首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of the complement cascade with the generation of anaphylatoxins accompanies the inflammatory response elicited by acute myocardial ischemia and reperfusion. Although complement is activated in the interstitium during acute myocardial ischemia, we have studied mechanisms whereby complement might exacerbate ischemia by using a model employing intracoronary injection of C5a in nonischemic hearts. Intracoronary injection of complement component C5a induces transient myocardial ischemia, mediated through the production of the coronary vasoconstrictors thromboxane A2 and peptidoleukotrienes (LTC4, LTD4), and causes sequestration of polymorphonuclear leukocytes (PMN) in the coronary vascular bed. To further investigate the role of the PMN in the C5a-induced vasoconstriction, the left anterior descending coronary artery (LAD) in pigs was perfused at constant pressure and measurements of coronary blood flow, myocardial contractile function (sonomicrometry), arterial/coronary venous blood PMN count, and thromboxane B2 (TxB2) levels were performed. The myocardial response to intracoronary C5a (500 ng) was determined before, during, and after perfusion with blood depleted of PMNs using leukocyte filters (Sepacell R-500, Pall PL-100). In additional animals, the myocardial response to the PMN chemotactic agent, LTB4, and the effects of intracoronary C5a during constant flow perfusion were measured. Control intracoronary injection of C5a decreased flow (41% of baseline) and contractile function (39% of baseline), PMNs were trapped (5.1 x 10(3) cells/microliters), and TxB2 concentration increased in coronary venous blood. The response to C5a during coronary perfusion with arterial blood depleted of PMNs with Sepacell or Pall filters (less than 0.1 x 10(3) cells/microliters) was greatly blunted, with flow and contractile function falling by less than 14 and 8%, respectively, from baseline, and release of TxB2 was greatly attenuated. However, the myocardial ischemia and TxB2 release remained depressed in response to C5a after removal of the filters and perfusion with either arterial blood containing normal levels of PMNs or stored arterial blood never exposed to filters. In contrast, the repeat C5a challenge resulted in equivalent myocardial extraction of PMNs, thus indicating a dissociation of PMN sequestration from the acute ischemic response and release of TxB2. In separate experiments, the intracoronary injection of LTB4 also resulted in a pronounced myocardial extraction of PMNs (8.6 x 10(3) cells/microliters) greater than during C5a, but did not depress coronary flow or function. Perfusion at constant flow greatly diminished the ischemic response to C5a, indicating that vasoconstriction and resultant ischemia is the main cause of the contractile dysfunction. These data indicate that leukocyte filters inhibit the myocardial ischemia and release of TxB2 induced by C5a via mechanisms not related to PMN depletion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Exposure of human polymorphonuclear neutrophils (PMN) to human monocyte derived neutrophil activating factor(s) (NAF) resulted in a concentration-dependent extracellular release of granule constituents. NAF also induced the generation of 5(S),12(R)-dihydroxy-6,14-cis-8,10-trans-eicosatetraenoic acid [Leukotriene B4 (LTB4)] by PMNs which was enhanced in the presence of exogenous arachidonic acid (AA). In contrast to its enhancing effect on LTB4 production, AA inhibited NAF-stimulated PMN degranulation. 15(S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid (15-HETE), a product of the 15-lipoxy-genation of AA in PMNS, caused a concentration-dependent suppression of degranulation and LTB4 generation by PMNs in contact with NAF. 15-HETE also inhibited the rise in cytosolic-free calcium [( Ca2+]i) observed in NAF activated PMNs. These data suggest that AA and a 15-lipoxygenase product modulate the NAF-associated activation pathway in human PMNs.  相似文献   

