首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously demonstrated that Copenhagen (COP) and DA inbred rat strains show a wide difference in a test for aerobic treadmill running that correlated positively with isolated cardiac function. The purpose of this study was to test adenosine production as a candidate intermediate phenotype that may explain part of the difference in running and cardiac performance in these genetic models for low and high aerobic capacity. Adenosine production was measured as the activity of soluble 5'-nucleotidase and membrane-bound ecto-5'-nucleotidase in the membrane pellet and supernatant fractions of left and right ventricular muscle and gracilis muscle taken from 10 DA and 10 COP rats. Ecto-5'-nucleotidase activity in the membrane pellet of hearts from both DA and COP accounted for the vast majority of the total tissue adenosine production (>90% in the left ventricle and >80% in the right ventricle). Ecto-5'-nucleotidase activity in the pellet fraction was significantly higher in the left (22.4%) and right (46.1%) ventricles of DA rats compared with COP rats, with no differences in total protein content. There were no significant differences between the strains for 5'-nucleotidase activity in the cardiac supernatant, the gracilis pellet, or the gracilis supernatant. These data support the hypothesis that an increase in cardiac adenosine production may contribute to the greater aerobic running capacity of the DA rats.  相似文献   

2.
The capability of cyclohexylphenol exaprolol of protecting the ischaemic myocardium during ischaemic cardiac arrest was assessed in the isolated working rat heart. Exaprolol added to the perfusion medium in a dose of 10(-7) mol.l-1 only minimally influenced the left ventricular function (reduced the stroke volume by 18.84% and cardiac output by 14.63%). The hearts were subjected to global ischaemia for 75 min at 26 degrees C and subsequently reperfused for 60 min at 37 degrees C. The recovery of left ventricular function following reperfusion, expressed as a percentage of preischaemic functional performance was used as an indicator of the ischaemic tolerance of the heart. The effect of exaprolol on sarcolemmal (Na+ + K+)-, Mg2+- and Ca2+-ATPase activities was also examined. Exaprolol-pretreated hearts revealed better postischaemic recovery of the left ventricular dP/dt max and stroke volume as well as improved efficiency in the transformation of chemical energy to mechanical work. Exaprolol in 10(-4) mol.l-1 concentration significantly stimulated the specific activity of sarcolemmal (Na+ + K+)-ATPase. Possible mechanisms of the salutary effect of exaprolol on the ischaemic heart are discussed.  相似文献   

3.
G protein-coupled receptor kinase-2 and -3 (GRK2 and GRK3) in cardiac myocytes catalyze phosphorylation and desensitization of different G protein-coupled receptors through specificity controlled by their carboxyl-terminal pleckstrin homology domain. Although GRK2 has been extensively investigated, the function of cardiac GRK3 remains unknown. Thus, in this study cardiac function of GRK3 was investigated in transgenic (Tg) mice with cardiac-restricted expression of a competitive inhibitor of GRK3, i.e. the carboxyl-terminal plasma membrane targeting domain of GRK3 (GRK3ct). Cardiac myocytes from Tg-GRK3ct mice displayed significantly enhanced agonist-stimulated alpha(1)-adrenergic receptor-mediated activation of ERK1/2 versus cardiac myocytes from nontransgenic littermate control (NLC) mice consistent with inhibition of GRK3. Tg-GRK3ct mice did not display alterations of cardiac mass or left ventricular dimensions compared with NLC mice. Tail-cuff plethysmography of 3- and 9-month-old mice revealed elevated systolic blood pressure in Tg-GRK3ct mice versus control mice (3-month-old mice, 136.8 +/- 3.6 versus 118.3 +/- 4.7 mm Hg, p < 0.001), an observation confirmed by radiotelemetric recording of blood pressure of conscious, unrestrained mice. Simultaneous recording of left ventricular pressure and volume in vivo by miniaturized conductance micromanometry revealed increased systolic performance with significantly higher stroke volume and stroke work in Tg-GRK3ct mice than in NLC mice. This phenotype was corroborated in electrically paced ex vivo perfused working hearts. However, analysis of left ventricular function ex vivo as a function of increasing filling pressure disclosed significantly reduced (dP/dt)(min) and prolonged time constant of relaxation (tau) in Tg-GRK3ct hearts at elevated supraphysiological filling pressure compared with control hearts. Thus, inhibition of GRK3 apparently reduces tolerance to elevation of preload. In conclusion, inhibition of cardiac GRK3 causes hypertension because of hyperkinetic myocardium and increased cardiac output relying at least partially on cardiac myocyte alpha(1)-adrenergic receptor hyper-responsiveness. The reduced tolerance to elevation of preload may cause impaired ability to withstand pathophysiological mechanisms of heart failure.  相似文献   

