首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We have recently described the transferrin-mediated uptake and release of iron by BeWo cells [van der Ende, du Maine, Simmons, Schwartz & Strous (1987) J. Biol. Chem. 262, 8910-8916]. We now extend our studies of the mechanisms responsible for uptake and release of iron by these cells. Following preloading, 59Fe release was maximal (about 12%) after about 4 h. Replacement of the extracellular medium with an equal volume of fresh medium either prior to or following the time at which equilibrium was reached further stimulated 59Fe release. Both the rate and maximum amount of iron release decreased if longer loading times were used. Preincubation of BeWo cells for 15 min with 10 mM-sodium cyanide and 50 mM-2-deoxyglucose prior to the determination of 59Fe release did not alter the amount released into medium (which did not contain a high-affinity iron chelator). However, under these conditions, the uptake of 59Fe was dramatically inhibited as a result of prolongation of the transferrin-transferrin-receptor complex recycling time. These results demonstrate that the release of iron from BeWo cells is independent of cellular ATP levels, whereas iron uptake is ATP-dependent. Rates of both 59Fe release and 59Fe uptake were temperature-dependent. Analysis of these data via an Arrhenius plot suggests a single rate-limiting step for the release and uptake processes between 0 and 37 degrees C. The apparent energies of activation of these processes are very similar (approx. 59.0 kJ/mol for iron release and 50.6 kJ/mol for iron uptake), which raises the possibility that the release and uptake of iron share a common thermodynamically rate-limiting step. Possible mechanisms involved in iron release out of the cell and out of the endosome are discussed.  相似文献   

2.
Previous studies have implicated copper proteins, including ceruloplasmin, in intestinal iron transport. Polarized Caco2 cells with tight junctions were used to examine the possibilities that (a) ceruloplasmin promotes iron absorption by enhancing release at the basolateral cell surface and (b) copper deficiency reduces intestinal iron transport. Iron uptake and overall transport were followed for 90 min with 1 &mgr;M 59Fe(II) applied to the apical surface of Caco2 cell monolayers. Apotransferrin (38 &mgr;M) was in the basolateral chamber. Induction of iron deficiency with desferrioxamine (100 &mgr;M; 18 h) markedly increased uptake and overall transport of iron. Uptake increased from about 20% to about 65% of dose, and overall 59Fe transport from <1% to 60% of dose. On the basis of actual iron released into the basal chamber (measured with bathophenanthroline), transport increased 8-fold. Desferrioxamine pretreatment reduced cellular Fe by 55%. The addition of freshly isolated, enzymatically active human ceruloplasmin to the basolateral chamber during absorption had no effect on uptake or transport of iron by the cells. Unexpectedly, pretreatment with three different chelators of copper (18 h), which reduced cellular levels about 40%, more than doubled iron uptake and raised overall transport to 20%. This was so, whether or not cells were also made iron deficient with desferrioxamine. Acute addition of 1 &mgr;M Cu(II) to the apical chamber had no significant effect upon iron uptake, retention, or transport in iron deficient or normal cells, in the presence of absence of ascorbate. We conclude that intestinal absorption of Fe(II) is unlikely to depend upon plasma ceruloplasmin, and that cuproproteins involved in this form of iron transport must be binding copper tightly.  相似文献   

3.
Divalent metal transporter 1 (DMT1) is likely responsible for the release of iron from endosomes to the cytoplasm in placental syncytiotrophoblasts (STB). To determine the localization and the regulation of DMT1 expression by iron directly in placenta, the expression of DMT1 in human term placental tissues and BeWo cells (human placental choriocarcinoma cell line) was detected and the change in expression in response to different iron treatments on BeWo cells was observed. DMT1 was shown to be most prominent near the maternal side in human term placenta and predominantly in the cytoplasm of BeWo cells. BeWo cells were treated with desferrioxamine (DFO) and human holotransferrin (hTf-2Fe) and it was found that both DMT1 mRNA and protein increased significantly with DFO treatment and decreased with hTf-2Fe treatment. Further, DMT1 mRNA responded more significantly to treatments if it possessed an iron-responsive element than mRNA without this element. This study indicated that DMT1 is likely involved in endosomal iron transport in placental STB and placental DMT1 + IRE expression was primarily regulated by the IRE/IRP mechanism.  相似文献   

