首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistin, the peptide specifically secreted from adipocytes, is a hormone antagonistic to insulin action and, thus, may serve as a link between human obesity due to adiposity and insulin resistance associated with type 2 diabetes. To test this hypothesis, we studied the gene expression of resistin in adipocytes isolated from rats fed with a fructose diet which induced insulin resistance. Compared to the control rats (C) on a normal chow diet, the fructose-fed rats (F) developed hyperinsulinemia, glucose intolerance, hypertriglyceridemia and hypertension, a profile reminiscent of the syndrome X of patients with non-insulin-dependent diabetes mellitus (NIDDM). The F rats had significantly elevated plasma free fatty acids (FFA), enlarged epididymal fat pads, and increased adipocyte size compared with the C rats. We examined the glucose transport and the relative quantity of resistin mRNA produced in the adipocytes of these two groups of rats. Compared to the C rats, the F rats had a clearly reduced insulin-stimulated glucose transport. The gene expression of resistin and other adipocyte peptides was measured on the mRNA by semiquantitative RT-PCR; the validity of this technique was established in advance with a rat-fasting and then refeeding experiment. The F rats showed a decreased expression of the resistin gene, whereas gene expression of leptin and angiotensinogen in contrast increased. Free fatty acids were found to suppress the expression of resistin gene in normal rat adipocytes. These results demonstrate that an insulin-resistant instance in the fructose diet rat model exists with the decreased gene expression of resistin.  相似文献   

2.
The secretion of leptin is dually regulated. In fasting animals, plasma leptin concentrations reflect body fat stores, whereas the incremental leptin response to fasting or refeeding most likely reflects insulin-mediated energy flux and metabolism within adipocytes. Impaired secretion of leptin in either pathway could result in obesity. We therefore measured plasma leptin concentrations in fasted animals and plasma leptin concentrations after an intravenous glucose infusion in a rat model of obesity. Young Sprague-Dawley (S-D) and Fischer 344 (F344) rats had similar percent body fat and fasting glucose and fasting leptin concentrations. However, F344 animals had higher insulin concentrations and leptin responses to intravenous glucose than did the S-D animals. The animals were then fed a control or high-fat diet for 6 wk. High-fat fed animals gained more weight and body fat than did the control fed animals. Control and high-fat fed F344 animals gained approximately 40% (P < 0.0001) more weight and >100% (P < 0.01) more body fat than did the S-D animals. Fasting leptin concentrations and leptin concentrations after intravenous glucose infusions and feeding were more than double (P < 0.05) in F344 animals compared with S-D animals. Whether an animal is fed a control or high-fat diet had little effect on the leptin response to intravenous glucose. In conclusion, young, lean F344 animals, before the onset of obesity, demonstrated a greater acute leptin response to intravenous glucose than similarly lean S-D animals. After a 6-wk diet, F344 animals had a greater percent increase in body weight and insulin resistance and exhibited higher fasting leptin concentrations and a greater absolute leptin response to intravenous glucose compared with the S-D animals. The chronic diet (control or high fat) had little impact on the acute leptin response to intravenous glucose. F344 animals exhibit leptin resistance in young, lean animals and after aging and fat accumulation.  相似文献   