4.
Experiments were conducted to determine whether chronic caffeine consumption during early growth and development affected cardiac performance and development of adipose tissue. Dams were fed a nutritionally complete diet with or without the addition of 10 mg/kg caffeine during lactation. After weaning, the pups were maintained on this diet until they were sacrificed at 88 days of age. Body weight at the time of sacrifice was comparable for both groups. The hearts from caffeine-fed animals were significantly (P less than 0.05) larger based on both dry and wet weights although the dry weight/wet weight ratios were similar. Ventricular function curves were generated on each heart using an isolated working heart preparation. The isolated hearts of caffeine-fed rats exhibited a significant reduction in cardiac output, stroke volume, mean aortic pressure, and estimated myocardial work when compared to controls. The rats fed caffeine had greater plasma triglyceride levels with no significant differences in adipocyte size or number in the epididymal and perirenal depots. It is concluded that chronic caffeine intake from birth may alter cardiac function of the offspring.  相似文献   

5.
1. Comparisons of left intraventricular end diastolic and systolic pressures, cardiac output, dP/dt, stroke volume and heart rate were made between the Bio 14.6 cardiomyopathic and F1B normal hamster at 45, 80, 150 and 240 days of age. 2. Comparisons of the ventricular calcium and taurine contents were made between the two strains of hamsters at similar ages. 3. Interstrain comparisons of the 240 day Bio 14.6 with age matched F1B hamsters and intrastrain comparisons with 45 day Bio 14.6 hamsters showed a decreased stroke volume, cardiac output and dP/dt with an increased left intraventricular end diastolic pressure, ventricular weight, ventricular weight/body weight ratio, heart calcium and taurine. 4. Despite the decreased left ventricular systolic pressure and cardiac output in the 80 day and older groups of Bio 14.6 hamsters, no compensatory increase in heart rate was observed.  相似文献   

6.
Protein kinase A (PKA)-dependent phosphorylation is regulated by targeting of PKA to its substrate as a result of binding of regulatory subunit, R, to A-kinase-anchoring proteins (AKAPs). We investigated the effects of disrupting PKA targeting to AKAPs in the heart by expressing the 24-amino acid regulatory subunit RII-binding peptide, Ht31, its inactive analog, Ht31P, or enhanced green fluorescent protein by adenoviral gene transfer into rat hearts in vivo. Ht31 expression resulted in loss of the striated staining pattern of type II PKA (RII), indicating loss of PKA from binding sites on endogenous AKAPs. In the absence of isoproterenol stimulation, Ht31-expressing hearts had decreased +dP/dtmax and -dP/dtmin but no change in left ventricular ejection fraction or stroke volume and decreased end diastolic pressure versus controls. This suggests that cardiac output is unchanged despite decreased +dP/dt and -dP/dt. There was also no difference in PKA phosphorylation of cardiac troponin I (cTnI), phospholamban, or ryanodine receptor (RyR2). Upon isoproterenol infusion, +dP/dtmax and -dP/dtmin did not differ between Ht31 hearts and controls. At higher doses of isoproterenol, left ventricular ejection fraction and stroke volume increased versus isoproterenol-stimulated controls. This occurred in the context of decreased PKA phosphorylation of cTnI, RyR2, and phospholamban versus controls. We previously showed that expression of N-terminal-cleaved cTnI (cTnI-ND) in transgenic mice improves cardiac function. Increased cTnI N-terminal truncation was also observed in Ht31-expressing hearts versus controls. Increased cTnI-ND may help compensate for reduced PKA phosphorylation as occurs in heart failure.  相似文献   