4.
The goal of this study was to determine the effects of Fe supplementation on the anemia of Cu deficiency in rats. In addition, we observed changes in serum and organ Cu and Fe during the development of Cu deficiency. In Experiment 1, weanling male Sprague-Dawley rats were fed AIN-93G diets containing either <0.3 mg Cu [Cu deficient (CuD)] or 6.0 mg Cu [Cu adequate (CuA)] per kilogram diet, and 35 mg Fe/kg. Five rats from each group were killed at intervals for the analysis of hematologic parameters and mineral content of various organs. In Experiment 2, two groups of 24 rats each were fed either the CuA diet or the CuD diet for 14 days. Then, three sets of eight rats in each group received three separate Fe treatments: (1) daily intraperitoneal injections of 400 mug Fe (Cu-free ferric citrate) per rat for another 14 days, (2) fed similar diets that contained three times the normal amount of Fe (105 mg/kg) for 14 days, or (3) received no further Fe treatment. At day 21, all rats were fed a 1-g meal labeled with (59)Fe to determine Fe absorption. After 28 days, rats were killed for the analyses of Fe and Cu status. Results of Experiment 1 showed that within 14 days, CuD rats had lower blood hemoglobin (Hgb), red blood cell count, and mean corpuscular volume than CuA rats. Copper concentrations in all tissues measured were lower in the CuD rats than in controls. Serum ceruloplasmin (Cp) activity in CuD rats was only 0.8% of CuA rats at day 7. During this period, enterocyte and liver Fe concentrations were elevated and serum Fe was reduced, but there was no change in spleen Fe. Results of Experiment 2 showed that CuD rats absorbed less Fe than CuA rats. Supplemental Fe by diet or by intraperitoneal injections did not prevent anemia in the CuD rats or affect other parameters of Cu status. Serum total iron binding capacity [transferrin (Tf)] was not changed by Cu deficiency or by Fe supplementation; however, percent Tf saturation was reduced in CuD rats but was not enhanced by Fe supplementation. These data suggest that anemia of Cu deficiency occurs because of reduced Fe absorption, and it inhibits release of Fe from the liver and inefficient loading of Fe into Tf because of very low plasma Cp activity. The latter then leads to inefficient delivery of Fe to the erythroid cells for heme and Hgb synthesis.  相似文献   

5.
Stoj C  Kosman DJ 《FEBS letters》2003,554(3):422-426
The Fet3 protein in Saccharomyces cerevisiae and mammalian ceruloplasmin are multicopper oxidases (MCO) that are required for iron homeostasis via their catalysis of the ferroxidase reaction, 4Fe(2+)+O(2)+4H(+)-->4Fe(3+)+2H(2)O. The enzymes may play an essential role in copper homeostasis since they exhibit a strikingly similar kinetic activity towards Cu(1+) as substrate. In contrast, laccase, an MCO that exhibits weak activity towards Fe(2+), exhibits a similarly weak activity towards Cu(1+). Kinetic analyses of the Fet3p reaction demonstrate that the ferroxidase and cuprous oxidase activities are due to the same electron transfer site on the enzyme. These two ferroxidases are fully competent kinetically to play a major role in maintaining the cuprous-cupric redox balance in aerobic organisms.  相似文献   