3.
Role of leukotrienes in killing of Mycobacterium bovis by neutrophils   总被引:2,自引:0,他引:2  
The neutrophil (PMN) plays an important role in the phagocytosis and killing of microorganisms. Pro-inflammatory leukotrienes (LT) play an important role in various disease states. However LT elaborated by PMN have also been shown to be important in host defense, specifically phagocytosis and killing of microorganisms. Defective LT synthesis by phagocytes correlates with their reduced anti-microbial activity. Therefore, we determined if LT played an important role in the killing of Mycobacteria bovis (M. bovis) by PMN. Endogenous LT play a role in the killing of mycobacteria since the LT synthesis inhibitor MK-886 reversed the killing of M. bovis by PMN. Increased synthesis of LT occurred following incubation of PMN with M. bovis. Treatment with granulocyte-colony stimulating factor, which augments PMN LT synthesis, also boosted anti-microbial activity. Furthermore, exogenous LTB4 augmented dose-dependent killing of M. bovis by PMN. In conclusion, LT play a vital role in promoting mycobactericidal actions of PMN.  相似文献   

4.
Studies were undertaken to define the role of 5-lipoxygenase (5-LO) products and, in particular, of leukotriene (LT) B4 in the polymorphonuclear leukocyte (PMN) emigration process using a rabbit model of dermal inflammation. Our results show that i.v. administration to rabbits of MK-0591, a compound that inhibits LT biosynthesis in blood and tissues when administered in vivo, significantly reduced 51Cr-labeled PMN accumulation in response to intradermally injected chemotactic agonists, including IL-8, FMLP, C5a, and LTB4 itself. In addition, pretreatment of the labeled PMN with MK-0591 ex vivo before their injection in recipient animals was equally effective in reducing 51Cr-labeled PMN emigration to dermal inflammatory sites. These results support a role for de novo synthesis of 5-LO metabolites by PMN for their chemotactic response to inflammatory mediators. Other studies demonstrated that elevated intravascular concentration of LTB4 interferes with PMN extravasation inasmuch as a continuous i.v. infusion of LTB4, in the range of 5-300 ng/min/kg, dose-dependently inhibited extravascular PMN accumulation to acute inflammatory skin sites elicited by the chemoattractants LTB4, FMLP, C5a, and IL-8 and by TNF-alpha, IL-1beta, and LPS; such phenomena may constitute a natural protective mechanism from massive tissue invasion by activated PMN in specific pathologic conditions such as ischemia (and reperfusion). These studies demonstrate additional functions of 5-LO products in the regulation of PMN trafficking, distinct from the well-characterized chemotactic activity of LTB4 present in the extravascular compartment.  相似文献   

5.
Peritoneal macrophages (PM), obtained from 39 healthy women with normal laparoscopy findings, were stimulated with the ionophore A23187 or/and arachidonic acid (AA) both in adherence and in suspension. AA lipoxygenase metabolites were determined by reversed-phase HPLC. The major metabolites identified were 5-hydroxyeicosatetraenoic acid (5-HETE), leukotriene (LT)B4 and LTC4. The 20-hydroxy-LTB4, 20-carboxy-LTB4, and 15-HETE were not detected. Incubations of adherent PM with 2 microM A23187 induced the formation of LTB4, 110 +/- 19 pmol/10(6) cells, 5-HETE, 264 +/- 53 pmol/10(6) cells and LTC4, 192 +/- 37 pmol/10(6) cells. When incubated with 30 microM exogenous AA, adherent PM released similar amounts of 5-HETE (217 +/- 67 pmol/10(6) cells), but sevenfold less LTC4 (27 +/- 12 pmol/10(6) cells) (p less than 0.01). In these conditions LTB4 was not detectable. These results indicate that efficient LT synthesis in PM requires activation of the 5-lipoxygenase/LTA4 synthase, as demonstrated previously for blood phagocytes. When stimulated with ionophore, suspensions of Ficoll-Paque-purified PM produced the same lipoxygenase metabolites. The kinetics of accumulation of the 5-lipoxygenase/LTA4 synthase products in A23187-stimulated adherent cells varied for the various metabolites. LTB4 reached a plateau by 5 min, whereas LTC4 levels increased up to 60 min, the longest incubation time studied. Levels of 5-HETE were maximal at 5 min, and then slowly decreased with time. Thus, normal PM, in suspension or adherence, have the capacity to produce significant amounts of 5-HETE, LTB4, and LTC4. The profile of lipoxygenase products formed by the PM and the reactivity of this cell to AA and ionophore A23187 are similar to those of the human blood monocyte, but different from those of the human alveolar macrophage.  相似文献   

