首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Parathyroid hormone (PTH) inhibits Na+-K+-ATPase activity by serine phosphorylation of the alpha1 subunit through protein kinase C (PKC)- and extracellular signal-regulated kinase (ERK)-dependent pathways. Based on previous studies we postulated that PTH regulates sodium pump activity through isoform-specific PKC-dependent activation of ERK. In the present work utilizing opossum kidney cells, a model of renal proximal tubule, PTH stimulated membrane translocation of PKCalpha by 102 +/- 16% and PKCbetaI by 41 +/- 7% but had no effect on PKCbetaII and PKCzeta. Both PKCalpha and PKCbetaI phosphorylated the Na+-K+-ATPase alpha1 subunit in vitro. PTH increased the activity of PKCalpha but not PKCbetaI. Coimmunoprecipitation assays demonstrated that treatment with PTH enhanced the association between Na+-K+-ATPase alpha1 subunit and PKCalpha, whereas the association between Na+-K+-ATPase alpha1 subunit and PKCbetaI remained unchanged. A PKCalpha inhibitory peptide blocked PTH-stimulated serine phosphorylation of the Na+-K+-ATPase alpha1 subunit and inhibition of Na+-K+-ATPase activity. Pharmacologic inhibition of MEK-1 blocked PTH-stimulated translocation of PKCalpha, whereas transfection of constitutively active MEK-1 cDNA induced translocation of PKCalpha and increased phosphorylation of the Na+-K+-ATPase alpha1 subunit. In contrast, PTH-stimulated ERK activation was not inhibited by pretreatment with the PKCalpha inhibitory peptide. Inhibition of PKCalpha expression by siRNA did not inhibit PTH-mediated ERK activation but significantly reduced PTH-mediated phosphorylation of the Na+-K+-ATPase alpha1 subunit. Pharmacologic inhibition of phosphoinositide 3-kinase blocked PTH-stimulated ERK activation, translocation of PKCalpha, and phosphorylation of the Na+-K+-ATPase alpha1 subunit. We conclude that PTH stimulates Na+-K+-ATPase phosphorylation and decreases the activity of Na+-K+-ATPase by ERK-dependent activation of PKCalpha.  相似文献   

2.
We tested the hypothesis that previously demonstrated gender differences in ACh-induced vascular relaxation could involve diverse Na(+)-K(+)-ATPase functions. We determined Na(+)-K(+)-ATPase by measuring arterial ouabain-sensitive 86Rb uptake in response to ACh. We found a significant increase of Na+ pump activity only in aortic rings from female rats (control 206 +/- 11 vs. 367 +/- 29 nmol 86Rb/K.min(-1).g wt tissue(-1); P < 0.01). Ovariectomy eliminated sex differences in Na(+)-K(+)-ATPase function, and chronic in vivo hormone replacement with 17beta-estradiol restored the ACh effect on Na(+)-K(+)-ATPase. Because ACh acts by enhancing production of NO, we examined whether the NO donor sodium nitroprusside (SNP) mimics the action of ACh on Na(+)-K(+)-ATPase activity. SNP increased ouabain-sensitive 86Rb uptake in denuded female arteries (control 123 +/- 7 vs. 197 +/- 12 nmol 86Rb/K.min(-1).g wt tissue(-1); P < 0.05). Methylene blue (an inhibitor of guanylate cyclase) and KT-5823 (a cGMP-dependent kinase inhibitor) blocked the stimulatory action of SNP. Exposure of female thoracic aorta to the Na+/K+ pump inhibitor ouabain significantly decreased SNP-induced and ACh-mediated relaxation of aortic rings. At the molecular level, Western blot analysis of arterial tissue revealed significant gender differences in the relative abundance of catalytic isoforms of Na(+)-K(+)-ATPase. Female-derived aortas exhibited a greater proportion of alpha2-isoform (44%) compared with male-derived aortas. Furthermore, estradiol upregulated the expression of alpha2 mRNA in male arterial explants. Our results demonstrate that enhancement of ACh-induced relaxation observed in female rats may be in part explained by 1) NO-dependent increased Na(+)-K(+)-ATPase activity in female vascular tissue and 2) greater abundance of Na(+)-K(+)-ATPase alpha2-isoform in females.  相似文献   