6.
Cyanide binding to bovine heart cytochrome c oxidase at five redox levels has been investigated by use of infrared and visible-Soret spectra. A C-N stretch band permits identification of the metal ion to which the CN- is bound and the oxidation state of the metal. Non-intrinsic Cu, if present, is detected as a cyanide complex. Bands can be assigned to Cu+CN at 2093 cm-1, Cu2+CN at 2151 or 2165 cm-1, Fe3+CN at 2131 cm-1, and Fe2+CN at 2058 cm-1. Fe2+CN is found only when the enzyme is fully reduced whereas the reduced Cu+CN occurs in 2-, 3-, and 4-electron reduced species. A band for Fe3+CN is not found for the complex of fully oxidized enzyme but is for all partially reduced species. Cu2+CN occurs in both fully oxidized and 1-electron-reduced oxidase. CO displaces the CN- at Fe2+ to give a C-O band at 1963.5 cm-1 but does not displace the CN- at Cu+. Another metal site, noted by a band at 2042 cm-1, is accessible only in fully reduced enzyme and may represent Zn2+ or another Cu+. Binding of either CN- or CO may induce electron redistribution among metal centers. The extraordinary narrowness of ligand infrared bands indicates very little mobility of the components that line the O2 reduction site, a property of potential advantage for enzyme catalysis. The infrared evidence that CN- can bind to both Fe and Cu supports the possibility of an O2 reduction mechanism in which an intermediate with a mu-peroxo bridge between Fe and Cu is formed. On the other hand, the apparent independence of Fe and Cu ligand-binding sites makes a heme hydroperoxide (Fe-O-O-H) intermediate an attractive alternative to the formation an Fe-O-O-Cu linkage.  相似文献   

7.
In cytochrome c oxidase, oxido-reductions of heme a/Cu(A) and heme a3/Cu(B) are cooperatively linked to proton transfer at acid/base groups in the enzyme. H+/e- cooperative linkage at Fe(a3)/Cu(B) is envisaged to be involved in proton pump mechanisms confined to the binuclear center. Models have also been proposed which involve a role in proton pumping of cooperative H+/e- linkage at heme a (and Cu(A)). Observations will be presented on: (i) proton consumption in the reduction of molecular oxygen to H2O in soluble bovine heart cytochrome c oxidase; (ii) proton release/uptake associated with anaerobic oxidation/reduction of heme a/Cu(A) and heme a3/Cu(B) in the soluble oxidase; (iii) H+ release in the external phase (i.e. H+ pumping) associated with the oxidative (R-->O transition), reductive (O-->R transition) and a full catalytic cycle (R-->O-->R transition) of membrane-reconstituted cytochrome c oxidase. A model is presented in which cooperative H+/e- linkage at heme a/Cu(A) and heme a3/Cu(B) with acid/base clusters, C1 and C2 respectively, and protonmotive steps of the reduction of O2 to water are involved in proton pumping.  相似文献   

8.
The process of placental iron transfer is an important physiological process during pregnancy. However, the molecular mechanism of placental iron transport has not been completely elucidated until now. Ferroportin 1 (FPN1) and hephaestin (Heph) have been identified as the important molecules involved in duodenal iron export. However, whether they participate in the placental iron efflux has been undefined until now. In this study, the BeWo cells were treated with desferrioxamine and Holo-transferrin human in different concentrations and harvested at 48 and 72 h. The mRNA expression of FPN1 and Heph was detected with quantitative real-time polymerase chain reaction, and the protein expression was detected with western blots. The results showed an up-regulated FPN1 expression with desferrioxamine treatment and down-regulated expression with Holo-transferrin human supplementation. However, the change of FPN1 expression at protein level was limited. Heph expression enhanced when cells were treated with desferrioxamine although the quantity of Heph expression was low. Heph expression showed no significant change with Holo-transferrin human supplementation. It indicates that FPN1 may participate in placental iron transport, and placental FPN1 expression is obviously not dependent on the iron regular element/iron regular protein regulation. An alternatively spliced FPN1 isoform that lacks an iron regular element may be the predominant expression in BeWo cells. It also demonstrates that Heph is active in placenta but may not play a key role in placental iron transport because it is not the main part of placental copper oxidase.  相似文献   