7.
Hearts from rats pretreated either with L-triiodothyronine (T3) or with L-thyroxine (T4) exhibited changed function curve characteristics on the working heart apparatus compared with hearts from vehicle-treated rats. There was no supersensitivity of the hyperthyroid myocardium to the inotropic effect of isoproterenol as estimated by pD2 values. There were significant increases in +dP/dt and -dP/dt in hyperthyroid working hearts over the entire range of the function curve. T3 hearts showed much shorter relaxation times and total contraction times throughout the function curve. T4 hearts showed significantly reduced relaxation times and total contraction times as compared with control at all left atrial filling pressures under 15 cm of water. At high filling pressures T4 heart relaxation times and total contraction times were not different from control, but were however, significantly increased from those of T3 hearts. Area under the left ventricular pressure curve was unchanged by thyroid hormone pretreatment. Heart weight increased about 15% following either T3 or T4 treatment while the increases in (+) or (-) dP/dt and the left ventricular developed pressure (LVDP) were about 20-30%. The increase in cardiac mass certainly played a role in the increased cardiac function. Potency of isoproterenol in hyperthyroid working heart preparations was unchanged from control. The pD2 values, as determined from +dP/dt data, were 8.8 +/- 0.15 for T3-treated hearts, 8.25 +/- 0.40 for T4-treated hearts, and 8.18 +/- 0.12 for euthyroid hearts. While the mechanism(s) for the altered performance of the hyperthyroid working heart are not absolutely known, possible biochemical and physiological changes which may be implicated are discussed.  相似文献   

8.
A prolonged depression of cardiovascular function occurs in males after trauma-hemorrhagic shock (T-H). Although a correlation between increased circulatory IL-6 levels and poor outcome has been reported after T-H, it remains unknown whether T-H increases IL-6 levels locally in cardiomyocytes and whether there is a correlation between altered cardiac function and local IL-6 production after T-H. T-H was induced in normal, castrated (2 wk before T-H), and 17beta-estradiol (E2)-treated (0.5 mg sc, 1 wk before T-H) adult male rats. At 2 h after T-H or sham operation, cardiac output, heart rate, mean arterial pressure, positive and negative first derivative of pressure (+/-dP/dt), stroke volume, and total peripheral resistance were determined. Cardiomyocytes were isolated and divided into two parts: one was used for measurements of intracellular IL-6 levels using fluorescein-activated cell sorting, and the other was used to isolate RNA to determine IL-6 gene expression by quantitative real-time PCR. In addition, cardiac IL-6 protein levels were measured in freshly isolated hearts by Western blotting. Cardiac output, stroke volume, +dP/dt, -dP/dt, and total peripheral resistance were markedly altered after T-H. These parameters, except -dP/dt, improved significantly in the castrated group; however, all these parameters were restored in E2-treated males. Cardiomyocyte IL-6 mRNA expression and intracellular IL-6 production increased after T-H. Cardiac IL-6 protein levels increased after T-H in freshly isolated heart. Castration and E2 treatment attenuated cardiomyocyte intracellular IL-6 levels and cardiac IL-6 protein levels after T-H; however, only E2 treatment attenuated cardiomyocyte IL-6 gene expression. Thus there is an inverse correlation between cardiomyocyte IL-6 levels and cardiac function after T-H. The salutary effects of E2 on cardiac function after T-H may be due in part to decreased IL-6 synthesis in cardiomyocytes.  相似文献   