3.
Previous studies have indicated that 20-hydroxyeicosatetraenoic acid (20-HETE) inhibits Na+ transport in the medullary thick ascending loop of Henle (mTALH), but the mechanisms involved remain uncertain. The present study compared the effects of 20-HETE with those of ouabain and furosemide on intracellular Na+ concentration ([Na+]i), Na+ -K+ -ATPase activity, and 86Rb+ uptake, an index of Na+ transport, in mTALH isolated from rats. Ouabain (2 mM) increased, whereas furosemide (100 microM) decreased, [Na+]i in the mTALH of rats. Ouabain and furosemide inhibited 86Rb+ uptake by 91 and 30%, respectively. 20-HETE (1 microM) had a similar effect as ouabain and increased [Na+]i from 19 +/- 1 to 30 +/- 1 mM. 20-HETE reduced Na+ -K+ -ATPase activity by 30% and 86Rb+ uptake by 37%, but it had no effect on 86Rb+ uptake or [Na+]i in the mTALH of rats pretreated with ouabain. 20-HETE inhibited 86Rb+ uptake by 12% and increased [Na+]i by 19 mM in mTALH pretreated with furosemide. These findings indicate that 20-HETE secondarily inhibits Na+ transport in the mTALH of the rat, at least, in part by inhibiting the Na+ -K+ -ATPase activity and raising [Na+]i.  相似文献   

4.
The present study aimed at investigating the influence of increased dietary calcium on Na(+)-K(+)-ATPase activity in heart and aorta of female Sprague-Dawley rats treated with oral contraceptive (OC) steroids. Rats were grouped as control (CR), OC-treated and OC+calcium-treated. OC-treated and OC+calcium-treated received a combination of OC steriods (ethinyloestradiol and norgestrel; ig). OC+calcium-treated rats were fed with 2.5% calcium diet, while OC-treated and CR groups were fed on 0.9% calcium diet. The activity of Na(+)-K(+)-ATPase in heart and aorta was significantly lower in OC-treated rats than those in the other groups. OC treatment caused significant increase in plasma glucose and significant decrease in plasma K+ as compared to control group. Decrease in Na(+)-K(+)-ATPase activity and plasma K+ was abrogated by increased calcium intake, while increase in plasma glucose was not normalized by calcium supplementation. Plasma levels of Na+, lipid peroxidation index and ascorbic acid were comparable among the three groups. These results showed that OC treatment could lead to impaired activity of cardiac and vascular Na(+)-K(+)-ATPase, possibly due to reduced plasma K+ level and these effects could be abolished by high calcium diet.  相似文献   

5.
6.
The effect of thyroid hormone on the high affinity Ca2+-ATPase activity in rat liver plasma membrane was studied. The high affinity Ca2+-ATPase activity in plasma membrane was activated by 10(-7)-10(-5) M of Ca2+ and was inhibited by 70 microM trifluoperazine. Thyroidectomy of rats was associated with an increase in the activity of high affinity Ca2+-ATPase. The increased enzyme activity was normalized by T4 administration to the animals. On the other hand, Na+-K+-ATPase activity in the membrane was decreased by thyroidectomy and the decreased enzyme activity was normalized by T4 administration. The results suggest that thyroid hormone inhibits the Ca2+ extrusion system by inhibiting calmodulin-independent high affinity Ca2+-ATPase in liver plasma membrane.  相似文献   