3.
We previously created a novel F-DIO rat strain derived by crossing rats selectively bred for the diet-induced obesity (DIO) phenotype with obesity-resistant Fischer F344 rats. The offspring retained the DIO phenotype through 3 backcrosses with F344 rats but also had exaggerated insulin responses to oral glucose before they became obese on a 31% fat high-energy (HE) diet. Here, we demonstrate that chow-fed rats from the subsequent randomly bred progeny required 57% lower glucose infusions to maintain euglycemia during a hyperinsulinemic clamp in association with 45% less insulin-induced hepatic glucose output inhibition and 80% lower insulin-induced glucose uptake than F344 rats. The DIO phenotype and exaggerated insulin response to oral glucose in the nonobese, chow-fed state persisted in the F6 generation. Also, compared with F344 rats, chow-fed F-DIO rats had 68% higher arcuate nucleus proopiomelanocortin mRNA expression which, unlike the increase in F344 rats, was decreased by 26% on HE diet. Further, F-DIO lateral hypothalamic orexin expression was 18% lower than in F344 rats and was increased rather than decreased by HE diet intake. Finally, both maternal obesity and 30% caloric restriction during the third week of gestation produced F-DIO offspring which were heavier and had higher leptin and insulin levels than lean F-DIO dam offspring. Third-gestational week dexamethasone also produced offspring with higher leptin and insulin levels but with lower body weight. Thus F-DIO rats represent a novel and potentially useful model for the study of DIO, insulin resistance, and perinatal factors that influence the development and persistence of obesity.  相似文献   

4.
Fischer-344 (F344) rats exhibit proteinuria and insulin resistance in the absence of hypertension as they age. We determined the effects of long-term (1 yr) treatment with the angiotensin (ANG) II type 1 (AT(1)) receptor blocker L-158,809 on plasma and urinary ANG peptide levels, systolic blood pressure (SBP), and indexes of glucose metabolism in 15-mo-old male F344 rats. Young rats at 3 mo of age (n = 8) were compared with two separate groups of older rats: one control group (n = 7) and one group treated with L-158,809 (n = 6) orally (20 mg/l) for 1 yr. SBP was not different between control and treated rats but was higher in young rats. Serum leptin, insulin, and glucose levels were comparable between treated and young rats, whereas controls had higher glucose and leptin with a similar trend for insulin. Plasma ANG I and ANG II were higher in treated than untreated young or older rats, as evidence of effective AT(1) receptor blockade. Urinary ANG II and ANG-(1-7) were higher in controls compared with young animals, and treated rats failed to show age-related increases. Protein excretion was markedly lower in treated and young rats compared with control rats (young: 8 +/- 2 mg/day vs. control: 129 +/- 51 mg/day vs. treated: 9 +/- 3 mg/day, P < 0.05). Long-term AT(1) receptor blockade improves metabolic parameters and provides renoprotection. Differential regulation of systemic and intrarenal (urinary) ANG systems occurs during blockade, and suppression of the intrarenal system may contribute to reduced proteinuria. Thus, insulin resistance, renal injury, and activation of the intrarenal ANG system during early aging in normotensive animals can be averted by renin-ANG system blockade.  相似文献   

5.
The age decline in DHEA levels has been associated with the appearance of age-related disorders such as obesity and insulin resistance. The aim of this study was to analyse the effect of chronic administration (13 weeks) of DHEA (5 g/kg diet) to old female rats fed on a high-fat diet on body weight and adiposity, and concretely on the expression of the adipokines related to obesity and insulin resistance, such as leptin, adiponectin and resistin. DHEA treatment induced a decrease in body weight, adipose tissue mass and serum insulin, adiponectin and leptin levels. Adiponectin mRNA expression in visceral fat depots decreased with aging, but this reduction was attenuated by DHEA treatment. DHEA treatment also stimulated resistin gene expression in the ovaric and renal adipose depots, which is associated with an increase in its circulating levels. In conclusion, DHEA treatment decreases body weight and adiposity in old female rats fed a high-fat diet, leading to an improvement of the HOMA index for insulin sensitivity, with decreasing circulating insulin levels, and preventing the age-associated decline of visceral-adipose adiponectin expression.  相似文献   

6.
Zhang Y  Scarpace PJ 《Peptides》2006,27(2):350-364
We identified that leptin resistance in aged-obese rats has both peripheral and central components. The central resistance is characterized by diminished hypothalamic leptin receptors and impaired leptin signal transduction. We developed a new model of leptin-induced leptin resistance in which application of the central leptin gene delivery produces unabated hypothalamic leptin over-expression. The chronic central elevation of leptin precipitates leptin resistance in young animals devoid of obesity and exacerbates it in mature or aged animals with obesity. Despite leptin resistance, our aged obese, DIO, and leptin-induced leptin resistant rats were fully responsive to central pharmacological melanocortin activation. We propose that the central leptin resistance resides between leptin receptor and melanocortin receptor activation. Our central POMC gene therapy overcame leptin resistance, producing weight and fat loss and improved insulin sensitivity in obese Zucker and aged rats. This success highlights the central melanocortin system as a useful drug target for combating obesity.  相似文献   

