首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Using analyses of iliac crest cell and tissue, back-scattered electron imaging, and biochemical techniques, we characterized the effects of a 14-day spaceflight (Bion 11) on bone structure and bone formation in two 3- to 4-yr-old male rhesus monkeys compared with eight age-matched Earth-control monkeys. We found that postflight bone volume was 35% lower than preflight values in flight monkeys. This was associated with reduced osteoid (-40%) and mineralizing (-32%) surfaces and decreased bone formation rate (-53%). Moreover, flight monkeys exhibited trends to lower values of mineralization profile in iliac bone (back-scattered electron imaging) and to decreased osteocalcin serum levels (P = 0.08). The initial number of trabecular bone cells yielded in cultures did not differ in flight and control animals before or after the flight. However, osteoblastic cell proliferation was markedly lower in postflight vs. preflight at 9 and 14 days of culture in one flight monkey. This study suggests that a 14-day spaceflight reduces iliac bone formation, osteoblastic activity, and/or recruitment in young rhesus monkeys, resulting in decreased trabecular bone volume.  相似文献   

2.
This work generalizes the results of studies of calcium metabolism in the participants of long-term space flights of 30 to 438 days on the Salyut and Mir orbital stations during 1978–1998. The results of pre- and postflight examination of 44 cosmonauts (18 subjects participated twice in long-term space flights) were analyzed. After space flights of medium (of 3 to 6 months) and long (of 6 to 14 months) duration, the total blood calcium content was increased, mainly due to its ionized fraction; the blood level of parathyroid hormone was significantly increased and the level of calcitonin was decreased. The content of osteocalcin was increased after space flights. Calcium kinetics was studied using stable isotopes in three cosmonauts before, during, and after the 115-day flight. During the flight, intestinal absorption of calcium and its gastrointestinal excretion were decreased, whereas its renal excretion was increased. Early postflight intestinal absorption was, on average, lower than during the flight, whereas intestinal excretion increased. Both renal and intestinal excretion of calcium were not normalized 3.5 to 4.5 months after the glight. The mathematical models used for evaluating the rates of main calcium flows revealed increased bone tissue resorption that resulted in the negative bone balance during the flight. The conclusion about the decreased rate of bone tissue remodeling and its increased resorption was confirmed by biochemical data, including endocrine markers.  相似文献   

3.
Impaired autonomic control represents a cardiovascular risk factor during long-term spaceflight. Little has been reported on blood pressure (BP), heart rate (HR), and heart rate variability (HRV) during and after prolonged spaceflight. We tested the hypothesis that cardiovascular control remains stable during prolonged spaceflight. Electrocardiography, photoplethysmography, and respiratory frequency (RF) were assessed in eight male cosmonauts (age 41-50 yr, body-mass index of 22-28 kg/m2) during long-term missions (flight lengths of 162-196 days). Recordings were made 60 and 30 days before the flight, every 4 wk during flight, and on days 3 and 6 postflight during spontaneous and controlled respiration. Orthostatic testing was performed pre- and postflight. RF and BP decreased during spaceflight (P < 0.05). Mean HR and HRV in the low- and high-frequency bands did not change during spaceflight. However, the individual responses were different and correlated with preflight values. Pulse-wave transit time decreased during spaceflight (P < 0.05). HRV reached during controlled respiration (6 breaths/min) decreased in six and increased in one cosmonaut during flight. The most pronounced changes in HR, BP, and HRV occurred after landing. The decreases in BP and RF combined with stable HR and HRV during flight suggest functional adaptation rather than pathological changes. Pulse-wave transit time shortening in our study is surprising and may reflect cardiac output redistribution in space. The decrease in HRV during controlled respiration (6 breaths/min) indicates reduced parasympathetic reserve, which may contribute to postflight disturbances.  相似文献   

