate that increases in arterial EPI concentration during the onset of moderate- and high-intensity exercise increase cyclic AMP content, which results in the phosphorylation of HSL Ser660. This adrenergic stimulation contributes to the increase in HSL activity that occurs in human skeletal muscle in the first minute of exercise at 65% and 90% VO2 peak.  相似文献   

4.
During prolonged, low intensity exercise, the type of substrate utilized varies with time. If 5' AMP-activated protein kinase (AMPK) regulates muscle metabolism during exercise, signaling through AMPK would be expected to change in concordance with changes in substrate utilization. Six healthy, young males cycled (approximately 45% VO(2peak)) until exhaustion (approximately 3.5h). During exercise, leg glucose uptake and rate of glycogenolysis gradually decreased whereas free fatty acid uptake gradually increased. In the thigh muscle, the alpha AMPK subunits became progressively more phosphorylated on Thr(172) during exercise eliciting a parallel increase in alpha2 but not alpha1 AMPK activity. In contrast, after 1h of exercise, Ser(221) phosphorylation of acetyl-CoA carboxylase-beta (ACCbeta) peaked at 1h of exercise and returned to resting levels at exhaustion. Protein expression of alpha2 AMPK, alpha1 AMPK or ACCbeta did not change with time. These data suggest that AMPK signaling is not a key regulatory system of muscle substrate combustion during prolonged exercise and that marked activation of AMPK via phosphorylation is not sufficient to maintain an elevated ACCbeta Ser(221) phosphorylation during prolonged exercise.  相似文献   

5.
Phospholemman (PLM, FXYD1) is a partner protein and regulator of the Na(+)-K(+)-ATPase (Na(+)-K(+) pump). We explored the impact of acute and short-term training exercise on PLM physiology in human skeletal muscle. A group of moderately trained males (n = 8) performed a 1-h acute bout of exercise by utilizing a one-legged cycling protocol. Muscle biopsies were taken from vastus lateralis at 0 and 63 min (non-exercised leg) and 30 and 60 min (exercised leg). In a group of sedentary males (n = 9), we determined the effect of a 10-day intense aerobic cycle training on Na(+)-K(+)-ATPase subunit expression, PLM phosphorylation, and total PLM expression as well as PLM phosphorylation in response to acute exercise (1 h at ~72% Vo(2peak)). Biopsies were taken at rest, immediately following, and 3 h after an acute exercise bout before and at the conclusion of the 10-day training study. PLM phosphorylation was increased both at Ser(63) and Ser(68) immediately after acute exercise (75%, P < 0.05, and 30%, P < 0.05, respectively). Short-term training had no adaptive effect on PLM phosphorylation at Ser(63) and Ser(68), nor was the total amount of PLM altered posttraining. The protein expressions of α(1)-, α(2)-,and β(1)-subunits of Na(+)-K(+)-ATPase were increased after training (113%, P < 0.05, 49%, P < 0.05, and 27%, P < 0.05, respectively). Whereas an acute bout of exercise increased the phosphorylation of PKCα/βII on Thr(638/641) pre- and posttraining, phosphorylation of PKCζ/λ on Thr(403/410) was increased in response to acute exercise only after the 10-day training. In conclusion, we show that only acute exercise, and not short-term training, increases phosphorylation of PLM on Ser(63) and Ser(68), and data from one-legged cycling indicate that this effect of exercise on PLM phosphorylation is not due to systemic factors. Our results provide evidence that phosphorylation of PLM may play a role in the acute regulation of the Na(+)-K(+)-ATPase response to exercise.  相似文献   

6.
The purpose of this study was to evaluatethe hypotheses that accumulation of hydrogen ions and/or inorganicphosphate (Pi) in skeletal muscle increases with repeated bouts ofisotonic exercise. 31P-Magnetic resonance spectroscopy wasused to examine the gastrocnemius muscle of seven highly aerobicallytrained females during four bouts of isotonic plantar flexion. Theexercise bouts (EX1-4) of 3 min and 18 swere separated by 3 min and 54 s of complete rest. Muscle ATP did notchange during the four bouts. Phosphocreatine (PCr) degradation duringEX1 (13.3 ± 2.4 mmol/kg wet weight) was higher(P < 0.01) compared with EX3-4(9.7 ± 1.6 and 9.6 ± 1.8 mmol/kg wet weight, respectively).The intramyocellular pH at the end of EX1 (6.87 ± 0.05) was significantly lower (P < 0.001) than thoseof EX2 (6.97 ± 0.02), EX3 (7.02 ± 0.01), and EX4 (7.02 ± 0.02). Total Pi anddiprotonated Pi were significantly higher (P < 0.001)at the end of EX1 (17.3 ± 2.7 and 7.8 ± 1.6 mmol/kg wet weight, respectively) compared with the values at the end of EX3 and EX4. The monoprotonated Pi at the endof EX1 (9.5 ± 1.2 mmol/kg wet weight) was alsosignificantly higher (P < 0.001) than that afterEX4 (7.5 ± 1.1 mmol/kg wet weight). Subjects' ratingof perceived exertion increased (P < 0.001) towardexhaustion as the number of exercises progressed (7.1 ± 0.4, EX1; 8.0 ± 0.3, EX2; 8.5 ± 0.3, EX3; and 9.0 ± 0.4, EX4; scale from 0 to10). The present results indicate that human muscle fatigue during repeated intense isotonic exercise is not due to progressive depletion of high energy phosphates nor to intracellular accumulation of hydrogenions, total, mono-, or diprotonated Pi.

