首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To determine the role of endothelin-1 (ET-1) in the upregulation of atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) observed in deoxycorticosterone acetate (DOCA)-salt hypertension, the selective ET-1 type-A receptor (ET(A)) antagonist ABT-627 was chronically administered to normal controls and hypertensive rats. Chronic ET(A) blockade in DOCA-salt-treated rats prevented the increase in blood pressure and circulating natriuretic protein (NP) levels and partially prevented left ventricular hypertrophy. The changes observed in NP gene expression in the atria were not affected by ABT-627. In the ventricles, ABT-627 reduced NP gene expression. Rats receiving the ET(A) antagonist alone showed reduced left ventricular NP gene expression. ABT-627 did not affect ventricular collagen III gene expression but enhanced left ventricular alpha-myosin heavy chain expression. These findings suggest that in vivo, ventricular but not atrial NP production is regulated by ET-1. This difference in response between atrial and ventricular NP gene expression to ET(A) receptor blockade is similar to that observed by us after applying angiotensin-converting enzyme inhibitors in other hypertensive models. In general therefore, atrial NP gene expression may not be as sensitive to the endocrine environment as is ventricular NP gene expression.  相似文献   

2.
3.
Locally released endothelin (ET)-1 has been recently identified as an important mediator of cardiac hypertrophy. It is still unclear, however, which primary stimulus specifically activates ET-dependent signaling pathways. We therefore examined in adult rats (n = 51) the effects of a selective ET(A) receptor antagonist in experimental models of cardiac hypertrophy, in which myocardial growth is predominantly initiated by a single primary stimulus. Rats were exposed to mechanical overload (ascending aortic stenosis), increased levels of circulating ANG II (ANG II infusion combined with hydralazine), or adrenergic stimulation (infusion of norepinephrine in a subpressor dose) for 7 days. All experimental treatments significantly increased left ventricular weight/body weight ratios compared with untreated rats, whereas systolic left ventricular peak pressure was increased only after ascending aortic stenosis. ET(A) receptor blockade exclusively reduced norepinephrine-induced cardiac hypertrophy and atrial natriuretic peptide gene expression. Blood pressure levels and heart rates remained unaffected during ET(A) receptor blockade in all experimental groups. These data indicate that in rat left ventricle, the ET-dependent signaling pathway leading to early development of cardiac hypertrophy and fetal gene expression is primarily activated by norepinephrine.  相似文献   

4.
目的检测新基因C10orf97是否参与压力超负荷型心肌肥厚病程。方法通过缩窄大鼠胸主动脉横支构建压力超负荷诱导的心肌肥厚模型,在缩窄手术后的连续时间点应用血流动力学检测评价心室重构和心功能,应用实时荧光定量PCR法检测心肌肥厚标志基因心房利钠肽和C10orf97的mRNA表达。结果主动脉缩窄手术后,大鼠心脏显著肥厚,心脏体重比逐渐增加,心功能先受损后代偿性增强。心房利钠肽表达显著上调,在缩窄后第15天升高为假手术组40倍。C10orf97基因的表达在缩窄后第2天即显著上调为假手术组的2倍,在第4天降低,随后逐渐上升,第15天时表达量升高为假手术组的3倍。结论C10orf97基因参与了压力超负荷引起的心肌肥厚病程。  相似文献   