6.
This study investigates the effect of platelet/neutrophil interactions on eicosanoid production. Human platelets and polymorphonuclear leukocytes (PMNs) were stimulated alone and in combination, with calcium ionophore A23187 and the resulting eicosanoids 12S-hydroxy-(5Z,8Z,10E,14Z)-eicosatetraenoic acid (12-HETE), 12S-heptadecatrienoic acid (HHT), 5S,12R-dihydroxy-(6Z,8E,10E,14Z)-eicosatetraenoi c acid (LTB4) and 5S-hydroxy-(6E,8Z,11Z,14Z)-eicosatetraenoic acid (5-HETE) were measured by HPLC. The addition of PMNs to platelet suspensions caused a 104% increase in 12-HETE, a product of 12-lipoxygenase activity, but had only a modest effect on the cyclooxygenase product HHT (increase of 18%). By using PMNs labelled with [14C]arachidonic acid it was shown that the increases in these platelet eicosanoids could be accounted for by translocation of released arachidonic acid from PMNs to platelets and its subsequent metabolism. The observation that 12-lipoxygenase was about five times more efficient than cyclooxygenase at utilising exogenous arachidonic acid during the platelet/PMN interactions was confirmed in experiments in which platelets were stimulated with A23187 in the presence of [14C]arachidonic acid. Stimulations of platelets with thrombin in the presence of PMNs resulted in a decrease in 12-HETE and HHT levels of 40% and 26%, respectively. The presence of platelets caused a small increase in neutrophil LTB4 output but resulted in a decrease in 5-HETE production of 43% during stimulation with A23187. This study demonstrates complex biochemical interactions between platelets and PMNs during eicosanoid production and provides evidence of a mechanism to explain the large enhancement in 12-HETE production.  相似文献   

7.
Stimulus-activated polymorphonuclear neutrophils (PMN) produce leukotriene B4 (LTB4), 5-hydroxyeicosatetraenoate (5-HETE), and platelet-activating factor (PAF). Each of these lipids promotes PMN degranulation; in combination they have additive and potentiating effects that result in prominent degranulation responses at relatively low concentrations. Thus, the combined interactions of LTB4, 5-HETE, and PAF may mediate responses in PMN activated by other stimuli. This possibility was examined by measuring the responses of PMN made insensitive to one or more of these lipids. Cells were pretreated with LTB4, 5-HETE, and/or PAF for 8 min; exposed for 2 min to cytochalasin B (which is required for lipid-induced degranulation); and then challenged. PMN challenged with only buffer released minimal amounts of granule-bound enzymes. Furthermore, the lipid-pretreated cells were hyporesponsive to challenge with 1) various combinations of these same lipids or 2) ionophore A23187. The relative potencies of the lipids in producing hyporesponsiveness to themselves or A23187 were: 5-HETE less than PAF less than or equal to LTB4 less than PAF + LTB4 less than PAF + LTB4 + 5-HETE. For both types of challenge, reduced responsiveness occurred in cells pretreated with greater than 0.1 nM LTB4 and/or greater than 0.2 nM PAF, persisted in cells washed after lipid pretreatment, and did not develop in cells pretreated with various combinations of bioinactive structural analogues of the lipids. Thus, PAF, LTB4, and 5-HETE interacted to desensitize PMN, and the degranulating actions of A23187 required cells that were fully responsive to each of the three lipids. This supports the concept that the lipids act together in mediating certain of the ionophore's effects. However, lipid-desensitized PMN degranulated fully when challenged with C5a, a formylated oligopeptide, or phorbol myristate acetate. Degranulation responses, therefore, may proceed through various pathways, only some of which involve the lipid products studied here.  相似文献   