7.
The successful migration of euryhaline teleost fish from freshwater to seawater requires the upregulation of gill Na+-K+-ATPase, an ion transport enzyme located in the basolateral membrane (BLM) of gill chloride cells. Following 39 days of seawater exposure, Arctic char had similar plasma sodium and chloride levels as individuals maintained in freshwater, indicating they had successfully acclimated to seawater. This acclimation was associated with an eightfold increase in gill Na+-K+-ATPase activity but only a threefold increase in gill Na+-K+-ATPase protein number, suggesting that other mechanisms may also modulate gill Na+-K+-ATPase activity. We therefore investigated the influence of membrane composition on Na+-K+-ATPase activity by examining the phospholipid, fatty acid, and cholesterol composition of the gill BLM from freshwater- and seawater-acclimated Arctic char. Mean gill BLM cholesterol content was significantly lower ( approximately 22%) in seawater-acclimated char. Gill Na+-K+-ATPase activity in individual seawater Arctic char was negatively correlated with BLM cholesterol content and positively correlated with %phosphatidylethanolamine and overall %18:2n6 (linoleic acid) content of the BLM, suggesting gill Na+-K+-ATPase activity of seawater-acclimated char may be modulated by the lipid composition of the BLM and may be especially sensitive to those parameters known to influence membrane fluidity. Na+-K+-ATPase activity of individual freshwater Arctic char was not correlated to any membrane lipid parameter measured, suggesting that different lipid-protein interactions may exist for char living in each environment.  相似文献   

8.
1. We evaluated the influence of cigarette smoking on arterial wall membranes, using Na+-K+-ATPase activity, free cholesterol (FC) and phospholipid (PL) contents as indices of membrane structural and functional integrity. 2. Segments of aorta, carotid and femoral arteries were obtained from normal dogs (controls) and dogs subjected to chronic cigarette smoking for 2 yr (12 cigarettes a day). 3. Na+-K+-ATPase activity was assessed in segments of carotid and femoral arteries using a ouabain-sensitive 86Rb uptake procedure for intact tissues. 4. Free cholesterol and phospholipids were separated, identified, and quantitated from extracts of aortic samples by means of two dimensional thin-layer chromatography. 5. Na+-K+-ATPase activity was reduced in the smoker group in both carotid and femoral arteries. This reduced enzyme activity was accompanied by a rise in cell Na+ levels at both arterial sites. 6. Aortic FC was elevated and the PL profile was altered in the smoker group; as a result, phosphatidylcholine was reduced, whereas lysophosphatidylcholine, phosphatidic acid, and cardiolipin were elevated. 7. Phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine and sphingolipid levels were unchanged. In addition, the FC/PL ratio was increased in the smokers. 8. Taken together, the changes in Na+-K+-ATPase activity, FC/PL ratio and phospholipid profiles observed are consistent with the hypothesis that chronic cigarette smoking causes a reorganization of the phospholipid bilayer in the smooth-muscle cell membrane of the arterial wall.  相似文献   

9.
10.
The effect of Na+-K+ pump activation on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) was examined in mouse aorta and mouse aortic endothelial cells (MAECs). The Na+-K+ pump was activated by increasing extracellular K+ concentration ([K+]o) from 6 to 12 mM. In aortic rings, the Na+ ionophore monensin evoked EDR, and this EDR was inhibited by the Na+/Ca2+ exchanger (NCX; reverse mode) inhibitor KB-R7943. Monensin-induced Na+ loading or extracellular Na+ depletion (Na+ replaced by Li+) increased [Ca2+]i in MAECs, and this increase was inhibited by KB-R7943. Na+-K+ pump activation inhibited EDR and [Ca2+]i increase (K+-induced inhibition of EDR and [Ca2+]i increase). The Na+-K+ pump inhibitor ouabain inhibited K+-induced inhibition of EDR. Monensin (>0.1 microM) and the NCX (forward and reverse mode) inhibitors 2'4'-dichlorobenzamil (>10 microM) or Ni2+ (>100 microM) inhibited K+-induced inhibition of EDR and [Ca2+]i increase. KB-R7943 did not inhibit K+-induced inhibition at up to 10 microM but did at 30 microM. In current-clamped MAECs, an increase in [K+]o from 6 to 12 mM depolarized the membrane potential, which was inhibited by ouabain, Ni2+, or KB-R7943. In aortic rings, the concentration of cGMP was significantly increased by acetylcholine and decreased on increasing [K+]o from 6 to 12 mM. This decrease in cGMP was significantly inhibited by pretreating with ouabain (100 microM), Ni2+ (300 microM), or KB-R7943 (30 microM). These results suggest that activation of the forward mode of NCX after Na+-K+ pump activation inhibits Ca2+ mobilization in endothelial cells, thereby modulating vasomotor tone.  相似文献   