7.
F344/DuCrj rats are genetically deficient in dipeptidyl peptidase IV (DPPIV). This enzyme degrades glucagon-like peptide-1 (GLP-1), which induces glucose-dependent insulin secretion. Glucose tolerance of F344/DuCrj rats is improved as a result of enhanced insulin release induced by high levels of plasma GLP-1. In this study, we fed F344/DuCrj rats and DPPIV-positive F344/Jcl rats, aged five weeks, on a high-fat (HF) diet to examine the effect of DPPIV deficiency on food intake and insulin resistance. F344/Jcl rats gained significantly more body weight and consumed significantly more food than F344/DuCrj rats from Week 4 on either control or HF diet. Glucose excursion in the oral glucose tolerance test (OGTT) was improved in F344/DuCrj rats fed on the control or HF diet at all times examined, compared with F344/Jcl rats. Homeostasis model assessment (HOMA) insulin resistance values of F344/DuCrj and F344/Jcl rats fed on HF diet were higher than those of animals fed on control diet up to Week 6. However, HOMA insulin resistance values of F344/DuCrj rats fed on HF diet became significantly lower than those of F344/Jcl rats on HF diet during Weeks 8-10. The area under the insulin curve in the OGTT at Week 10 showed that the insulin resistance of HF-diet-fed F344/DuCrj rats was greatly ameliorated. Plasma active GLP-1 concentrations of F344/DuCrj rats in the fed state were significantly higher than those of F344/Jcl rats. These observations suggest that DPPIV deficiency results in improved glucose tolerance and ameliorated insulin resistance owing to enhanced insulin release and inhibition of food intake as a result of high active GLP-1 levels.  相似文献   

8.
Differential gene expression between visceral and subcutaneous fat depots.   总被引:5,自引:0,他引:5  
Abdominal obesity has been linked to the development of insulin resistance and Type 2 diabetes mellitus (DM2). By surgical removal of visceral fat (VF) in a variety of rodent models, we prevented insulin resistance and glucose intolerance, establishing a cause-effect relationship between VF and the metabolic syndrome. To characterize the biological differences between visceral and peripheral fat depots, we obtained perirenal visceral (VF) and subcutaneous (SC) fat from 5 young rats. We extracted mRNA from the fat tissue and performed gene array hybridization using Affymetrix technology with a platform containing 9 000 genes. Out of the 1 660 genes that were expressed in fat tissue, 297 (17.9 %) genes show a two-fold or higher difference in their expression between the two tissues. We present the 20 genes whose expression is higher in VF fat (by 3 - 7 fold) and the 20 genes whose expression is higher in SC fat (by 3 - 150 fold), many of which are predominantly involved in glucose homeostasis, insulin action, and lipid metabolism. We confirmed the findings of gene array expression and quantified the changes in expression in VF of genes involved in insulin resistance (PPARgamma leptin) and its syndrome (angiotensinogen and plasminogen activating inhibitor-1, PAI-1) by real-time PCR (qRT-PCR) technology. Finally, we demonstrated increased expression of resistin in VF by around 12-fold and adiponectin by around 4-fold, peptides that were not part of the gene expression platform. These results indicate that visceral fat and subcutaneous fat are biologically distinct.  相似文献   