8.
The cellular and extracellular distribution of leukotriene B4 (LTB4) generated in human neutrophilic polymorphonuclear leukocytes (PMN) stimulated with unopsonized zymosan has been compared with that generated in PMN activated by the calcium ionophore. The amounts of extracellular and intracellular LTB4 were quantitated by radioimmunoassay. The authenticity of the immunoreactive LTB4 was confirmed by the elution of a single immunoreactive peak after reverse phase-high performance liquid chromatography (RP-HPLC) at the retention time of synthetic LTB4, by the identical elution time of a peak of radiolabeled product derived from [3H]arachidonic acid-labeled PMN with the immunoreactive product, and by the comparable chemotactic activity on a weight basis of immunoreactive LTB4 and synthetic LTB4 standard. Under optimal conditions of stimulation by unopsonized zymosan, more than 78% of the generated immunoreactive LTB4 remained intracellular, whereas with optimal activation by the ionophore, less than 8.6% of immunoreactive LTB4 was retained. Resolution by RP-HPLC of the products from the supernatants and cell extracts of [3H]arachidonic acid-labeled PMN stimulated with unopsonized zymosan and those stimulated with calcium ionophore allowed identification and measurement of 5-hydroxyeicosatetraenoic acid (5-HETE), 6-trans-LTB4, LTB4, and omega oxidation products of LTB4 by radioactivity. With zymosan stimulation of PMN, 5-HETE and the 6-trans-LTB4 diastereoisomers were not released, LTB4 was partially released, and the omega oxidation products of LTB4 were preferentially extracellular in distribution. In contrast, with ionophore stimulation, only 5-HETE had any duration of intracellular residence being equally distributed intra- and extracellularly throughout the 30-min period of observation; 6-trans-LTB4, LTB4, and the omega oxidation products of LTB4 were retained at less than 19%. The respective distributions of 5-HETE after zymosan and ionophore stimulation were not altered by the introduction of albumin to the reaction mixtures to prevent reacylation, or by hydrolysis of the cell extract to uncover any product that had been reacylated. The finding that stimulation of PMN with unopsonized zymosan results in the cellular retention of 5-lipoxygenase products suggests that release of these metabolites may be an event that is regulated separately from their generation.  相似文献   

9.
Lipoxygenase (LO) products generated by human PMN were examined utilizing a gradient-HPLC and rapid spectral detector which permitted continuous UV-spectral monitoring of leukotrienes, lipoxins and related oxygenated products of arachidonic acid. When exposed to the ionophore A23187, PMN generated LTB4 and its omega-oxidation products as well as LXA4, LXB4, and 7-cis-11-trans-LXA4 from endogenous sources. Addition of 15-HETE changed the profile of products generated by activated PMN and led to a time- and dose-dependent increase in lipoxins and related compounds while the production of LTB4 and its omega-oxidation products was inhibited. Results of time-course and radiolabel studies revealed that 15-HETE is rapidly transformed within 15 s to 5,15-DHETE and conjugated tetraene-containing products, and that the inhibition of leukotriene formation followed a similar time-course. In contrast, PMN did not generate either lipoxins or related products from 5-[3H]HETE, nor did 5-HETE block leukotriene formation. Stimulated PMN generated 5,15-DHETE from exogenous 5-HETE, while in the absence of ionophore, 5-HETE was transformed to 5,20-HETE. These results indicate that PMN can generate lipoxins and related products from endogenous sources and that 15-HETE and 5-HETE are transformed by different routes.  相似文献   