  相似文献   

7.
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of intramuscular triacylglycerols (IMTGs), but HSL regulation is poorly understood in skeletal muscle. The present study measured human skeletal muscle HSL activity at rest and during 120 min of cycling at 60% of peak O2 uptake. Several putative HSL regulators were also measured, including muscle long-chain fatty acyl-CoA (LCFA CoA) and free AMP contents and plasma epinephrine and insulin concentrations. HSL activity increased from resting levels by 10 min of exercise (from 2.09 +/- 0.19 to 2.56 +/- 0.22 mmol. min-1x kg dry mass-1, P < 0.05), increased further by 60 min (to 3.12 +/- 0.27 mmol x min-1x kg dry mass-1, P < 0.05), and decreased to near-resting rates after 120 min of cycling. Skeletal muscle LCFA CoA increased (P < 0.05) above rest by 60 min (from 15.9 +/- 3.0 to 50.4 +/- 7.9 micromol/kg dry mass) and increased further by 120 min. Estimated free AMP increased (P < 0.05) from rest to 60 min and was approximately 20-fold greater than that at rest by 120 min. Epinephrine was increased above rest (P < 0.05) at 60 (1.47 +/- 0.15 nM) and 120 min (4.87 +/- 0.76 nM) of exercise. Insulin concentrations decreased rapidly and were lower than resting levels by 10 min and continued to decrease throughout exercise. In summary, HSL activity was increased from resting levels by 10 min, increased further by 60 min, and decreased to near-resting values by 120 min. The increased HSL activity at 60 min was associated with the stimulating effect of increased epinephrine and decreased insulin levels. After 120 min, the decreased HSL activity was associated with the proposed inhibitory effects of increased free AMP. The accumulation of LCFA CoA in the 2nd h of exercise may also have reduced the flux through HSL and accounted for the reduction in IMTG utilization previously observed late in prolonged exercise.  相似文献   

8.
Women have been shown to use more intramuscular triacylglycerol (IMTG) during exercise than men. To investigate whether this could be due to sex-specific regulation of hormone-sensitive lipase (HSL) and to use sex comparison as a model to gain further insight into HSL regulation, nine women and eight men performed bicycle exercise (90 min, 60% Vo(2peak)), and skeletal muscle HSL expression, phosphorylation, and activity were determined. Supporting previous findings, basal IMTG content (P < 0.001) and net IMTG decrease during exercise (P < 0.01) were higher in women than in men and correlated significantly (r = 0.72, P = 0.001). Muscle HSL mRNA (80%, P = 0.11) and protein content (50%, P < 0.05) were higher in women than in men. HSL total activity increased during exercise (47%, P < 0.05) but did not differ between sexes. Accordingly, HSL specific activity (HSL activity per HSL protein content) increased during exercise (62%, P < 0.05) and was generally higher in men than in women (82%, P < 0.05). A similar pattern was observed for HSL Ser(659) phosphorylation, suggesting a role in regulation of HSL activity. Likewise, plasma epinephrine increased during exercise (P < 0.05) and was higher in men than in women during the end of the exercise bout (P < 0.05). We conclude that, although HSL expression and Ser(659) phosphorylation in skeletal muscle during exercise is sex specific, total muscle HSL activity measured in vitro was similar between sexes. The higher basal IMTG content in women compared with men is therefore the best candidate to explain the higher IMTG net hydrolysis during exercise in women.  相似文献   