9.
1. Comparisons of the effects of 4 and 16 weeks of exercise were made on; cardiac output, stroke volume, heart rate, left intraventricular systolic and diastolic pressures, dP/dt, and heart calcium in the Bio 14.6 cardiomyopathic and F1 B hamsters. 2. In the cardiomyopathic hamster the cardiac output, stroke volume, left intraventricular systolic pressure and dP/dt, which were all depressed in the age related sedentary animals, were increased by both periods of exercise. The left intraventricular diastolic pressure which was elevated was likewise decreased by both exercise periods. Only the 16 week exercise period decreased the resting heart rate. 3. In the normal F1 B hamster, both periods of exercise increased the cardiac output and stroke volume while the left intraventricular systolic pressure was decreased. Only the 16 week exercise decreased the resting heart rate and left intraventricular diastolic pressure and increased the left ventricular dP/dt. 4. Both periods of exercise increased the total heart calcium in the Bio 14.6 hamster while the heart calcium in the F1 B was increased only by the 16 week exercise period.  相似文献   

10.
Effects of streptozotocin-induced diabetes (8 weeks) on the performance of perfused hearts from spontaneously hypertensive (SH) rats were compared with effects on normotensive Wistar-Kyoto (WK) and Sprague-Dawley (SD) rat hearts. Diabetes markedly decreased systolic arterial pressure (SAP) of SH rats in vivo but did not affect SAP of either of the normotensive strains. Diabetes also reduced heart size of SH and normotensive rats and reversed absolute left ventricular hypertrophy (wall-to-lumen ratios and left-to-right ventricular weight ratios) of SH rats. Heart perfusion at the end of the 8-week period revealed that diabetes (i) reduced hydraulic work at high pressure loads and efficiency of contraction (work/mu LO2 consumed) of SH rat hearts but not of WK or SD hearts, and (ii) depressed left ventricular pulse pressure development (LVPP) and contractility (LV + dP/dt) of SH hearts more extensively than it reduced these variables in either of the normotensive control groups. Effects of diabetes which were similar in hypertensive and normotensive hearts were reductions in stroke work at high volume loads and depressions in LV-dP/dt. Attendant hypothyroidism probably contributed to the reductions in SAP, heart size, LVPP, LV+ and -dP/dt, and stroke work but not to the decreased efficiency or reversal of hypertrophy of SH rat hearts. Malnutrition of SH rats, like hypothyroidism, also decreased heart size without reversing hypertrophy but had no effect on SAP and only reduced LV-dP/dt. The results show that diabetes reversed hypertrophy and selectively reduced contraction efficiency, contractility, and LVPP of SH hearts, but otherwise the effects of diabetes in hypertensive and normotensive rat strains were similar to each other.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Changes in muscle fiber orientation across the wall of the left ventricle (LV) cause the apex of the heart to turn 10-15 deg in opposition to its base during systole and are believed to increase stroke volume and lower wall stress in healthy hearts. Studies show that cardiac torsion is sensitive to various disease states, which suggests that it may be an important aspect of cardiac function. Modern imaging techniques have sparked renewed interest in cardiac torsion dynamics, but no work has been done to determine whether mechanically augmented apical torsion can be used to restore function to failing hearts. In this report, we discuss the potential advantages of this approach and present evidence that turning the cardiac apex by mechanical means can displace a clinically significant volume of blood from failing hearts. Computational models of normal and reduced-function LVs were created to predict the effects of applied apical torsion on ventricular stroke work and wall stress. These same conditions were reproduced in anesthetized pigs with drug-induced heart failure using a custom apical torsion device programmed to rotate over various angles during cardiac systole. Simulations of applied 90 deg torsion in a prolate spheroidal computational model of a reduced-function pig heart produced significant increases in stroke work (25%) and stroke volume with reduced fiber stress in the epicardial region. These calculations were in substantial agreement with corresponding in vivo measurements. Specifically, the computer model predicted torsion-induced stroke volume increases from 13.1 to 14.4 mL (9.9%) while actual stroke volume in a pig heart of similar size and degree of dysfunction increased from 11.1 to 13.0 mL (17.1%). Likewise, peak LV pressures in the computer model rose from 85 to 95 mm Hg (11.7%) with torsion while maximum ventricular pressures in vivo increased in similar proportion, from 55 to 61 mm Hg (10.9%). These data suggest that: (a) the computer model of apical torsion developed for this work is a fair and accurate predictor of experimental outcomes, and (b) supra-physiologic apical torsion may be a viable means to boost cardiac output while avoiding blood contact that occurs with other assist methods.  相似文献   