5.
Endothelin-1 (ET-1) has been implicated in hypertension, heart failure, atherosclerosis, and pulmonary hypertension. In all these conditions, plasma immunoreactive ET-1 levels are elevated, and tissue ET-1 expression is increased. Clinical trials have demonstrated potentially important benefits of ET antagonism among patients with essential hypertension, pulmonary hypertension, and heart failure. It is unknown whether ET antagonism affects the production of ET-1 in stroke-prone spontaneously hypertensive rat (SHRSP) heart at the typical hypertensive stage. The objective of this study was to investigate the effects of ET blockade on the expression levels of plasma and cardiac ET-1 in SHRSPs. SHRSPs were treated for 3 months with SB209670 (ET(A)/ET(B) dual receptor antagonist) or with saline (vehicle) commencing at the prehypertensive stage (age 6 weeks). Plasma and left ventricular ET-1 peptide levels were measured using enzyme-linked immunoabsorbent assay. Compared with age-matched control Wistar-Kyoto rats, peptide levels of ET-1 were significantly upregulated in vehicle-treated SHRSP heart; this upregulation was reversed by long-term ET antagonism. Plasma ET-1 levels were also significantly increased in vehicle-treated SHRSPs and were normalized by ET antagonism. mRNA expression of preproET-1, which is the source of ET-1 peptide production, was significantly increased in vehicle-treated SHRSP heart and was normalized by ET antagonism. Marked cardiac hypertrophy and fibrosis at the histologic level in SHRSPs were ameliorated by ET antagonism, and left ventricular hypertrophy as seen on echocardiography in SHRSPs was suppressed by ET blockade. After ET antagonism, systolic blood pressures were reduced in SHRSPs; diastolic blood pressures were unchanged. The reversal effect of the upregulated ET system in SHRSP heart by ET antagonism might be independent of blood pressure change. By suppressing the upregulated ET system, ET antagonism might be beneficial in arresting cardiac remodeling.  相似文献   

6.
Endothelin (ET)-1 contributes to regulation of pulmonary vascular tone and structure in the normal ovine fetus and in models of perinatal pulmonary hypertension. The hemodynamic effects of ET-1 are due to activation of its receptors. The ET(A) receptor mediates vasoconstriction and smooth muscle cell proliferation, whereas the ET(B) receptor mediates vasodilation. In a lamb model of chronic intrauterine pulmonary hypertension, ET(B) receptor activity and gene expression are decreased. To determine whether prolonged ET(B) receptor blockade causes pulmonary hypertension, we studied the hemodynamic effects of selective ET(B) receptor blockade with BQ-788. Animals were treated with an infusion of either BQ-788 or vehicle for 7 days. Prolonged BQ-788 treatment increased pulmonary arterial pressure and pulmonary vascular resistance (P < 0.05). The pulmonary vasodilator response to sarafotoxin 6c, a selective ET(B) receptor agonist, was attenuated after 7 days of BQ-788 treatment, demonstrating pharmacological blockade of the ET(B) receptor. Animals treated with BQ-788 had greater right ventricular hypertrophy and muscularization of small pulmonary arteries (P < 0. 05). Lung ET-1 levels were threefold higher in the animals treated with BQ-788 (P < 0.05). We conclude that prolonged selective ET(B) receptor blockade causes severe pulmonary hypertension and pulmonary vascular remodeling in the late-gestation ovine fetus.  相似文献   

7.
Both atrial (ANP) and brain (BNP) natriuretic peptide affect development of cardiac hypertrophy and fibrosis via binding to natriuretic peptide receptor (NPR)-A in the heart. A putative clearance receptor, NPR-C, is believed to regulate cardiac levels of ANP and BNP. The renin-angiotensin system also affects cardiac hypertrophy and fibrosis. In this study we examined the expression of genes for the NPRs in rats with pressure-overload cardiac hypertrophy. The ANG II type 1 receptor was blocked with losartan (10 mg.kg(-1).day(-1)) to investigate a possible role of the renin-angiotensin system in regulation of natriuretic peptide and NPR gene expression. The ascending aorta was banded in 84 rats during Hypnorm/Dormicum-isoflurane anesthesia; after 4 wk the rats were randomized to treatment with losartan or placebo. The left ventricle of the heart was removed 1, 2, or 4 wk later. Aortic banding increased left ventricular expression of NPR-A and NPR-C mRNA by 110% (P < 0.001) and 520% (P < 0.01), respectively, after 8 wk; as expected, it also increased the expression of ANP and BNP mRNAs. Losartan induced a slight reduction of left ventricular weight but did not affect the expression of mRNAs for the natriuretic peptides or their receptors. Although increased gene expression does not necessarily convey a higher concentration of the protein, the data suggest that pressure overload is accompanied by upregulation of not only ANP and BNP but also their receptors NPR-A and NPR-C in the left ventricle.  相似文献   