9.
Elevated serum resistin is implicated in insulin resistance associated with obesity and type 2 diabetes mellitus. Alcohol consumption interferes with the nutritional status, metabolic and hormonal activity of the drinker. Impact of ethanol intake on resistin level and resistin metabolic effects is unknown. Effect of long-time (28 days) ad libitum moderate alcohol (6% ethanol solution) intake on serum resistin and resistin mRNA level in adipose tissue of rats (A) was compared to control (C) and pair-fed (PF) animals. PF rats were fed the same caloric amount as A rats on previous day. Alcohol consumption resulted in reduction of food and energy intake, decreased body mass gain, epididymal fat pads mass and smaller adipocytes (vs. C rats). Alcohol intake significantly increased serum resistin and glucose, insulinemia remained unchanged. Systemic insulin resistance was not proved by HOMA, QUICKI and McAuley indexes, but impaired insulin effect on glucose transport in isolated adipocytes was present. Elevated serum resistin was positively correlated with glycemia (r = 0.88, p < 0.01) and negatively with fat cell size (r = -0.73, p < 0.05). High resistin level as the consequence of long-time alcohol intake could contribute to smaller adipocytes, higher glycemia, attenuation of insulin-stimulated glucose transport in adipocytes. Diminished resistin gene expression in adipose tissue of A and PF rats was present.  相似文献   

10.
Association of resistin with visceral fat and muscle insulin resistance   总被引:3,自引:0,他引:3  
Borst SE  Conover CF  Bagby GJ 《Cytokine》2005,32(1):39-44
Maturing Sprague-Dawley (S-D) rats develop obesity and skeletal muscle insulin resistance. To investigate the relationship between fat mass and insulin responses, we performed surgical removal of the epididymal and retroperitoneal depots of visceral adipose tissue (VF) or sham surgery (SHAM) in male rats aged 4 months. At sacrifice, 30 days later, the mass of visceral fat was 48% lower (p<0.05) in VF- compared to SHAM, while subcutaneous fat was essentially unchanged. VF- animals displayed increased insulin responses in isolated strips of skeletal muscle. Insulin-stimulated glucose transport was increased 28% in soleus muscle (p<0.05), with a trend toward a 31% increase in extensor digitorum longus muscle (p=0.058). Glucose tolerance was not significantly affected by surgical fat removal. In VF- animals, serum resistin was reduced 26% (p<0.05) and serum adiponectin was reduced 30% (p<0.05), with trends for reductions in IL-4 (58% reduction, p=0.084) and IL-6 (56% reduction, p=0.123). TNF-alpha, leptin and free fatty acids (NEFAs) were unchanged. We conclude that in maturing S-D rats, increased visceral adiposity leads to an increase in systemic release in resistin and possibly interleukins. Elevation of circulating cytokines may play a role in the development of muscle insulin resistance.  相似文献   

11.
12.
Resistin expression and regulation in mouse pituitary   总被引:27,自引:0,他引:27  
  相似文献   

13.
Consumption of high levels of fructose in humans and animals leads to metabolic and cardiovascular dysfunction. There are questions as to the role of the autonomic changes in the time course of fructose-induced dysfunction. C57/BL male mice were given tap water or fructose water (100 g/l) to drink for up to 2 mo. Groups were control (C), 15-day fructose (F15), and 60-day fructose (F60). Light-dark patterns of arterial pressure (AP) and heart rate (HR), and their respective variabilities were measured. Plasma glucose, lipids, insulin, leptin, resistin, adiponectin, and glucose tolerance were quantified. Fructose increased systolic AP (SAP) at 15 and 60 days during both light (F15: 123 ± 2 and F60: 118 ± 2 mmHg) and dark periods (F15: 136 ± 4 and F60: 136 ± 5 mmHg) compared with controls (light: 111 ± 2 and dark: 117 ± 2 mmHg). SAP variance (VAR) and the low-frequency component (LF) were increased in F15 (>60% and >80%) and F60 (>170% and >140%) compared with C. Cardiac sympatho-vagal balance was enhanced, while baroreflex function was attenuated in fructose groups. Metabolic parameters were unchanged in F15. However, F60 showed significant increases in plasma glucose (26%), cholesterol (44%), triglycerides (22%), insulin (95%), and leptin (63%), as well as glucose intolerance. LF of SAP was positively correlated with SAP. Plasma leptin was correlated with triglycerides, insulin, and glucose tolerance. Results show that increased sympathetic modulation of vessels and heart preceded metabolic dysfunction in fructose-consuming mice. Data suggest that changes in autonomic modulation may be an initiating mechanism underlying the cluster of symptoms associated with cardiometabolic disease.  相似文献   