12.
Heart rate reduction (HRR) is an important target in the management of patients with chronic stable angina. Most available drugs for HRR, such as β-blockers, have adverse effects, including on cardiac energy substrate metabolism, a well-recognized determinant of cardiac homeostasis. This study aimed at 1) testing whether HRR by ivabradine (IVA) alters substrate metabolism in the healthy normoxic working heart and 2) comparing the effect of IVA with that of the β-blocker metoprolol (METO). This was assessed using our well-established model of ex vivo mouse heart perfusion in the working mode, which enables concomitant evaluation of myocardial contractility and metabolic fluxes using (13)C-labeled substrates. Hearts were perfused in the absence (controls; n = 10) or presence of IVA (n = 10, 3 μM) with or without atrial pacing to abolish HRR in the IVA group. IVA significantly reduced HR (35 ± 5%) and increased stroke volume (39 ± 9%) while maintaining similar cardiac output, contractility, power, and efficiency. Effects of IVA on HR and stroke volume were reversed by atrial pacing. At the metabolic level, IVA did not impact on substrate selection to citrate formation, rates of glycolysis, or tissue levels of high-energy phosphates. In contrast, METO, at concentrations up to 40 μM, decreased markedly cardiac function (flow: 25 ± 6%; stroke volume: 30 ± 10%; contractility: 31 ± 9%) as well as glycolysis (2.9-fold) but marginally affected HR. Collectively, these results demonstrate that IVA selectively reduces HR while preserving energy substrate metabolism of normoxic healthy working mouse hearts perfused ex vivo, a model that mimics to some extent the denervated transplanted heart. Our results provide the impetus for testing selective HRR by IVA on cardiac substrate metabolism in pathological models.  相似文献   

13.
In vitro , perfused, isolated heart preparations were used to determine the effects of a parasitic infection on the performance of the heart. Increase in preload in the uninfected hearts produced an increase in output flow and power, resulting mainly from increase in stroke volume and little change in heart rate. The heart rate of infected hearts (14.3 beats min−1) was slightly, but not significantly, lower than in controls (17.8 beats min−1). The cardiac output of infected hearts was 20–40% of that of the healthy hearts. This reduction will, in turn, lead to reduced oxygen transport to the tissues, and so to a reduction in metabolic scope. It is therefore probable that fish carrying this infection will have low food intakes, low growth rates and low activity levels.  相似文献   