9.
Eight healthy men cycled at a work load corresponding to approximately 70% of maximal O2 uptake (VO2max) to fatigue (exercise I). Exercise to fatigue at the same work load was repeated after 75 min of rest (exercise II). Exercise duration averaged 65 and 21 min for exercise I and II, respectively. Muscle (quadriceps femoris) content of glycogen decreased from 492 +/- 27 to 92 +/- 20 (SE) mmol/kg dry wt and from 148 +/- 17 to 56 +/- 17 (SE) mmol/kg dry wt during exercise I and II, respectively. Muscle and blood lactate were only moderately increased during exercise. The total adenine nucleotide pool (TAN = ATP + ADP + AMP) decreased and inosine 5'-monophosphate (IMP) increased in the working muscle during both exercise I (P less than 0.001) and II (P less than 0.01). Muscle content of ammonia (NH3) increased four- and eight-fold during exercise I and II, respectively. The working legs released NH3, and plasma NH3 increased progressively during exercise. The release of NH3 at the end of exercise II was fivefold higher than that at the same time point in exercise I (P less than 0.001, exercise I vs. II). It is concluded that submaximal exercise to fatigue results in a breakdown of the TAN in the working muscle through deamination of AMP to IMP and NH3. The relatively low lactate levels demonstrate that acidosis is not a necessary prerequisite for activation of AMP deaminase. It is suggested that the higher average rate of AMP deamination during exercise II vs. exercise I is due to a relative impairment of ATP resynthesis caused by the low muscle glycogen level.  相似文献   

10.
11.
In recovery from exercise, phosphocreatine resynthesis results in the net generation of protons, while the net efflux of protons restores pH to resting values. Because proton efflux rate declines as pH increases, it appears to have an approximately linear pH-dependence. We set out to examine this in detail using recovery data from human calf muscle. Proton efflux rates were calculated from changes in pH and phosphocreatine concentration, measured by 31P magnetic resonance spectroscopy, after incremental dynamic exercise to exhaustion. Results were collected post hoc into five groups on the basis of end-exercise pH. Proton efflux rates declined approximately exponentially with time. These were rather similar in all groups, even when pH changes were small, so that the apparent rate constant (the ratio of efflux rate to pH change) varied widely. However, all groups showed a consistent pattern of decrease with time; the halftimes of both proton efflux rate and the apparent rate constant were longer at lower pH. At each time-point, proton efflux rates showed a significant pH-dependence [slope 17 (3) mmol · l−1 · min−1 · pH unit−1 at the start of recovery, mean (SEM)], but also a significant intercept at resting pH [16 (3) mmol · l−1 · min−1 at the start of recovery]. The intercept and the slope both decreased with time, with halftimes of 0.37 (0.06) and 1.4 (0.4) min, respectively. We conclude that over a wide range of end-exercise pH, net proton efflux during recovery comprises pH-dependent and pH-independent components, both of which decline with time. Comparison with other data in the literature suggests that lactate/proton cotransport can be only a small component of this initial recovery proton efflux. Accepted: 5 May 1997  相似文献   

12.
13.
Prolonged moderate-intensity exercise is characterized by a progressive reduction in carbohydrate oxidation and concomitant increase in fat oxidation. Pyruvate dehydrogenase (PDH) controls the entry of pyruvate into oxidative pathways and is a rate-limiting enzyme for carbohydrate metabolism. PDH is controlled by the activities of a kinase (PDK, inhibitory) and phosphatase (stimulatory). To test the hypothesis that increased PDK activity was associated with decreased PDH activity and carbohydrate oxidation during an acute exercise bout, seven recreationally active men completed 4 h of cycle exercise at 55% peak oxygen consumption. Muscle samples were obtained before and at 10 min and 4 h of exercise for the measurement of PDH activity and the extraction of intact mitochondria for the measurements of PDK activity and PDK-2 and PDK-4 protein expression. Carbohydrate oxidation was reduced (P < 0.05) with exercise duration. Muscle glycogen content was lower (P < or = 0.05) at 4 h compared with rest and there was no change in muscle pyruvate content from 10 to 240 min during exercise (10 min: 0.28 +/- 0.05; 240 min: 0.35 +/- 0.09 mmol/kg dry muscle). PDH activity increased (P < 0.05) above resting values at 10 min (2.86 +/- 0.26 mmol.min(-1).kg wet muscle(-1)), but was lower than 10 min after 4 h (2.23 +/- 0.24 mmol.min(-1).kg wet muscle(-1)) of exercise. PDK-2 and PDK-4 protein expression was not different from rest at 10 min and 4 h of exercise. PDK activity at rest averaged 0.081 +/- 0.016 min(-1), was similar at 10 min, and increased (P < 0.05) to 0.189 +/- 0.013 min(-1) at 4 h. Although reduced glycolytic flux may have played a role in decreasing carbohydrate oxidation, the results suggest that increased PDK activity contributed to the reduction in PDH activity and carbohydrate oxidation late in prolonged exercise. The increased PDK activity was independent of changes in intra-mitochondrial effectors, and PDK-2 and PDK-4 protein content, suggesting that it was caused by a change in the specific activity of the existing kinases.  相似文献   