4.
Electromyograms were recorded from the soleus and medial gastrocnemius muscles and tendon force from the medial gastrocnemius muscle of 2 juvenile Rhesus monkeys before, during and after Cosmos flight 2229 and of ground control animals. Recording sessions were made while the Rhesus were performing a foot pedal motor task. Preflight testing indicated normal patterns of recruitment between the soleus and medial gastrocnemius, i.e. a higher level of recruitment of the soleus compared to the medial gastrocnemius during the task. Recording began two days into the spaceflight and showed that the media gastrocnemius was recruited preferentially over the soleus. This observation persisted throughout the flight and for the 2 week period of postflight testing. These data indicate a significant change in the relative recruitment of slow and fast extensor muscles under microgravity conditions. The appearance of clonic-like activity in one muscle of each Rhesus during flight further suggests a reorganization in the neuromotor system in a microgravity environment.  相似文献   

5.
The aim of the present study was to analyse the effects of microgravity on i) the achievement of goal-directed arm movements and ii) the quadrupedal non-human primate locomotion. A reaching movement in weightlessness would require less muscle contraction since there is no need to oppose gravity. Consequently the electromyographic (EMG) activity of the monkey forelimb muscles should be changed during or after spaceflight. EMG activity of the biceps and triceps muscles during goal-directed arm movements were studied in Rhesus monkeys before, during and after 14 days of spaceflight and flight simulation at normal gravity. The EMG activity was also recorded during treadmill locomotion before and after spaceflight. When performing arm motor tasks, the delay values of the EMG bursts were unchanged during the flight. On the contrary, mean EMG was significantly decreased during the flight comparatively to the pre- and post-flight values, which were very similar. Compared with flight animals, the control ground monkey showed no change in the burst durations and mean EMG. After spaceflight, quadrupedal locomotion was modified. The animals had some difficulty in moving, and abnormal steps were numerous. The integrated area of triceps bursts was increased for the stance phase during locomotion. Taken together these data showed that spaceflight induces a dual adaptative process: first, the discharge of the motor pools of the forelimb musculature was modified during exposure to microgravity, and then upon return to Earth, monkeys changed their new motor strategy and re-adapt to normal gravity.  相似文献   

6.
To determine the influence of dietary calcium on spaceflight-induced alterations in calcium metabolism and blood pressure (BP), 9-wk-old spontaneously hypertensive rats, fed either high- (2%) or low-calcium (0.02%) diets, were flown on an 18-day shuttle flight. On landing, flight animals had increased ionized calcium (P < 0.001), elevated parathyroid hormone levels (P < 0.001), reduced calcitonin levels (P < 0.05), unchanged 1,25(OH)(2)D(3) levels, and elevated skull (P < 0.01) and reduced femur bone mineral density. Basal and thrombin-stimulated platelet free calcium (intracellular calcium concentration) were also reduced (P < 0.05). There was a tendency for indirect systolic BP to be reduced in conscious flight animals (P = 0.057). However, mean arterial pressure was elevated (P < 0.001) after anesthesia. Dietary calcium altered all aspects of calcium metabolism (P < 0.001), as well as BP (P < 0.001), but the only interaction with flight was a relatively greater increase in ionized calcium in flight animals fed low- compared with high-calcium diets (P < 0.05). The results indicate that 1) flight-induced disruptions of calcium metabolism are relatively impervious to dietary calcium in the short term, 2) increased ionized calcium did not normalize low-calcium-induced elevations of BP, and 3) parathyroid hormone was paradoxically increased in the high-calcium-fed flight animals after landing.  相似文献   