10.
Caveolin-1 is a protein constituent of cell membranes. The caveolin-1 scaffolding region (residues 82-101) is a known inhibitor of protein kinase C. Inhibition of protein kinase C results in maintained nitric oxide (NO) release from the endothelium, which attenuates cardiac dysfunction after ischemia-reperfusion (I/R). Therefore, we hypothesized that the caveolin-1 scaffolding region of the molecule, termed caveolin-1 peptide, might attenuate postischemia polymorphonuclear neutrophil (PMN)-induced cardiac dysfunction. We examined the effects of caveolin-1 peptide in isolated ischemic (20 min) and reperfused (45 min) rat hearts reperfused with PMNs. Caveolin-1 peptide (165 or 330 microg) given intravenously 1 h before I/R significantly attenuated postischemic PMN-induced cardiac dysfunction, as exemplified by left ventricular developed pressure (LVDP) (P < 0.01) and the maximal rate of developed pressure (+dP/dt(max)) (P < 0.01), compared with I/R hearts obtained from rats given 0.9% NaCl. In addition, caveolin-1 peptide significantly reduced cardiac PMN infiltration from 195 +/- 5 PMNs/mm2 in untreated hearts to 103 +/- 5 and 60 +/- 5 PMNs/mm2 in hearts from 165 and 330 microg caveolin-1 peptide-treated rats, respectively (P < 0.01). PMN adherence to the rat coronary vasculature was also significantly reduced in rats given either 165 or 330 microg caveolin-1 peptide compared with rats given 0.9% NaCl (P < 0.01). Moreover, caveolin-1 peptide-treated rat aortas exhibited a 2.2-fold greater basal release of NO than vehicle-treated aortas (P < 0.01), and this was inhibited by NG-nitro-L-arginine methyl ester. These results provide evidence that caveolin-1 peptide significantly attenuated PMN-induced post-I/R cardiac contractile dysfunction in the isolated perfused rat heart, probably via enhanced release of endothelium-derived NO.  相似文献   

11.
Psoriasis is a disease state characterized by epidermal proliferation, neutrophil infiltration, along with release of the proinflammatory mediators leukotriene-B4(LTB4) and 12(R)-hydroxyeicosatetraenoic acid [12(R)-HETE]. LTB4 and 12(R)-HETE are chemoattractant to the neutrophil, the latter approximately 1000x less potent. LTB4 and 12(R)-HETE are present in psoriatic scale, the latter in quantities so much greater than LTB4 that it is proposed as a primary mediator of neutrophil infiltration in psoriasis. 12(R)-HETE, synthesized in optically pure form by a new, shorter route, was injected into the dermis of the cavine, lapine, canine, mouse and rat. At doses up to 50 mu gm per intradermal site, 12(R)-HETE was chemoattractant to the neutrophil (as assessed by dermal myeloperoxidase levels) with response in the cavine greater than canine greater than lapine greater than mouse greater than rat.  相似文献   

12.
Stimulation of human neutrophils with 12-hydroperoxyeicosatetraenoic acid (12-HPETE) led to formation of 5S, 12S-dihydroxyeicosatetraenoic acid (DiHETE), but leukotriene B4 (LTB4) or 5-hydroxyeicosatetraenoic acid (5-HETE) was not detectable by reversed-phase high-performance liquid chromatography analysis. N-formylmethionylleucylphenylalanine (FMLP) induced the additional synthesis of small amounts of LTB4 in 12-HPETE-stimulated neutrophils. The addition of arachidonic acid greatly increased the synthesis of LTB4 and 5-HETE by neutrophils incubated with 12-HPETE. In experiments using [1-14C]arachidonate-labeled neutrophils, little radioactivity was released by 12-HPETE alone or by 12-HPETE plus FMLP, while several radiolabeled compounds, including LTB4 and 5-HETE, were released by A23187. These findings demonstrate that LTB4 biosynthesis by 12-HPETE-stimulated neutrophils requires free arachidonic acid which may be endogenous or exogenous.  相似文献   