14.
15.
This review focuses on the ammonia and amino acid metabolic responses of active human skeletal muscle, with a particular emphasis on steady-state exercise. Ammonia production in skeletal muscle involves the purine nucleotide cycle and the amino acids glutamate, glutamine, and alanine and probably also includes the branched chain amino acids as well as aspartate. Ammonia production is greatest during prolonged, steady state exercise that requires 60-80% VO2max and is associated with glutamine and alanine metabolism. Under these circumstances it is unresolved whether the purine nucleotide cycle (AMP deamination) is active; if so, it must be cycling with no IMP accumulation. It is proposed that under these circumstances the ammonia is produced from slow twitch fibers by the deamination of the branched chain amino acids. The ammonia response can be suppressed by increasing the carbohydrate availability and this may be mediated by altering the availability of the branched chain amino acids. The fate of the ammonia released into the circulation is unresolved, but there is indirect evidence that a considerable portion may be excreted by the lung in expired air.  相似文献   

16.
Regulation of maximal Na(+)-K(+)-ATPase activity in vastus lateralis muscle was investigated in response to prolonged exercise with (G) and without (NG) oral glucose supplements. Fifteen untrained volunteers (14 males and 1 female) with a peak aerobic power (Vo(2)(peak)) of 44.8 +/- 1.9 ml.kg(-1).min(-1); mean +/- SE cycled at approximately 57% Vo(2)(peak) to fatigue during both NG (artificial sweeteners) and G (6.13 +/- 0.09% glucose) in randomized order. Consumption of beverage began at 30 min and continued every 15 min until fatigue. Time to fatigue was increased (P < 0.05) in G compared with NG (137 +/- 7 vs. 115 +/- 6 min). Maximal Na(+)-K(+)-ATPase activity (V(max)) as measured by the 3-O-methylfluorescein phosphatase assay (nmol.mg(-1).h(-1)) was not different between conditions prior to exercise (85.2 +/- 3.3 or 86.0 +/- 3.9), at 30 min (91.4 +/- 4.7 vs. 91.9 +/- 4.1) and at fatigue (92.8 +/- 4.3 vs. 100 +/- 5.0) but was higher (P < 0.05) in G at 90 min (86.7 +/- 4.2 vs. 109 +/- 4.1). Na(+)-K(+)-ATPase content (beta(max)) measured by the vanadate facilitated [(3)H]ouabain-binding technique (pmol/g wet wt) although elevated (P < 0.05) by exercise (0<30, 90, and fatigue) was not different between NG and G. At 60 and 90 min of exercise, blood glucose was higher (P < 0.05) in G compared with NG. The G condition also resulted in higher (P < 0.05) serum insulin at similar time points to glucose and lower (P < 0.05) plasma epinephrine and norepinephrine at 90 min of exercise and at fatigue. These results suggest that G results in an increase in V(max) by mechanisms that are unclear.  相似文献   

17.
We tested the hypothesis that IL-6 release from muscle during exercise may be related to muscle activity of 5'-AMP-activated protein kinase (AMPK). Eight healthy, well-trained young men completed two 60-min trials on a bicycle ergometer at 70% of their peak oxygen uptake in either a glycogen-depleted or a glycogen-loaded state. IL-6 was released from the leg already after 10 min of exercise in the glycogen-depleted state, whereas no significant release was observed at any time in the loaded state. Nevertheless, plasma IL-6 increased similarly in the two trials from approximately 0.8 pg/ml at rest to approximately 4.5 pg/ml after 60 min of exercise. Activity of alpha1-AMPK (160%) and alpha2-AMPK (145%) was increased at rest in the glycogen-depleted compared with the loaded situation. During exercise, alpha1-AMPK activity did not change from resting levels in both trials, whereas alpha2-AMPK activity increased only in the glycogen-depleted state. After 60 min of exercise in the glycogen-depleted state, individual values of alpha2-AMPK activity correlated significantly (r = 0.87, P < 0.006) with individual values of IL-6 release as well as with average IL-6 release over the entire 60 min (r = 0.86, P < 0.006). The present data are compatible with a role for AMPK in IL-6 release during exercise or a role for IL-6 in activating AMPK. Alternatively, both AMPK and IL-6 are independent sensors of a low muscle glycogen concentration during exercise. In addition, leg release of IL-6 cannot alone explain the increase in plasma IL-6 during exercise.  相似文献   