9.
The role of ceruloplasmin as a ferroxidase in the blood, mediating the release of iron from cells and its subsequent incorporation into serum transferrin, has long been the subject of speculation and debate. However, a recent X-ray crystal structure determination of human ceruloplasmin at a resolution of around 3.0?Å, in conjunction with studies associating mutations in the ceruloplasmin gene with systemic haemosiderosis in humans, has added considerable weight to the argument in favour of a ferroxidase role for this enzyme. Further X-ray studies have now been undertaken involving the binding of the cations Co(II), Fe(II), Fe(III), and Cu(II) to ceruloplasmin. These results give insights into a mechanism for ferroxidase activity in ceruloplasmin. The residues and sites involved in ferroxidation are similar to those proposed for the heavy chains of human ferritin. The nature of the ferroxidase activity of human ceruloplasmin is described in terms of its three-dimensional molecular structure.  相似文献   

10.
Fet3p is a multicopper oxidase (MCO) that functions together with the iron permease, Ftr1p, to support high-affinity Fe uptake in yeast. Fet3p is a ferroxidase that, like ceruloplasmin and hephaestin, couples the oxidation of 4 equiv of Fe(II) to the reduction of O2 to 2 H2O. The ferrous iron specificity of this subclass of MCO proteins has not been delineated by rigorous structure-function analysis. Here the crystal structure of Fet3p has been used as a template to identify the amino acid residues that confer this substrate specificity and then to quantify the contributions they make to this specific reactivity by thermodynamic and kinetic analyses. In terms of the Marcus theory of outer-sphere electron transfer, we show here that D283, E185, and D409 in Fet3p provide a Fe(II) binding site that actually favors ferric iron; this site thus reduces the reduction potential of the bound Fe(II) in comparison to that of aqueous ferrous iron, providing a thermodynamically more robust driving force for electron transfer. In addition, E185 and D409 constitute parts of the electron-transfer pathway from the bound Fe(II) to the protein's type 1 Cu(II). This electronic matrix coupling relies on H-bonds from the carboxylate OD2 atom of each residue to the NE2 NH group of the two histidine ligands at the type 1 Cu site. These two acidic residues and this H-bond network appear to distinguish a fungal ferroxidase from a fungal laccase since the specificity that Fet3p has for Fe(II) is completely lost in a Fet3pE185A/D409A mutant. Indeed, this double mutant functions kinetically better as a laccase, albeit a relatively inefficient one.  相似文献   

11.
Iron oxidase was purified from plasma membranes of a moderately thermophilic iron oxidizing bacterium strain TI-1 in an electrophoretically homogeneous state. Spectrum analyses of purified enzyme showed the existence of cytochrome a, but not cytochrome b and c types. Iron oxidase was composed of five subunits with apparent molecular masses of 46 kDa (alpha), 28 kDa (beta), 24 kDa (gamma), 20 kDa (delta), and 17 kDa (epsilon). As the molecular mass of a native enzyme was estimated to be 263 kDa in the presence of 0.1% n-dodecyl-beta-D-maltopyranoside (DM), a native iron oxidase purified from strain TI-1 seems to be a homodimeric enzyme (alpha beta gamma delta epsilon)(2). Optimum pH and temperature for iron oxidation were pH 3.0 and 45 degrees C, respectively. The K(m) of iron oxidase for Fe(2+) was 1.06 mM and V(max) for O(2) uptake was 13.8 micromol x mg(-1) x min(-1). The activity was strongly inhibited by cyanide and azide. Purified enzyme from strain TI-1 is a new iron oxidase in which electrons of Fe(2+) were transferred to haem a and then to the molecular oxygen.  相似文献   