7.
The influence of 12.5 days of spaceflight and a 55 h stressful recovery period (at 1 g) on fibroblastlike osteoblast precursor cells was assessed in the periodontal ligament (PDL) of rats that were 91 days old at launch. Nuclear morphometry was used as a marker for precursor cell differentiation in 3 microns sections cut in the midsagittal plane from the maxillary first molar. According to nuclear volume, cells were classified as preosteoblasts (C + D cells, greater than or equal to 120 microns 3) and less differentiated progenitor cells (A + A' cells, 40-79 microns 3). Compared with synchronous controls (simulated flight conditions), the 55 h postflight recovery period at 1 g resulted in a 40% decrease in the A + A' cell population, a 42% increase in the C + D cells, and a 39% increase in the number of PDL fibroblastlike cells near the bone surface. These results are consistent with a postflight osteogenic response in PDL. This recovery response occurred despite physiological stress in the flight animals that resulted in a highly significant (P less than or equal to 0.001) increase in adrenal weight. The data suggest that after spaceflight there is a strong and rapid recovery mechanism for osteoblast differentiation that is not suppressed by physiological stress.  相似文献   

8.
Cytotoxic activity of non-major histocompatibility complex-restricted (CD56+) (NMHC) killer cells and cell surface marker expression of peripheral blood mononuclear cells were determined before and after spaceflight. Ten astronauts (9 men, 1 woman) from two space shuttle missions (9- and 10-day duration) participated in the study. Blood samples were collected 10 days before launch, within 3 h after landing, and 3 days after landing. All peripheral blood mononuclear cell preparations were cryopreserved and analyzed simultaneously in a 4-h cytotoxicity (51)Cr release assay using K562 target cells. NMHC killer cell lytic activity was normalized per 1,000 CD56+ cells. When all 10 subjects were considered as one study group, NMHC killer cell numbers did not change significantly during the three sampling periods, but at landing lytic activity had decreased by approximately 40% (P < 0.05) from preflight values. Nine of ten astronauts had decreased lytic activity immediately after flight. NMHC killer cell cytotoxicity of only three astronauts returned toward preflight values by 3 days after landing. Consistent with decreased NMHC killer cell cytotoxicity, urinary cortisol significantly increased after landing compared with preflight levels. Plasma cortisol and ACTH levels at landing were not significantly different from preflight values. No correlation of changes in NMHC killer cell function or hormone levels with factors such as age, gender, mission, or spaceflight experience was found. After landing, expression of the major lymphocyte surface markers (CD3, CD4, CD8, CD14, CD16, CD56), as determined by flow cytometric analysis, did not show any consistent changes from measurements made before flight.  相似文献   

9.
10.
This report is the first systematic evaluation of the effects of prolonged weightlessness on the bipedal postural control processes during self-generated perturbations produced by voluntary upper limb movements. Spaceflight impacts humans in a variety of ways, one of which is compromised postflight postural control. We examined the neuromuscular activation characteristics and center of pressure (COP) motion associated with arm movement of eight subjects who experienced long-duration spaceflight (3--6 mo) aboard the Mir space station. Surface electromyography, arm acceleration, and COP motion were collected while astronauts performed rapid unilateral shoulder flexions before and after spaceflight. Subjects generally displayed compromised postural control after flight, as evidenced by modified COP peak-to-peak anterior-posterior and mediolateral excursion, and pathlength relative to preflight values. These changes were associated with disrupted neuromuscular activation characteristics, particularly after the completion of arm acceleration (i.e., when subjects were attempting to maintain upright posture in response to self-generated perturbations). These findings suggest that, although the subjects were able to assemble coordination modes that enabled them to generate rapid arm movements, the subtle control necessary to maintain bipedal equilibrium evident in their preflight performance is compromised after long-duration spaceflight.  相似文献   

11.
Hard conditions of long-term manned spaceflight can affect functions of many biological systems including a system of drug metabolism. The cytochrome P450 (CYP) superfamily plays a key role in the drug metabolism. In this study we examined the hepatic content of some P450 isoforms in mice exposed to 30 days of space flight and microgravity. The CYP content was established by the mass-spectrometric method of selected reaction monitoring (SRM). Significant changes in the CYP2C29, CYP2E1 and CYP1A2 contents were detected in mice of the flight group compared to the ground control group. Within seven days after landing and corresponding recovery period changes in the content of CYP2C29 and CYP1A2 returned to the control level, while the CYP2E1 level remained elevated. The induction of enzyme observed in the mice in the conditions of the spaceflight could lead to an accelerated biotransformation and change in efficiency of pharmacological agents, metabolizing by corresponding CYP isoforms. Such possibility of an individual pharmacological response to medication during long-term spaceflights and early period of postflight adaptation should be taken into account in space medicine.  相似文献   