14.
Objectives: Obesity is an important risk factor for the development of insulin resistance and type 2 diabetes. Recently, a newly described circulating hormone resistin, which is expressed primarily in adipocytes, has been shown to antagonize insulin action in mice. Resistin, therefore, has been suggested to play a role in the pathogenesis of insulin resistance. Research Methods and Procedures: We studied the expression of the resistin gene in primary cultured human adipocytes and preadipocytes. We also examined resistin gene expression in subcutaneous abdominal adipocytes in women (n = 24) over a wide range of body weight and insulin sensitivity. Results: Whereas resistin gene expression was barely detectable in mature adipocytes, it was highly expressed in preadipocytes. Adipogenic differentiation of preadipocytes was associated with a time-dependent down-regulation of resistin gene expression. There was no relationship between body weight, insulin sensitivity, or other metabolic parameters and adipocyte resistin gene expression in the clinical study. Discussion: Together these findings do not support an important role of adipose-tissue resistin gene expression in human insulin resistance.  相似文献   

15.
Anorexia nervosa (AN) is characterized by self-induced starvation leading to severe weight and fat loss. In the present study, we measured fasting plasma levels of adiponectin, leptin, resistin, insulin and glucose in 10 women with a restrictive type of AN and in 12 healthy women (C). Insulin sensitivity was determined according to homeostasis model assessment of insulin resistance (HOMA-R). Plasma resistin, leptin and insulin levels were significantly decreased, whereas plasma adiponectin levels were significantly increased in patients with AN compared to the C. HOMA-R was significantly decreased in patients with AN compared to the C group. Plasma adiponectin and leptin concentrations negatively and positively correlated with the body mass index and percentage body fat in both groups. Plasma adiponectin levels were negatively related to plasma insulin levels in the AN group only. In conclusion, we demonstrated that AN is associated with significantly decreased plasma leptin and resistin levels, markedly increased plasma adiponectin levels and increased insulin sensitivity. Plasma leptin and adiponectin levels were related to the body size and adiposity. Hyperadiponectinemia could play a role in increased insulin sensitivity of patients with AN. Neither body size and adiposity nor insulin sensitivity are the major determinants of plasma resistin levels in AN.  相似文献   

16.
This study examined the effect of intracerebroventricular leptin on insulin sensitivity in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were cannulated in the lateral ventricle and, after recovery, administered either intravenous STZ (50 mg/kg) to induce diabetes or citrate buffer. Chronic leptin (10 microg/10 microl icv) or vehicle injections were administered daily for 14 days beginning 2 days after establishment of hyperglycemia in the diabetic animals. At the end of the 2 wk of injections, insulin sensitivity was measured by the steady-state plasma glucose (SSPG) method. Blood glucose concentrations were dramatically reduced and normalized by the 4th day in diabetic animals receiving intracerebroventricular leptin treatment. Diabetic animals exhibited insulin resistance, whereas intracerebroventricular leptin significantly enhanced insulin sensitivity, as indicated by decreased SSPG. Circulating leptin levels were not increased in animals injected with intracerebroventricular leptin. Thus the increased peripheral insulin sensitivity appears to be due solely to the presence of leptin in the brain, not to leptin acting peripherally. These data imply that inadequate central leptin signaling may lead to insulin resistance.  相似文献   