14.
Moderate physical training induced a decrease in arterial blood pressure in fish oil-fed rats as compared to sunflower seed oil-fed rats. The purpose of this study was to determine if these changes were due to modifications of the left ventricular function of the heart. Forty rats were fed a semi-purified diet containing either 10% sunflower seed oil or 10% fish oil (EPAX 3000TG, Pronova). Each dietary group was assigned to two sub-groups, one being constituted by sedentary animals and the other by trained animals. Training was achieved by daily running for 60 minutes at moderate intensity for three weeks. At the end of the training period, the animals were sacrificed and their hearts were immediately perfused according to the working mode. The phospholipid fatty acid composition and parameters of the left ventricular function were determined. Feeding fish oil markedly reduced the proportion of n-6 polyunsaturated fatty acids (PUFA, 18:2 n-6, 20:4 n-6, 22:4 n-6 and 22:5 n-6) in cardiac phospholipids. The n-6 PUFA were replaced by n-3 PUFA (mainly docosahexaenoic acid). In sedentary animals, the fluid dynamic (aortic and coronary flow, cardiac output) was not modified by the diet. The heart rate was reduced (-10%) in n-3 PUFA-rich hearts. Physical training did not markedly alter the polyunsaturated fatty acid profile of cardiac phospholipids. Conversely, it reduced the heart rate, aortic flow and cardiac output (-11, -21 and -14%, respectively) at a similar extent in the two dietary groups. In a second set of experiments, the training period was repeated in animals fed a commercially available diet (A103, UAR) which simultaneously provided n-6 and n-3 fatty acids. In these dietary conditions, neither the aortic flow nor the heart rate was decreased by physical exercise. These results suggest that both n-6 and n-3 PUFA in the diet are necessary to ensure a good cardiac adaptation to moderate physical training. Furthermore, the fish oil-induced decrease in arterial blood pressure in trained animals was not related to changes in cardiac contractility, but to a decrease in vascular resistances. Moderate physical training + dietary n-3 PUFA might be used to prevent hypertension and cardiovascular diseases.  相似文献   

15.
We studied the effects of HCI-induced metabolic acidaemia on cardiac output, contractile function, myocardial blood flow, and myocardial oxygen consumption in nine unanaesthetized newborn lambs. Through a left thoracotomy, catheters were placed in the aorta, left atrium and coronary sinus. A pressure transducer was placed in the left ventricle. Three to four days after surgery, we measured cardiac output, dP/dt, left ventricular end diastolic and aortic mean blood pressures, heart rate, aortic and coronary sinus blood oxygen contents, and left ventricular myocardial blood flow during a control period, during metabolic acidaemia, and after the aortic pH was restored to normal. We calculated systemic vascular resistance, myocardial oxygen consumption and left ventricular work. Acidaemia was associated with reduction in cardiac output, maximal dP/dt, and aortic mean blood pressure. Left ventricular end diastolic pressure and systemic vascular resistance increased, and heart rate did not change significantly. The reduction in myocardial blood flow and oxygen consumption was accompanied by fall in cardiac work. Cardiac output returned to control levels after the pH had been normalized but maximal dP/dt was incompletely restored. Myocardial blood flow and oxygen consumption increased beyond control levels. This study demonstrates that HCI-induced metabolic acidaemia in conscious newborn lambs is associated with a reduction in cardiac output which could have been mediated by the reduction in contractile function and/or the increase in systemic vascular resistance. The decreases in myocardial blood flow and oxygen consumption appear to reflect diminished cardiac work. The restoration of a normal cardiac output after normalization of the pH appears to have resulted from the increases in heart rate and left ventricular filling pressures in conjunction with an incomplete restoration of contractile function.  相似文献   

16.
Working rat hearts were perfused with either buffer or with defibrinated, undiluted rat blood dialyzed to remove vasoconstrictor factors. With precautions taken for sterility in the preparation of the perfusate and the apparatus, hearts were obtained which were stable as judged by stroke rate and cardiac output. In these hearts, cardiac output and coronary flow averaged 46.0 and 1.7 ml/g heart per min, respectively. Perfusion with erythrocyte-free buffer depressed cardiac output by 30%, while coronary flow averaged 8.8 ml/g of heart per min. The mean stroke rate of blood-perfused hearts was 300 beats/min but only 240 beats/min during buffer perfusion. In blood-perfused hearts, insulin did not alter stroke rate but significantly lowered coronary flow. The hormone caused a transient increase in cardiac output in hearts perfused with buffer. Insulin did not alter glucose uptake in buffer-perfused hearts but increased lactate release in perfusions with blood. Both serum fatty acids and triacylglycerol fatty acids were significant metabolic fuels in hearts perfused with undiluted blood. The preparation described would appear to be potentially useful for the study of myocardial metabolism in vitro.  相似文献   