12.
Reduction in plasma volume is a major contributor to orthostatic tachycardia and hypotension after spaceflight. We set out to determine time- and frequency-domain baroreflex (BRS) function during preflight baseline and venous occlusion and postflight orthostatic stress, testing the hypothesis that a reduction in central blood volume could mimic the postflight orthostatic response. In five cosmonauts, we measured finger arterial pressure noninvasively in supine and upright positions. Preflight measurements were repeated using venous occlusion thigh cuffs to impede venous return and "trap" an increased blood volume in the lower extremities; postflight sessions were between 1 and 3 days after return from 10- to 11-day spaceflight. BRS was determined by spectral analysis and by PRVXBRS, a time-domain BRS computation method. Although all completed the stand tests, two of five cosmonauts had drastically reduced pulse pressures and an increase in heart rate of approximately 30 beats/min or more during standing after spaceflight. Averaged for all five subjects in standing position, high-frequency interbeat interval spectral power or transfer gain did not decrease postflight. Low-frequency gain decreased from 8.1 (SD 4.0) preflight baseline to 6.8 (SD 3.4) postflight (P = 0.033); preflight with thigh cuffs inflated, low-frequency gain was 9.4 (SD 4.3) ms/mmHg. There was a shift in time-domain-determined pulse interval-to-pressure lag, Tau, toward higher values (P < 0.001). None of the postflight results were mimicked during preflight venous occlusion. In conclusion, two of five cosmonauts showed abnormal orthostatic response 1 and 2 days after spaceflight. Overall, there were indications of increased sympathetic response to standing, even though we can expect (partial) restoration of plasma volume to have taken place. Preflight venous occlusion did not mimic the postflight orthostatic response.  相似文献   

13.
Adaptation mechanisms of adrenal function related to secretion of cortisol were studied under conditions of microgravity. Parameters of diurnal rhythms of salivary cortisol were studied by Russian cosmonauts on board orbital station Mir during long-term space flights (SF). The preflight circadian rhythms of salivary cortisol in cosmonauts were characterized by the morning maximum occurring at 9∶43 a.m., the fluctuation amplitude 6.05 nmol/1, and the daily average concentration 8.79 nmol/l. The characteristics of cortisol diurnal rhythm changed under conditions of long-term space flight. On average, the rhythm measure and amplitude decreased after two months of flight. The postflight maximum concentration of free cortisol tended to occur later in the day. Evidently, the motor activity during SF, i.e., prophylactic exercises along with other factors, significantly influenced the parameters of cortisol circadian rhythm that was revealed by the individual variability of findings during the flight. After the long-term SF, individual ratios of salivary and plasma cortisol levels increased against the background of increased plasma content of the hormone, i.e., the fraction of free, physiologically active hormone in the total pool of circulating molecules decreased.  相似文献   