8.
9.
Distension of the atrial wall has been proposed as a signal for the increased release of atrial natriuretic factor (ANF) from atrial myocytes in response to perceived volume overload. To determine whether pressure changes resulting from hypertension in the pulmonary circulation may stimulate release of ANF, rats were exposed to chronic hypobaric hypoxia for 3 or 21 days and the ANF concentration in the atria and plasma were determined by specific radioimmunoassay. Exposure to chronic hypoxia resulted in significant increases in hematocrit at both 3 (p less than 0.025) and 21 days (p less than 0.005) and in the development of right ventricular hypertrophy (RVH) expressed as the ratio of the weight of the right ventricle to the weight of the left ventricle and septum (RV/LV+S) at both 3 (RV/LV+S = 0.278 +/- 0.005) and 21 days (RV/LV+S = 0.536 +/- 0.021). After 21 days, left atrial (LA) ANF content was significantly increased in hypoxic rats compared to controls (508 +/- 70 ng/mg tissue vs 302 +/- 37 ng/mg), while right atrial (RA) ANF content was significantly reduced (440 +/- 45 vs 601 +/- 58 ng/mg). At this time, plasma ANF concentration was significantly elevated compared to controls (238 +/- 107 pg/ml vs 101 +/- 10 pg/ml). These results suggest that the development of pulmonary hypertension following chronic hypobaric exposure induces altered atrial ANF content and increased plasma ANF concentration as a result of altered distension of the atrial wall.  相似文献   

10.
The 16 kDa adipokine leptin has been shown to exert direct hypertrophic effects on cultured cardiomyocytes although its role as an endogenous contributor to postinfarction remodeling and heart failure has not been determined. We therefore investigated the effect of leptin receptor blockade in vivo on hemodynamic function and cardiac hypertrophy following coronary artery ligation (CAL). Cardiac function and biochemical parameters were measured in rats subjected to 7 or 28 days of left main CAL in the presence and absence of a leptin receptor antibody. Animals subjected to an identical treatment in which the artery was not tied served as sham-operated controls. CAL produced myocardial hypertrophy, which was most pronounced 28 days postinfarction as demonstrated by increases in both left ventricular weight-to-body weight ratio and atrial natriuretic peptide gene expression, both of which were abrogated by leptin receptor antagonism. Leptin receptor blockade also significantly improved left ventricular systolic function, attenuated the increased left ventricular end-diastolic pressure, and reduced the expression of genes associated with extracellular matrix remodeling 28 days following CAL. In conclusion, the ability of a leptin receptor-neutralizing antibody to improve cardiac function offers evidence that endogenous leptin contributes to cardiac hypertrophy following CAL. The possibility exists that targeting the myocardial leptin receptor represents a viable and novel approach toward attenuating postinfarction remodeling.  相似文献   

11.
Atrial natriuretic factor (ANF) is a 28-amino acid peptide hormone with potent natriuretic, diuretic and vasodilator properties. Isolation and DNA sequence analysis of rat and human cDNA clones revealed that ANF is synthesized from a 126-amino acid precursor which is highly conserved in both species. Southern blot analysis indicated that the ANF gene is present in a single copy per haploid genome. Both human and rat ANF genes were isolated and showed a similar structural organization which consisted of three exons and two introns. The ANF gene was localized to the short arm of human chromosome 1 and mouse chromosome 4. While atria are the major site of expression of the ANF gene in adult heart, other tissues like ventricles, lung, anterior pituitary, hypothalamus and adrenal synthesize ANF albeit to a much lower extent. In ventricles, ANF mRNA levels are 150 times lower than in atria. However, in cardiac hypertrophy or in congestive heart failure, ventricular ANF mRNA and peptide levels are dramatically (100-fold) increased both in animal models and in humans. This suggests that ventricles are a major site of ANF gene expression in certain pathophysiological conditions and that ANF is not an exclusively atrial peptide as was originally thought.  相似文献   