11.
Omega- and omega-1 hydroxylations are the major pathways by which arachidonic acid is metabolized in cortical and outer medullary microsomes of rat and rabbit kidneys. It is a cytochrome P450-dependent oxidation leading to the formation of 20-hydroxy- and 19-hydroxyeicosatetraenoic acids. In this study, we compared the effects of the synthetically prepared omega- and omega-1 metabolites of arachidonic acid on the activity of the renal Na+-K+-ATPase partially purified from rat renal cortical microsomes. 19(S)-hydroxyeicosatetraenoic acid caused a dose related stimulation of Na+-K+-ATPase activity with an EC50 of 3 x 10(-7) M. In contrast, neither 19(R)-hydroxyeicosatetraenoic acid, 20-hydroxyeicosatetraenoic acid nor arachidonic acid at 10(-6) M had any effect on Na+-K+-ATPase activity. In the same preparation, ouabain at 10(-3) M and 12(R)-hydroxyeicosatetraenoic acid at 10(-6) M inhibited the enzyme activity by 75% and 60%, respectively. We conclude that 19(S)-hydroxyeicosatetraenoic acid is a specific stimulator of renal Na+-K+-ATPase. Therefore, the formation of 19(S)-hydroxyeicosatetraenoic acid by renal cortical cytochrome P450 omega-1-hydroxylase may contribute to the regulation of renal function by regulating Na+-K+-ATPase which is essential for transtubular transport processes.  相似文献   

12.
Messenger RNA levels of phospholemman (PLM), a member of the FXYD family of small single-span membrane proteins with putative ion-transport regulatory properties, were increased in postmyocardial infarction (MI) rat myocytes. We tested the hypothesis that the previously observed reduction in Na+-K+-ATPase activity in MI rat myocytes was due to PLM overexpression. In rat hearts harvested 3 and 7 days post-MI, PLM protein expression was increased by two- and fourfold, respectively. To simulate increased PLM expression post-MI, PLM was overexpressed in normal adult rat myocytes by adenovirus-mediated gene transfer. PLM overexpression did not affect the relative level of phosphorylation on serine68 of PLM. Na+-K+-ATPase activity was measured as ouabain-sensitive Na+-K+ pump current (Ip). Compared with control myocytes overexpressing green fluorescent protein alone, Ip measured in myocytes overexpressing PLM was significantly (P < 0.0001) lower at similar membrane voltages, pipette Na+ ([Na+]pip) and extracellular K+ ([K+]o) concentrations. From -70 to +60 mV, neither [Na+]pip nor [K+]o required to attain half-maximal Ip was significantly different between control and PLM myocytes. This phenotype of decreased V(max) without appreciable changes in K(m) for Na+ and K+ in PLM-overexpressed myocytes was similar to that observed in MI rat myocytes. Inhibition of Ip by PLM overexpression was not due to decreased Na+-K+-ATPase expression because there were no changes in either protein or messenger RNA levels of either alpha1- or alpha2-isoforms of Na+-K+-ATPase. In native rat cardiac myocytes, PLM coimmunoprecipitated with alpha-subunits of Na+-K+-ATPase. Inhibition of Na+-K+-ATPase by PLM overexpression, in addition to previously reported decrease in Na+-K+-ATPase expression, may explain altered V(max) but not K(m) of Na+-K+-ATPase in postinfarction rat myocytes.  相似文献   