14.
The objectives of this study were to assess oxidant damage during and after spaceflight and to compare the results against bed rest with 6 degrees head-down tilt. We measured the urinary excretion of the F(2) isoprostane, 8-iso-prostaglandin (PG) F(2alpha), and 8-oxo-7,8-dihydro-2 deoxyguanosine (8-OH DG) before, during, and after long-duration spaceflight (4-9 mo) on the Russian space station MIR, short-duration spaceflight on the shuttle, and 17 days of bed rest. Sample collections on MIR were obtained between 88 and 186 days in orbit. 8-iso-PGF(2alpha) and 8-OH DG are markers for oxidative damage to membrane lipids and DNA, respectively. Data are mean +/- SE. On MIR, isoprostane levels were decreased inflight (96. 9 +/- 11.6 vs. 76.7 +/- 14.9 ng. kg(-1). day(-1), P < 0.05, n = 6) due to decreased dietary intake secondary to impaired thermoregulation. Isoprostane excretion was increased postflight (245.7 +/- 55.8 ng. kg(-1). day(-1), P < 0.01). 8-OH DG excretion was unchanged with spaceflight and increased postflight (269 +/- 84 vs 442 +/- 180 ng. kg(-1). day(-1), P < 0.05). On the shuttle, 8-OH DG excretion was unchanged in- and postflight, but 8-iso-PGF(2alpha) excretion was decreased inflight (15.6 +/- 4.3 vs 8.0 +/- 2.7 ng. kg(-1). day(-1), P < 0.05). No changes were found with bed rest, but 8-iso-PGF(2alpha) was increased during the recovery phase (48.9 +/- 23.0 vs 65.4 +/- 28.3 ng. kg(-1). day(-1), P < 0.05). The changes in isoprostane production were attributed to decreased production of oxygen radicals from the electron transport chain due to the reduced energy intake inflight. The postflight increases in the excretion of the products of oxidative damage were attributed to a combination of an increase in metabolic activity and the loss of some host antioxidant defenses inflight. We conclude that 1) oxidative damage was decreased inflight, and 2) oxidative damage was increased postflight.  相似文献   

15.
Rats fed a diet deficient in vitamin D were found to exhibit a refractory cyclic AMP response of kidney slices to parathyroid hormone and a marked decrease in membrane parathyroid hormone-dependent adenylate cyclase activity. Both the characteristic calcium deficiency (hypocalcemia) and secondary elevation of circulating parathyroid hormone appeared before the first noticeable decrease in hormone-dependent enzyme activity. After repletion of D-deficient rats with vitamin D2, we found that serum calcium and parathyroid hormone were both restored to normal levels before the depressed enzyme response to the hormone was reversed. Moreover, infusion of parathyroid hormone into vitamin D-replete rats led to a marked reduction in parathyroid hormone-dependent adenylate cyclase activity, which was partly restored to control level 3 hours after discontinuing the hormone infusion. Taken as a whole, this study suggests that the elevated endogenous parathyroid hormone in the vitamin D-deficient rat is involved in the “down-regulation” of renal cyclic AMP responsiveness to the hormone. However, these experiments do not rule out the possibility that calcium deficiency and/or vitamin D per se participate in the regulation of the renal cyclic AMP response to parathyroid hormone.  相似文献   

16.
The Cosmos 1887 biosatellite carried 10 male rats and 2 rhesus monkeys on its 12.5-day mission. Upon re-entry the Vostok vehicle overshot the designated landing site, which resulted in fasting of the animals for 42 h, exposure to cage temperatures of 12-15 degrees C, and 2 days delay in death of the rats. No overt untoward effects of the delayed recovery were apparent. Tissues from the rats were harvested by Soviet scientists, appropriately preserved, and provided to U.S. investigators. Flight rats grew more slowly and had larger adrenal glands than earth gravity controls. Analysis of plasma revealed increased concentrations of hepatic alkaline phosphatase, glucose, urea nitrogen, and creatinine in flight rats. In contrast, electrolytes, total protein, albumin, corticosterone, prolactin, and immunoreactive growth hormone levels were unchanged. However, testosterone concentration was marginally decreased after flight and thyroid hormone levels were suggestive of reduced thyroid function. Due to the possible effects of reentry and the delay in recovery of the animals, it is not clear what relationship postflight levels of plasma constituents bear to their concentrations in flight.  相似文献   