12.
The ability of superoxide anion (O2-) from stimulated human neutrophils (PMNs) to release ferrous iron (Fe2+) from transferrin was assessed. At pH 7.4, unstimulated PMNs released minimal amounts of O2- and failed to facilitate the release of Fe2+ from holosaturated transferrin. In contrast, incubation of phorbol myristate acetate (PMA)-stimulated PMNs with holosaturated transferrin at pH 7.4 enhanced the release of Fe2+ from transferrin eightfold in association with marked generation of O2-. The release of Fe2+ was inhibited by addition of superoxide dismutase (SOD), indicating that the release of Fe2+ was dependent on PMN-derived extracellular O2-. In contrast, at physiologic pH (7.4), incubation of transferrin at physiological levels of iron saturation (e.g. 32%) with unstimulated or PMA stimulated PMNs failed to facilitate the release of Fe2+. The effect of decreasing the pH on the release of Fe2+ from transferrin by PMN-derived O2- was determined. Decreasing the pH greatly facilitated the release of Fe2+ from both holosaturated transferrin and from transferrin at physiological levels of iron saturation by PMN-derived O2-. Release of Fe2+ occurred despite a decrease in the amount of extracellular O2- generated by PMNs in an acidic environment. These results suggest that transferrin at physiologic levels of iron saturation may serve as a source of Fe2+ for biological reactions in disease states where activated phagocytes are present and there is a decrease in tissue pH. The unbound iron could participate in biological reactions including promoting propagation of lipid peroxidation reactions or hydroxyl radical formation following reaction with phagocytic cell-derived hydrogen peroxide.  相似文献   

13.
Ferritin iron kinetics and protein turnover in K562 cells   总被引:4,自引:0,他引:4  
The binding, incorporation, and release of iron by ferritin were investigated in K562 cells using both pulse-chase and long term decay studies with 59Fe-transferrin as the labeled iron source. After a 20-min pulse of labeled transferrin, 60% of the 59Fe was bound by ferritin with the proportion increasing to 70% by 4 h. This initial binding was reduced to 35% when the cells were exposed to the chelator desferrioxamine (5 mM) for an additional 30 min. By 4 h the association of 59Fe with ferritin was unaffected by the presence of the chelator, and levels of 59Fe-ferritin were identical to those in control cells (70%). Between 4-10h there was a parallel decline in 59Fe-ferritin in both control and desferrioxamine-treated cells. When incoming iron was bound by ferritin it was, therefore, initially chelatable but with time progressed to a further, nonchelatable compartment. In turnover studies where ferritin was preloaded with 59Fe by overnight incubation, 50% of the label was released from the protein by 18 h, contrasting with a t 1/2 for cellular iron release of approximately 70 h. The half-time of 59Fe release from ferritin was accelerated to 11 h by the presence of desferrioxamine. The half-time for ferritin protein turnover determined by [35S]methionine labeling was approximately 12 h in the presence or absence of the chelator. Thus, when the reassociation of iron with ferritin was prevented by the exogenous chelator there was a concordant decay of both protein and iron moieties. The direct involvement of lysosomes in this turnover was demonstrated by the use of the inhibitors leupeptin and methylamine which stabilized both 59Fe (t 1/2 = 24 h) and 35S (t 1/2 = 25.6 h) labels. We conclude that in this cell type the predominant mechanism by which iron is released from ferritin is through the constitutive degradation of the protein by lysosomes.  相似文献   

14.
Summary A previous study described a cytoplasmic, transferrin (Tf)-free, iron (Fe) pool that was detected only when cells were mechanically detached from the culture substratum at 4°C, after initial incubation with59Fe-125I-Tf at 37°C (Richardson and Baker, 1992a). The release of this internalized59Fe could be markedly reduced if the cells were treated with proteases or incubated at 37°C prior to detachment. The present study was designed to characterize this Fe pool and understand the mechanism of its release. The results show that cellular59Fe release increased linearly as a function of preincubation time with59Fe-Tf subsequent to mechanical detachment at 4°C using a spatula. These data suggest that the59Fe released was largely composed of end product(s) and was not an “intermediate Fe pool.” When the Fe(II) chelator, dipyridyl (DP), was incubated with59Fe-Tf and the cells, it prevented the accumulation of59Fe that was released following mechanical detachment at 4°C. Other chelators had much less effect on the proportion of59Fe released. Examination of the59Fe released showed that after a 4-h preincubation with59Fe-Tf, approximately 50% of the59Fe was present in ferritin. These data indicate that mechanical detachment of cells at 4°C resulted in membrane disruptions that allow the release of high M, molecules. Moreover, electron microscopy studies showed that detachment of cells from the substratum at 4°C resulted in pronounced membrane damage. In contrast, when cells were detached at 37°C, or at 4°C after treatment with pronase, membrane damage was minimal or not apparent. These results may imply that temperature-dependent processes prevent the release of intracellular contents on membrane wounding, or alternatively, prevent wounding at 37°C. The evidence also indicates that caution is required when interpreting data from expriments where cells have been mechanically detached at 4°C.  相似文献   