13.
cAMP and dexamethasone are known to modulate Na+ transport in epithelial cells. We investigated whether dibutyryl cAMP (DBcAMP) and dexamethasone modulate the mRNA expression of two key elements of the Na+ transport system in isolated rat alveolar epithelial cells: alpha-, beta-, and gamma-subunits of the epithelial Na+ channel (ENaC) and the alpha1- and beta1-subunits of Na+-K+-ATPase. The cells were treated for up to 48 h with DBcAMP or dexamethasone to assess their long-term impact on the steady-state level of ENaC and Na+-K+-ATPase mRNA. DBcAMP induced a twofold transient increase of alpha-ENaC and alpha1-Na+-K+-ATPase mRNA that peaked after 8 h of treatment. It also upregulated beta- and gamma-ENaC mRNA but not beta1-Na+-K+-ATPase mRNA. Dexamethasone augmented alpha-ENaC mRNA expression 4.4-fold in cells treated for 24 h and also upregulated beta- and gamma-ENaC mRNA. There was a 1.6-fold increase at 8 h of beta1-Na+-K+-ATPase mRNA but no significant modulation of alpha1-Na+-K+-ATPase mRNA expression. Because DBcAMP and dexamethasone did not increase the stability of alpha-ENaC mRNA, we cloned 3.2 kb of the 5' sequences flanking the mouse alpha-ENaC gene to study the impact of DBcAMP and dexamethasone on alpha-ENaC promoter activity. The promoter was able to drive basal expression of the chloramphenicol acetyltransferase (CAT) reporter gene in A549 cells. Dexamethasone increased the activity of the promoter by a factor of 5.9. To complete the study, the physiological effects of DBcAMP and dexamethasone were investigated by measuring transepithelial current in treated and control cells. DBcAMP and dexamethasone modulated transepithelial current with a time course reminiscent of the profile observed for alpha-ENaC mRNA expression. DBcAMP had a greater impact on transepithelial current (2.5-fold increase at 8 h) than dexamethasone (1.8-fold increase at 24 h). These results suggest that modulation of alpha-ENaC and Na+-K+-ATPase gene expression is one of the mechanisms that regulates Na+ transport in alveolar epithelial cells.  相似文献   

14.
The Na+ -K+ -ATPase enzyme is vital in skeletal muscle function. We investigated the effects of acute high-intensity interval exercise, before and following high-intensity training (HIT), on muscle Na+ -K+ -ATPase maximal activity, content, and isoform mRNA expression and protein abundance. Twelve endurance-trained athletes were tested at baseline, pretrain, and after 3 wk of HIT (posttrain), which comprised seven sessions of 8 x 5-min interval cycling at 80% peak power output. Vastus lateralis muscle was biopsied at rest (baseline) and both at rest and immediately postexercise during the first (pretrain) and seventh (posttrain) training sessions. Muscle was analyzed for Na+ -K+ -ATPase maximal activity (3-O-MFPase), content ([3H]ouabain binding), isoform mRNA expression (RT-PCR), and protein abundance (Western blotting). All baseline-to-pretrain measures were stable. Pretrain, acute exercise decreased 3-O-MFPase activity [12.7% (SD 5.1), P < 0.05], increased alpha1, alpha2, and alpha3 mRNA expression (1.4-, 2.8-, and 3.4-fold, respectively, P < 0.05) with unchanged beta-isoform mRNA or protein abundance of any isoform. In resting muscle, HIT increased (P < 0.05) 3-O-MFPase activity by 5.5% (SD 2.9), and alpha3 and beta3 mRNA expression by 3.0- and 0.5-fold, respectively, with unchanged Na+ -K+ -ATPase content or isoform protein abundance. Posttrain, the acute exercise induced decline in 3-O-MFPase activity and increase in alpha1 and alpha3 mRNA each persisted (P < 0.05); the postexercise 3-O-MFPase activity was also higher after HIT (P < 0.05). Thus HIT augmented Na+ -K+ -ATPase maximal activity despite unchanged total content and isoform protein abundance. Elevated Na+ -K+ -ATPase activity postexercise may contribute to reduced fatigue after training. The Na+ -K+ -ATPase mRNA response to interval exercise of increased alpha- but not beta-mRNA was largely preserved posttrain, suggesting a functional role of alpha mRNA upregulation.  相似文献   