18.
The present study examined the acute effects of hypoxia on the regulation of skeletal muscle metabolism at rest and during 15 min of submaximal exercise. Subjects exercised on two occasions for 15 min at 55% of their normoxic maximal oxygen uptake while breathing 11% O(2) (hypoxia) or room air (normoxia). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to hypoxia. In the 1st min of exercise, glycogenolysis was significantly greater in hypoxia compared with normoxia. This small difference in glycogenolysis was associated with a tendency toward a greater concentration of substrate, free P(i), in hypoxia compared with normoxia. Pyruvate dehydrogenase activity (PDH(a)) was lower in hypoxia at 1 min compared with normoxia, resulting in a reduced rate of pyruvate oxidation and a greater lactate accumulation. During the last 14 min of exercise, glycogenolysis was greater in hypoxia despite a lower mole fraction of phosphorylase a. The greater glycogenolytic rate was maintained posttransformationally through significantly higher free [AMP] and [P(i)]. At the end of exercise, PDH(a) was greater in hypoxia compared with normoxia, contributing to a greater rate of pyruvate oxidation. Because of the higher glycogenolytic rate in hypoxia, the rate of pyruvate production continued to exceed the rate of pyruvate oxidation, resulting in significant lactate accumulation in hypoxia compared with no further lactate accumulation in normoxia. Hence, the elevated lactate production associated with hypoxia at the same absolute workload could in part be explained by the effects of hypoxia on the activities of the rate-limiting enzymes, phosphorylase and PDH, which regulate the rates of pyruvate production and pyruvate oxidation, respectively.  相似文献   

19.
Seven subjects cycled to exhaustion [58 +/- 7 (SE) min] at approximately 75% of their maximal oxygen uptake (VO2max). Needle biopsy samples were taken from the quadriceps femoris muscle at rest, after 3, 10, and 40 min of exercise, at exhaustion, and after 10 min of recovery. After 3 min of exercise, a nearly complete transformation of the pyruvate dehydrogenase complex (PDC) into active form had occurred and was maintained throughout the exercise period. The total in vitro activated PDC was unchanged during exercise. The muscle concentration of acetyl-CoA increased from a resting value of 8.4 +/- 1.0 to 31.6 +/- 3.3 mumol/kg dry wt at exhaustion and that of acetylcarnitine from 2.9 +/- 0.7 to 15.6 +/- 1.6 mmol/kg dry wt. This was accompanied by corresponding decreases in reduced CoA (CoASH) from 45.3 +/- 3.1 to 25.9 +/- 3.1 mumol/kg dry wt and in free carnitine from 18.8 +/- 0.7 to 5.7 +/- 0.5 mmol/kg dry wt. Acetyl group accumulation, in the form of acetyl-CoA and acetylcarnitine, was maintained throughout exercise to exhaustion while the glycogen content decreased by 90%. This suggests that availability of acetyl groups was not limiting to exercise performance despite the nearly total depletion of the glycogen store. The increased acetyl-CoA-to-CoASH ratio during exercise caused inhibition of neither the PDC transformation nor the calculated catalytic activity of active PDC.  相似文献   

20.
The present work was aimed at measuring intramuscular oxygen consumption (O(2)) as a function of temperature (T), in human forearm, during rest and aerobic isometric exercise (4% of the maximal voluntary contraction, MVC). Based upon results from in vitro experiments performed on isolated mitochondria of animal species, it was hypothesised that, during isometric exercise, the O(2)-T curve should display a maximum for some 'optimal' T. Intramuscular T and measurements were performed using a combined deep body temperature/near infrared probe during muscle cooling. At rest, O(2) increased non-linearly and monotonically as a function of T (n=8). O(2) increased approximately 2 times when going from 26 to 36 degrees C. A log(O(2))-T plot or a log(O(2))-1/T did not linearise the data. During isometric contraction, O(2) values at 26.8+/-0.6, 28.6+/-0.9, 31.9+/-0.9 and 35.9+/-0.9 degrees C were 3.04+/-1.26, 7.60+/-1.64, 4.43+/-1.95, and 6.64+/-1.37 micromol 100 g(-1) min(-1), respectively (n=6). The O(2) value at 28.6 degrees C was significantly higher (P<0.05) than that at 26.8 and 31.9 degrees C. The 'sudden' O(2) change at 28.6 degrees C is compatible with the phenomenon observed at the mitochondrial level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号