13.
In animal cells arachidonic acid is metabolized via the 5-, 12- and 15-lipoxygenase pathways. The kinetic mechanism of action of plant (soya) and animal (reticulocyte) 15-lipoxygenases is now well established. 5-Lipoxygenase possesses, in all probability, the most complex mechanism of activity regulation. At present several effectors of neutrophil 5-lipoxygenase, both cytosolic and membrane-bound ones, have been identified. The molecular and kinetic mechanisms of action of the enzyme are still open to question. A kinetic scheme of regulation of synthesis of arachidonic acid 5-lipoxygenase metabolites which does not exclude the presence of two binding sites on the enzyme molecule, is proposed. Within the framework of this kinetic scheme the enzyme activator complex may be the active form of the enzyme. There is evidence that the curve for the time dependence of 5-HETE accumulation in neutrophils stimulated by the Ca2+ ionophore A23187 has a maximum, while the corresponding curve for the LTB4 accumulation is a curve with saturation. It was shown that an increase in the concentration of exogenous arachidonate induces the synthesis of 5-HETE, whereas the concentration of LTB4 remains practically unchanged. The results of mathematical analysis of the above kinetic scheme and a comparison of experimental and calculated values suggest that the reaction effector, Ca2+, plays a crucial regulatory role in the observed kinetic dependencies reflecting the formation of two sequential products of 5-lipoxygenase oxidation of arachidonate. In this way Ca2+ strongly influences the first step of the reaction, i.e., 5-HETE formation; its effect on the second reaction step (5-HETE conversion into LTA4) is far less apparent.  相似文献   

14.
Psoriasis is a disease state characterized by epidermal proliferation, neutrophil infiltration, along with release of the proinflammatory mediators leukotriene-B4 (LTB4) and 12(R)-hydroxyeicosatetraenoic acid [12(R)-HETE]. LTB4 and 12(R)-HETE are chemoattractant to the neutrophil, the latter approximately 1000X less potent. LTB4 and 12(R)-HETE are present in psoriatic scale, the latter in quantities so much greater than LTB4 that it is proposed as a primary mediator of neutrophil infiltration in psoriasis. 12(R)-HETE, synthesized in optically pure form by a new, shorter route, was injected into the cavine dermis. At a dose of 25 micrograms m per intradermal site, 12(R)-HETE was a significant chemoattractant to the neutrophil (as assessed by dermal myeloperoxidase levels). SC-41930, 7-[3-(4-acetyl-3-methoxy-2-propylphenoxy)-propoxy]- 3,4-dihydro-8-propyl-2H-1-benzopyran-2-carboxylic acid, given intragastrically inhibited 12(R)-HETE-induced neutrophil infiltration of the cavine dermis with an ED50 value of 13.5 mg/kg. Compounds such as SC-41930 may well have utility for treating human psoriasis.  相似文献   

15.
Effects of iNOS-related NO on hearts exposed to liposoluble iron   总被引:3,自引:0,他引:3  
Inducible nitric oxide synthase (iNOS) protects heart against ischemia/reperfusion injury. However, it is unknown whether the beneficial effects of iNOS are mediated by the interaction of NO with radical oxygen species (ROS). To address this issue, we examined the effects of liposoluble iron-induced ROS generation in isolated perfused hearts from rats treated with lipopolysaccharide (LPS). LPS administration (10 mg/kg, i.p., 6 h before heart removal) induced iNOS expression and increased NO production as indicated by a 3-fold elevation of nitrite level in coronary effluents relative to control hearts. An enhanced expression of hemeoxygenase 1 protein was also observed in septic hearts compared to control. Iron-induced perfusion and contractile deficits were ameliorated by LPS with more important coronary than myocardial benefits. In iron-loaded hearts, oxidative stress as measured by the 2,3 dihydroxybenzoic acid/salicylic acid concentration ratio in cardiac tissue was 23% lower in septic than in control heart although the difference did not reach significance. In addition, the presence of the NO synthase inhibitor N-nitro-L-arginine in the perfusion medium totally blocked NO production but did not reverse the protective effects of LPS. The results indicate that LPS protects from iron-induced cardiac dysfunction by mechanisms independent on ex vivo NO production and suggest that NO acts as a trigger rather than a direct mediator of the cardioprotective effects of LPS in heart exposed to iron.  相似文献   