15.
16.
The interrelationships among plasma renin activity (PRA, ng AI/ml plasma/hr), aldosterone concentration (ng%), and renal Na+-K+-ATPase activity (mumole PO4/mg protein/hr) were studied in 9 weanling normotensive spontaneously hypertensive rats (SHR), 9 adult hypertensive SHR, and 9 weanling and 9 adult normotensive Wistar-Kyoto rats (WKY). All groups were placed on a normal (0.4% sodium) diet. PRA and plasma aldosterone, measured in samples drawn from the ether-anesthetized rat, were higher in weanling SHR (15.2 +/- 2.0, 37 +/- 4.2) than in WKY. PRA measured in samples collected from a separate group of unanesthetized weanling SHR was also greater than in age-matched WKY. In adult SHR, PRA (6.1 +/- 0.9) and plasma aldosterone (20.0 +/- 2.7) were decreased. During the weanling period Na+-K+-ATPase activity in SHR was not only greater than in age-matched WKY but was also increased compared to adult normotensive and hypertensive rats (137 +/- 9 weanling SHR, 89 +/- 7 weanling WKY, 73 +/- 11 adult SHR, 84 +/- 17 adult WKY). Thus, during the weanling period the renin-angiotensin-aldosterone (R-A-A) system and renal Na+-K+-ATPase activity are activated in SHR. The elevation of Na+-K+-ATPase activity may be due to increased aldosterone levels. It was noted, however, that plasma aldosterone was similar in adult WKY and weanling SHR, while Na+-K+-ATPase activity was higher in SHR. These findings involving R-A-A and renal Na+-K+-ATPase activity prior to the elevation of blood pressure suggest that the kidneys may play a role in the initiation of hypertension in SHR.  相似文献   

17.
Electrogenic sodium pump (Na(+)-K(+)-ATPase) maintains intracellular ionic concentration and controls membrane potential, Therefore, we analyzed the modulation of Na(+)-K(+)-ATPase activity by the endothelium, cyclic AMP-protein kinase A (cAMP-PKA), protein kinase C (PKC) and nitric oxide-cyclic GMP-protein kinase G (NO-cGMP-PKG) in isolated rat thoracic aortas. The potassium-induced relaxation in arteries incubated in K(+)-free solution was used as a functional indicator of Na(+)-K(+)-ATPase activity for ounbain abolished the potassium-induced relaxation in rat aortas. Potasslium-induced relaxations after removal of the endothelium were moderately blunted in these preparations. In the presence of N(omega)-nitro-L-arginine methyl ester, but not indomethacin, the potassium-induced relaxation was also inhibited. Similar inhibitions of potassium-induced relaxations were observed in aortas treated with 8-bromo-cAMP and phorbol 12-myristate 13-acetate (PMA). Although inhibitors of PKA and PKC individually did not affect the potassium-induced relaxation, the combination of both inhibitors significantly potentiated that relaxation. In contrast to 8-bromo, cAMP and PMA, 8-bromo-cGMP enhanced the potassium-induced relaxation whereas 1H-[1,2,4}oxadiazolo[4,3-a]quinoxalin-1-one attenuated that relaxation. These results suggested that endothelium is a functional stimulator of the Na(+)-K(+)-ATPase activity. In addition, cAMP-PKA and PKC pathways inhibited the sodium pump while the NO-cGMP pathway stimulated this pump in the vascular bed.  相似文献   