17.
18.
Resistin, a product of white adipose tissue, is postulated to induce insulin resistance in obesity and regulate adipocyte differentiation. The aim of this study was to examine resistin gene expression in adipose tissue from mice bearing the MAC16 adenocarcinoma, which induces cancer cachexia with marked wasting of adipose tissue and skeletal muscle mass. MAC16-bearing mice lost weight progressively over the period following tumour transplantation, while the weight of control mice remained stable. Leptin mRNA in gonadal fat was 50 % lower in MAC16 mice than in controls (p < 0.05). Plasma insulin concentrations were also significantly lower in the MAC16 group (p < 0.05). However, resistin mRNA level in gonadal fat in MAC16 mice was similar to controls (94 % of controls). Thus, despite severe weight loss and significant falls in leptin expression and insulin concentration, resistin gene expression appears unchanged in white adipose tissue of mice with MAC16 tumour. Maintenance of resistin production may help inhibit the formation of new adipocytes in cancer cachexia.  相似文献   

19.
Human obesity and high fat feeding in rats are associated with the development of insulin resistance and perturbed carbohydrate and lipid metabolism. It has been proposed that these metabolic abnormalities may be reversible by interventions that increase plasma leptin. Up to now, studies in nongenetic animal models of obesity and in human obesity have concentrated on multiple injection therapy with mixed results. Our study sought to determine whether a sustained, moderate increase in plasma leptin, achieved by administration of a recombinant adenovirus containing the leptin cDNA (AdCMV-leptin) would be effective in reversing the metabolic abnormalities of the obese phenotype. Wistar rats fed a high-fat diet (HF) were heavier (P < 0.05), had increased fat mass and intramuscular triglycerides (mTG), and had elevated plasma glucose, insulin, triglyceride, and free fatty acids compared with standard chow-fed (SC) control animals (all P < 0.01). HF rats also had impaired glucose tolerance and were markedly insulin resistant, as demonstrated by a 40% reduction in insulin-stimulated muscle glucose uptake (P < 0.001). Increasing plasma leptin levels to 29.0 +/- 1.5 ng/ml (from 7.0 +/- 1.4 ng/ml, P < 0.001) for a period of 6 days decreased adipose mass by 40% and normalized plasma glucose and insulin levels. In addition, insulin-stimulated skeletal muscle glucose uptake was normalized in hyperleptinemic rats, an effect that correlated closely with a 60% (P < 0.001) decrease in mTG. Importantly, HF rats that received a control adenovirus containing the beta-galactosidase cDNA and were calorically matched to AdCMV-leptin-treated animals remained hyperglycemic, hyperinsulinemic, insulin resistant, and maintained elevated mTG. We conclude that a gene-therapeutic intervention that elevates plasma leptin moderately for a sustained period reverses diet-induced hyperglycemia, hyperinsulinemia, and skeletal muscle insulin resistance, and that these improvements are tightly linked to leptin-induced reductions in mTG.  相似文献   

20.
Insulin resistance and adiposity induced by a long-term sucrose-rich diet (SRD) in rats could be reversed by fish oil (FO). Regulation of plasma leptin and adiponectin levels, as well as their gene expression, by FO might be implicated in these findings. This study was designed to evaluate the long-term regulation of leptin and adiponectin by dietary FO in a dietary model of insulin resistance induced by long-term SRD in rats and to determine their impact on adiposity and insulin sensitivity. Rats were randomized to consume a control diet (CD; n = 25) or an SRD (n = 50) for 7 mo. Subsequently, the SRD-fed rats were randomized to consume SRD+FO or to continue on SRD for an additional 2 mo. Long-term SRD induced overweight and decreased both plasma leptin and adiponectin levels without change in gene expression. Dyslipidemia, adiposity, and insulin resistance accompanied these modifications. Shifting the source of fat to FO for 2 mo increased plasma levels of both adipokines, reversed insulin resistance and dyslipidemia, and improved adiposity. These results were not associated with modifications in gene expression. These results suggest that increasing both adipokines by dietary FO might play an essential role in the normalization of insulin resistance and adiposity in dietary-induced, insulin-resistant models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号