16.
Both 1,2-diacyl- and 1-O-alkyl-2-acylglycerols are formed during stimulation of human neutrophils (PMN), and both can prime respiratory burst responses for stimulation by the chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP); however, mechanisms of priming are unknown. Arachidonic acid (AA) release through phospholipase A2 activation and metabolism by 5-lipoxygenase are important activities of PMN during inflammation and could be involved in the process of primed stimulation. Therefore, we have examined the ability of diacyl- and alkylacylglycerols to act as priming agents for AA release and metabolism in human neutrophils. After prelabeling PMN phospholipids with [3H]AA, priming was tested by incubating human PMN with the diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), or its alkylacyl analog, 1-O-delta 9-octadecenyl-2-acetylglycerol (EAG) before stimulating with fMLP. fMLP (1 microM), OAG (20 microM), or EAG (20 microM) individually caused little or no release of labeled AA. However, after priming PMN with the same concentrations of either OAG or EAG, stimulation with 1 microM fMLP caused rapid (peak after 1 min) release of 6-8% of [3H]AA from cellular phospholipids; total release was similar with either diglyceride. Priming cells with OAG also enhanced conversion of released AA to leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) upon subsequent fMLP stimulation, but AA metabolites were not increased in EAG-primed PMN. If fMLP was replaced with the calcium ionophore A23187 (which directly causes release of AA and production of LTB4 and 5-HETE), priming by both diglycerides again enhanced release of [3H]AA, but only OAG priming increased lipoxygenase activity. Indeed, EAG pretreatment markedly reduced LTB4 and 5-HETE production. Thus, both diglycerides prime release of AA from membrane phospholipids but have opposite actions on the subsequent metabolism of AA.  相似文献   

17.
In stable state asthmatic patients (AP) without any airway obstruction, the capacity of peripheral blood polymorphonuclear neutrophils (PMN) to produce 5-lipoxygenase metabolites and to migrate, was investigated and compared with the response in healthy subjects (HS). After calcium-ionophore A23187 stimulation, PMN from AP and HS produced LTB4, its hydroxylated derivatives: omega-OH-and omega-CO2H-LTB4) (omega-LTB4, i.e 6-trans-LTB4 and 5,6-diHETE isomers, and 5-HETE. We found an increase in LTB4 (+59%), omega-LTB4 (+39%), 6-trans-LTB4 (+128%), and free 5-HETE (+63%) generation of AP as compared with HS. Unstimulated migration was enhanced in AP (122 +/- 27 PMN/10 high power fields (hpf) in AP versus 74 +/- 25 PMN/10 hpf in HS, p less than 0.025) and suggested a greater capacity of PMN from AP to migrate. This was confirmed by the PAF-induced chemotaxis studies which showed, in AP, a greater PAF-sensitivity of PMN (10(-6) M versus 10(-5) M in HS) and a greater chemotaxis response (600 +/- 50 PMN versus 200 +/- 35 PMN in HS). In AP, we compared the capacity of PMN to generate LTB4 and 5-HETE with their capacity to migrate. We found an inverse correlation (r = 0.86, p less than 0.007) of intracellular free 5-HETE with chemotaxis to PAF.  相似文献   