17.
The goal of this study was to identifyinbred rat strains that could serve as useful models for exploration ofthe genetic basis of aerobic endurance performance. Six rats of eachgender from 11 different inbred strains were tested for1) maximal running capacity on atreadmill and 2) isolated cardiacperformance. Running performance was estimated from1) duration of the run,2) distance run, and3) vertical work performed. Cardiacoutput, during constant preload and afterload, was taken as a measureof cardiac performance from an isolated working heart preparation. TheCOP rats were the lowest performers and the DA rats were the bestperformers by all estimates of running performance. Across the 11 strains, the distance run correlated positively with isolated cardiacperformance (r = 0.87). Estimates ofperformance were as follows (COP vs. DA strain, respectively): durationof run, 19.9 ± 1.8 vs. 41.5 ± 2.2 min; distance run, 298 ± 30 vs. 840 ± 64 m; vertical work, 15 ± 1.7 vs. 40 ± 4.4 kg/m. These ~2.5-fold differences in running performancebetween the COP and DA suggest that these strains could serve as modelsfor evaluation of the genetic basis of variance in aerobicperformance.

  相似文献   

18.
In pentobarbital-anesthetized mongrel dogs the intravenous actions of 0.50 mg/kg molsidomine on pulmonary artery and left ventricular (LV) end-diastolic pressures and internal heart dimensions (preload), left ventricular systolic and peripheral blood pressures, and total peripheral resistance (afterload), as well as on heart rate, dP/dt, stroke volume, and cardiac output (heart performance) were studied for 2 h. Hemodynamic molsidomine effects were influenced by increasing amounts of intravenously infused dihydroergotamine solution (DHE, 1-64 micrograms X kg-1 X min-1). Molsidomine decreased preload, stroke volume, and cardiac output for over 2 h but decreased ventricular and peripheral pressures for 45 min. Systemic vascular resistance showed a tendency to decrease while heart rate and LV dP/dtmax were not altered. DHE infusion reversed molsidomine effects on the preload and afterload of the heart. The diminished stroke volume was elevated so that cardiac output also increased. Total peripheral resistance increased while heart rate fell in a dose-dependent fashion. The LV dP/dtmax remained unchanged until the highest dose of 64 micrograms X kg-1 X min-1 DHE elevated the isovolumic myocardial contractility. These experiments indicate that DHE can reverse the intravenous molsidomine effects on hemodynamics. Most likely, this is mediated through peripheral vasoconstriction of venous capacitance vessels, thereby affecting molsidomine's action on postcapillary beds of the circulation.  相似文献   

19.
20.
Protein kinase C (PKC) modulates cardiomyocyte function by phosphorylation of intracellular targets including myofilament proteins. Data generated from studies on in vitro heart preparations indicate that PKC phosphorylation of troponin I (TnI), primarily via PKC-epsilon, may slow the rates of cardiac contraction and relaxation (+dP/dt and -dP/dt). To explore this issue in vivo, we employed transgenic mice [mutant TnI (mTnI) mice] in which the major PKC phosphorylation sites on cardiac TnI were mutated by alanine substitutions for Ser(43) and Ser(45) and studied in situ hemodynamics at baseline and increased inotropy. Hearts from mTnI mice exhibited increased contractility, as shown by a 30% greater +dP/dt and 18% greater -dP/dt than FVB hearts, and had a negligible response to isoproterenol compared with FVB mice, in which +dP/dt increased by 33% and -dP/dt increased by 26%. Treatment with phenylephrine and propranolol gave a similar result; FVB mouse hearts demonstrated a 20% increase in developed pressure, whereas mTnI mice showed no response. Back phosphorylation of TnI from mTnI hearts demonstrated that the mutation of the PKC sites was associated with an enhanced PKA-dependent phosphorylation independent of a change in basal cAMP levels. Our results demonstrate the important role that PKC-dependent phosphorylation of TnI has on the modulation of cardiac function under basal as well as augmented states and indicate interdependence of the phosphorylation sites of TnI in hearts beating in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号