17.
Microgravity is known to have a substantial effect on fluid homeostasis. The research described here was planned as part of the first joint Russian-U.S. science program carried out during a Shuttle flight. The aim of the program was to study the nature of the changes in fluid homeostasis induced by microgravity, as well as to determine the possible mechanisms underlying the regulation of fluid balance under conditions of spaceflight. To determine the effects of spaceflight on the homeostasis of fluid and electrolytes, measurements were taken of total body water, extracellular fluid plasma volumes, levels of regulatory hormones, and nutrient consumption before, during, and after a nine-day flight. Changes in renal function were studied before and after the flight. In these 2 subjects, weightlessness was not associated with a decreased extracellular fluid volume. However, there were the characteristic decreases in plasma atrial natriuretic peptide concentrations, and increases in plasma and urinary cortisol. Results indicated decreased urine volume, even through the first 48 hours of flight. Fluid volumes and glomerular filtration rate were increased after landing, probably related to the saline-loading countermeasure used by Shuttle crewmembers. The information obtained as a result of this research will facilitate the development of future research programs, as well as preventive measures for future long-duration spaceflights.  相似文献   

18.
We studied heart rate (HR), heart rate variability (HRV), and respiratory sinus arrhythmia (RSA) in four male subjects before, during, and after 16 days of spaceflight. The electrocardiogram and respiration were recorded during two periods of 4 min controlled breathing at 7.5 and 15 breaths/min in standing and supine postures on the ground and in microgravity. Low (LF)- and high (HF)-frequency components of the short-term HRV (< or =3 min) were computed through Fourier spectral analysis of the R-R intervals. Early in microgravity, HR was decreased compared with both standing and supine positions and had returned to the supine value by the end of the flight. In microgravity, overall variability, the LF-to-HF ratio, and RSA amplitude and phase were similar to preflight supine values. Immediately postflight, HR increased by approximately 15% and remained elevated 15 days after landing. LF/HF was increased, suggesting an increased sympathetic control of HR standing. The overall variability and RSA amplitude in supine decreased postflight, suggesting that vagal tone decreased, which coupled with the decrease in RSA phase shift suggests that this was the result of an adaptation of autonomic control of HR to microgravity. In addition, these alterations persisted for at least 15 days after return to normal gravity (1G).  相似文献   

19.
Ground studies indicate that spaceflight may diminish vascular contraction. To examine that possibility, vascular function was measured in spontaneously hypertensive rats immediately after an 18-day shuttle flight. Isolated mesenteric resistance arterial responses to cumulative additions of norepinephrine, acetylcholine, and sodium nitroprusside were measured using wire myography within 17 h of landing. After flight, maximal contraction to norepinephrine was attenuated (P < 0.001) as was relaxation to acetylcholine (P < 0.001) and sodium nitroprusside (P < 0.05). At high concentrations, acetylcholine caused vascular contraction in vessels from flight animals but not in vessels from vivarium control animals (P < 0.05). The results are consistent with data from ground studies and indicate that spaceflight causes both endothelial-dependent and endothelial-independent alterations in vascular function. The resulting decrement in vascular function may contribute to orthostatic intolerance after spaceflight.  相似文献   

20.
A study was conducted evaluating the response of serum parathyroid hormone to acute hypercalcaemia and long term administration of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in patients receiving maintenance haemodialysis. During infusion of elemental calcium 4 mg/kg/h over four hours in 12 patients not receiving vitamin D the concentration of serum amino terminal parathyroid hormone fell by 31-96% (mean 74.8 (SD 17.6)%) while that of carboxy terminal parathyroid hormone changed little. There was a strong inverse correlation between baseline serum calcium concentration and percentage fall in amino terminal parathyroid hormone during infusion (r = 0.88; p less than 0.001). In seven patients who received prolonged treatment with 1,25(OH)2D3 after calcium infusion there was a positive correlation between maximum percentage fall in amino terminal parathyroid hormone during infusion and the percentage fall in amino terminal parathyroid hormone after 1,25(OH)2D3 treatment (r = 0.79; p less than 0.05). The responsiveness of the parathyroid glands to changes in calcium in acute studies may be used to predict the efficacy of long term treatment with 1,25(OH)2D3. Patients in whom calcium infusion does not suppress parathyroid hormone may have true parathyroid autonomy and require early parathyroidectomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号