18.
In this study we report the in vitro inhibition of leukotriene synthesis in calcium ionophore (A23187)-stimulated, intact human blood neutrophils by AHR-5333. The results showed that AHR-5333 inhibits 5-HETE, LTB4 and LTC4 synthesis with IC50 values of 13.9, 13.7 and 6.9 microM, respectively. Further examination of the effect of AHR-5333 on individual reactions of the 5-lipoxygenase pathway (i.e. conversion of LTA4 to LTB4, LTA4 to LTC4, and arachidonic acid to 5-HETE) showed that this agent was not inhibitory to LTA4 epoxyhydrolase and glutathione-S-transferase activity in neutrophil homogenates. However, conversion of arachidonic acid (30 microM) to 5-HETE was half maximally inhibited by 20 microM AHR-5333 in the cell-free system. The inhibition of LTB4 and LTC4 formation in intact neutrophils by AHR-5333 appears to be entirely due to a selective inhibition of 5-lipoxygenase activity and an impaired formation of LTA4, which serves as substrate for LTA4 epoxyhydrolase and glutathione-S-transferase. AHR-5333 did not affect the transformation of exogenous arachidonic acid to thromboxane B2, HHT and 12-HETE in preparations of washed human platelets, indicating that this agent has no effect on platelet prostaglandin H synthase, thromboxane synthase and 12-lipoxygenase activity. The lack of inhibitory activity of AHR-5333 on prostaglandin H synthase activity was confirmed with microsomal preparations of sheep vesicular glands.  相似文献   

19.
Incubation of cell sonicates from monoclonal B cells with arachidonic acid led to the formation of leukotriene (LT) B4 and 5-hydroxy-eicosatetraenoic acid (5-HETE). In contrast, stimulation of intact B cells with the calcium ionophore A23187 +/- arachidonic acid did not, under similar conditions, lead to formation of LTB4. The identification of these products was based on reverse phase- and straight phase-HPLC analysis, UV-spectroscopy and gas chromatography-mass spectrometry. Cell sonicates of highly enriched human tonsillar B lymphocytes also converted arachidonic acid to LTB4 and 5-HETE. Activation of these cells with B cell mitogen and cytokines for three days led to an upregulation of 5-lipoxygenase activity. This study provides evidence for the biosynthesis of LTB4 from arachidonic acid in B cell lines and in normal human tonsillar B lymphocytes.  相似文献   

20.
Escherichia coli hemolysin (HlyA) is a prototype of a large family of pore-forming proteinaceous exotoxins that have been implicated in the pathogenetic sequelae of severe infection and sepsis, including development of acute lung injury. In the present study in rabbit alveolar macrophages (AMs), subcytolytic concentrations of purified HlyA evoked rapid synthesis of platelet-activating factor, with quantities approaching those in response to maximum calcium ionophore challenge. In parallel, large quantities of leukotriene (LT) B(4) and 5-, 8-, 9-, 12-, and 15-hydroxyeicosatetraenoic acid (HETE) were liberated from HlyA-exposed AMs depending on exogenous arachidonic acid (AA) supply. Coadministration of eicosapentaenoic acid (EPA) dose dependently suppressed generation of the proinflammatory lipoxygenase products LTB(4) and 5-, 8-, 9-, and 12-HETE in parallel with the appearance of the corresponding EPA-derived metabolites LTB(5) and 5-, 8-, 9-, and 12-hydroxyeicosapentaenoic acid (HEPE). At equimolar concentrations, EPA turned out to be the preferred substrate over AA for these AM lipoxygenase pathways, with the sum of LTB(5) and 5-, 8-, 9-, and 12-HEPE surpassing the sum of LTB(4) and 5-, 8-, 9-, and 12-HETE by >80-fold. In contrast, coadminstration of EPA did not significantly reduce HlyA-elicited generation of the anti-inflammatory AA lipoxygenase product 15-HETE. We conclude that AMs are sensitive target cells for HlyA attack, resulting in marked proinflammatory lipid mediator synthesis. In the presence of EPA, lipoxygenase product formation is shifted from a pro- to an anti-inflammatory profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号