18.
Cytochemical localization of Na+-K+-ATPase in rat type II pneumocytes   总被引:3,自引:0,他引:3  
The distribution of sodium-potassium-activated adenosinetriphosphatase (Na+-K+-ATPase) in the alveolar portion of rat lungs was examined by indirect immunofluorescence with the use of a mouse monoclonal anti-rat Na+-K+-ATPase and by ultrastructural cytochemistry using p-nitrophenylphosphate as substrate. The reaction was inhibitable by 10 mM ouabain or by the omission of K+ from the reaction mixture. Cysteine or levamisole was used to inhibit alkaline phosphatase activity. By immunofluorescence, staining was confined to cuboidal cells in alveolar spaces. These were tentatively identified as type II pneumocytes. By ultrastructural cytochemistry reaction product was present on the cytoplasmic side of the basolateral membranes of type II pneumocytes. No reaction product was observed in type I pneumocytes or in endothelium. These results indicate that type II pneumocytes contain more Na+-K+-ATPase, an enzyme important in vectorial electrolyte transport, than type I pneumocytes or endothelial cells. More sensitive methods, however, are required to determine the amounts and distribution of this enzyme in type I pneumocytes and pulmonary vascular endothelial cells.  相似文献   

19.
Nutritional supplementation with dehydroepiandrosterone (DHEA) may be a candidate for treating diabetes-induced vascular and neural dysfunction. DHEA is a naturally occurring adrenal androgen that has antioxidant properties and is reportedly reduced in diabetes. Using a prevention protocol, we found that dietary supplementation of streptozotocin-induced diabetic rats with 0.1, 0.25, or 0.5% DHEA caused a concentration-dependent prevention in the development of motor nerve conduction velocity and endoneurial blood flow impairment, which are decreased in diabetes. At 0.25%, DHEA significantly prevented the diabetes-induced increase in serum thiobarbituric acid-reactive substances and sciatic nerve conjugated diene levels. This treatment also reduced the production of superoxide by epineurial arterioles of the sciatic nerve. DHEA treatment (0.25%) significantly improved vascular relaxation mediated by acetylcholine in epineurial vessels of diabetic rats. Sciatic nerve Na+-K+-ATPase activity and myoinositol content was also improved by DHEA treatment, whereas sorbitol and fructose content remained elevated. These studies suggest that DHEA, by preventing oxidative stress and perhaps improving sciatic nerve Na+-K+-ATPase activity, may improve vascular and neural dysfunction in diabetes.  相似文献   

20.
Rubratoxin B, a lactone-containing bisanhydride metabolite of certain toxigenic molds, inhibited (Na+-K+)-stimulated ATPase activity of mouse brain microsomes in a dose-dependent manner with an estimated IC50 of 6 x 10(-6) M. Hydrolysis of ATP was linear with time and enzyme concentration, with or without rubratoxin in reaction mixtures. Altered pH and activity curves for (Na+-K+)-ATPase demonstrated comparable inhibition by rubratoxin in buffered acidic, neutral, and alkaline pH ranges. Kinetic studies of cationic-substrate activation of (Na+-K+)-ATPase indicated classical competitive inhibition for Na+ and K+. Results also showed competitive inhibition for K+ activated p-nitrophenyl phosphatase as demonstrated by altered binding site parameters without change in the catalytic velocity of dephosphorylation of the enzyme . phosphoryl complex. Noncompetitive inhibition with regards to activation by ATP and p-nitrophenyl phosphate was indicated by altered Vmax values with no change in Km values. Inhibition was partially restored by repeated washings. Preincubation with sulfhydryl agents protected the enzyme from inhibition. Cumulative inhibition studies with rubratoxin and ouabain indicated possible interaction between the two inhibitors of (Na+-K+)-ATPase. Rubratoxin appeared to exert its effects on (Na+-K+)-ATPase by interacting at Na+ and K+ sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号