12.
Wu ZJ  Jin W  Zhang FR  Liu Y 《遗传》2012,34(2):127-133
利钠肽家族是一组由心肌细胞分泌的激素,主要包括A型、B型和C型利钠肽,具有相似的基因结构和生理学效应,可对心血管系统产生血压调节、抗心肌肥厚、抗心肌纤维化和抗心肌弛缓等保护作用。利钠肽受体A、B和C亦介导多种生理活性,调节心血管稳态。利钠肽受体A选择性结合A型、B型利钠肽。利钠肽受体B结合C型利钠肽。利钠肽受体C结合各型利钠肽,通过受体介导的内化和退化作用清除血液循环中利钠肽。对利钠肽家族及其受体基因单核甘酸多态性及功能研究显示,其与多种心血管疾病(房颤、高血压、心力衰竭等)的易感性相关。利钠肽家族及其受体基因缺失的转基因小鼠表现为心肌肥厚、心肌纤维化,与高血压、心肌病及心力衰竭的发生发展相关。各种导致心肌肥厚和缺血性损伤的刺激均参与利钠肽及其受体基因的表达调控。临床将脑钠肽作为左室功能障碍和心力衰竭失代偿的一个预测指标。静脉注射重组脑钠肽已经成为治疗急性心力衰竭的有效手段。深入了解利钠肽家族基因变异及其信号调控有助于探索心血管疾病的病理生理机制,为临床诊疗开辟新思路。  相似文献   

13.
吴志俊  金玮  张凤如  刘艳 《遗传》2012,34(2):127-133
利钠肽家族是一组由心肌细胞分泌的激素, 主要包括A型、B型和C型利钠肽, 具有相似的基因结构和生理学效应, 可对心血管系统产生血压调节、抗心肌肥厚、抗心肌纤维化和抗心肌弛缓等保护作用。利钠肽受体A、B和C亦介导多种生理活性, 调节心血管稳态。利钠肽受体A选择性结合A型、B型利钠肽。利钠肽受体B结合C型利钠肽。利钠肽受体C结合各型利钠肽, 通过受体介导的内化和退化作用清除血液循环中利钠肽。对利钠肽家族及其受体基因单核甘酸多态性及功能研究显示, 其与多种心血管疾病(房颤、高血压、心力衰竭等)的易感性相关。利钠肽家族及其受体基因缺失的转基因小鼠表现为心肌肥厚、心肌纤维化, 与高血压、心肌病及心力衰竭的发生发展相关。各种导致心肌肥厚和缺血性损伤的刺激均参与利钠肽及其受体基因的表达调控。临床将脑钠肽作为左室功能障碍和心力衰竭失代偿的一个预测指标。静脉注射重组脑钠肽已经成为治疗急性心力衰竭的有效手段。深入了解利钠肽家族基因变异及其信号调控有助于探索心血管疾病的病理生理机制, 为临床诊疗开辟新思路。  相似文献   

14.
The expression of adrenomedullin (AM) and atrial natriuretic factor (ANF) were investigated in the myocardium of a rat model of chronic ischemic heart failure (CHF) compared with sham-operated controls. In addition, human myocardium of patients with end-stage heart failure due to idiopathic dilated cardiomyopathy compared with myocardium of normal subjects (NF) was studied. In CHF, similar AM levels but increased ANF expression were observed in left ventricular myocardium, as assessed by semiquantitative PCR. Functional experiments with freshly excised papillary muscles showed no influence of AM on myocardial contractility. In NF human myocardium, the expression of AM mRNA was threefold higher in atrial compared with ventricular tissue. In analogy, ANF mRNA was increased by approximately 15-fold in atrial tissue. In dilated cardiomyopathy, the expression of AM was significantly increased in right and left ventricles compared with NF. In parallel, ventricular ANF expression was enhanced.  相似文献   

15.
Atrial natriuretic factor (ANF) is present in high concentration in atria but in very low concentration in the ventricles. Under conditions of haemodynamic overload ventricular gene expression may become activated, but it is not clear if ventricular ANF can be released through a regulated or constitutive pathway. The purpose of this study was to determine whether basal and stimulated release of ANF are increased in perinephritic rabbits with mild hypertension. Six rabbits were rendered hypertensive by wrapping both kidneys in cellophane, and six sham-operated rabbits were used as controls. Eight weeks after renal wrapping, mean arterial pressure was approximately 20 mmHg higher in the experimental group. After anaesthesia, the renal-wrapped group had a higher vascular resistance. Right and left atrial wall stress was measured using sonomicrometry. Volume expansion by 30% of blood volume, using donor blood, caused a small increase in right and left atrial diastolic and systolic wall stress but did not significantly increase plasma ANF. Pacing the heart at 6 Hz caused increases in systolic but not diastolic wall stress and caused a significant increase in plasma ANF; the increase was larger after volume expansion. There were no significant differences between the responses of the experimental and control groups. It is concluded that mild hypertension, in the rabbit, does not lead to changes in atrial wall stress or either basal or stimulated release of ANF.  相似文献   

16.
17.
The mammalian heart expresses two closely related natriuretic peptide (NP) hormones, atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP). The excretion of the NPs and the expression of their genes strongly respond to a variety of cardiovascular disorders. NPs act to increase natriuresis and decrease vascular resistance, thereby decreasing blood volume, systemic blood pressure and afterload. Plasma levels of BNP are used as diagnostic and prognostic markers for hypertrophy and heart failure (HF), and both ANF and BNP are widely used in biomedical research to assess the hypertrophic response in cell culture or the development of HF related diseases in animal models. Moreover, ANF and BNP are used as specific markers for the differentiating working myocardium in the developing heart, and the ANF promoter serves as platform to investigate gene regulatory networks during heart development and disease. However, despite decades of research, the mechanisms regulating the NP genes during development and disease are not well understood. Here we review current knowledge on the regulation of expression of the genes for ANF and BNP and their role as biomarkers, and give future directions to identify the in vivo regulatory mechanisms. This article is part of a Special Issue entitled: Heart failure pathogenesis and emerging diagnostic and therapeutic interventions.  相似文献   

18.
We have investigated the level of expression of the atrial natriuretic factor (ANF) gene in the human heart during ontogenic development by determining the concentrations of ANF messenger ribonucleic acid (ANF mRNA), of immunoreactive ANF (IR ANF) and of receptor reactive ANF (RR ANF), in myocardial samples of the various heart chambers. We found the level was high and almost identical in the left and right ventricles in utero. It gradually decreased during ontogenic development to reach the low adult levels, with a more rapid decrease in the right than in the left ventricle after birth. In the atria, ANF gene expression was high as early as the 13th week of gestation, was higher in the right than in the left atrium, and appeared little affected by ontogenic development.  相似文献   

19.
The present study was designed to develop an animal model of hypertension and cardiac hypertrophy associated with obesity in female rats. Furthermore, we studied the involvement of the natriuretic peptide system in the mechanisms of these conditions. Obesity was induced in Wistar rats by a high fat diet and ovariectomy. The rats were divided into four groups: ovariectomized or sham-operated with high-fat diet and ovariectomized or sham-operated with control diet. After 24 weeks of diet, rats were killed, and their tissues were removed. Cardiac atrial natriuretic peptide (ANP), clearance receptor (NPr-C) gene expression was determined by PCR. ANP concentrations were measured in plasma. Ovariectomized fat-fed rats (OF) showed increased body weight, visceral fat depot and blood pressure and decreased sodium excretion compared to other groups. Also, these rats showed higher heart-to-body weight and cell diameters of ventricular cardiomyocytes and lower cardiac ANP mRNA and plasma ANP than the control group. The adipocyte and renal NPr-C mRNA of OF rats were higher than the control group. These data showed that combined ovariectomy and high fat diet elicited obesity, hypertension and cardiac hypertrophy. These results suggest that the impairment of the natriuretic peptide system may be one of the mechanisms involved not only in development of hypertension but also in cardiac hypertrophy associated with obesity in ovariectomized rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号