15.
The influence of dietary copper, iron, and ascorbic acid on iron utilization was examined in a 2×2×2 factorial experiment. Male Sprague-Dawley weanling rats were fed copper-deficient (Cu-, 0.42 μg Cu/g) or copper-adequate (Cu+, 5.74 μg Cu/g) diets that contained one of two levels of iron (38 or 191μg Fe/g) and ascorbic acid (0 or 1% of the diet). These eight diets were fed for 20 d, and rats received an oral dose of 4 μCi iron-59 on d 15. Compared to Cu+ rats, the Cu− rats had 27% lower hemoglobin levels with 45, 59, and 65% lower cytochrome c oxidase (CCO) activities in the liver, heart, and bone marrow, respectively (p<0.0001). High dietary iron or ascorbic acid did not alter hemoglobin in Cu+ rats. However, hemoglobin was 23% lower in Cu− rats fed the highest, rather than the lowest levels of iron and ascorbic acid. Liver CCO was decreased (p<0.02) in Cu− rats fed high iron. Among Cu− rats, ascorbic acid did not influence CCO but decreased hemoglobin by 17% (p<0.001), reduced the percentage of absorbed iron-59 in the erythrocytes by 91% (p<0.05) and depressed the percentage apparent absorption of iron (p<0.05). These results suggest that the effects of elevated dietary iron and ascorbic acid on iron utilization are influenced by copper status.  相似文献   

16.
A comprehensive survey of the interaction of the copper proteins and oxygen is presented including a correlation of structure, function, and other properties of the known copper oxidases and of hemocyanin. The origin of their blue color and the structure of copper complexes and copper proteins are related to the oxidation state of copper ion and relevant electronic transitions probably arising from the formation of charge transfer complexes. The oxygen reactions of hemocyanin, ceruloplasmin, and cytochrome oxidase show half-saturation values far below the other Cu enzymes. The formation of hydrogen peroxide as a reaction product is associated with the presence of one Cu atom per oxidase molecule or catalytic system. Water is the corresponding product of the other Cu oxidases with four or more Cu atoms per molecule, except for monoamine oxidase. Mechanisms for the oxidase action of the two and four electron transfer Cu oxidases and tyrosinase are proposed. These reactions account for the number, the oxidation-reduction potential, and the oxidation state of Cu in the resting enzyme, the cyclical change from Cu(II) to Cu(I), the diatomic nature of O2, the sequence of the oxidation and reduction reactions, and other salient features. The catalytic reactions involved in the oxidation of ascorbic acid by plant ascorbate oxidase, ceruloplasmin, and Cu(II) are compared. Finally the substrate specificity, inhibitory control, and the detailed mechanism of the oxidase activity of ceruloplasmin are summarized.  相似文献   

17.
Growing human choriocarcinoma BeWo b24 cells contain 1.5 X 10(6) functional cell surface transferrin binding sites and 2.0 X 10(6) intracellular binding sites. These cells rapidly accumulate iron at a rate of 360,000 iron atoms/min/cell. During iron uptake the transferrin and its receptor recycle at least each 19 min. The accumulated iron is released from the BeWo cells at a considerable rate. The time required to release 50% of previously accumulated iron into the extracellular medium is 30 h. This release process is cell line-specific as HeLa cells release very little if any iron. The release of iron by BeWo cells is stimulated by exogenous chelators such as apotransferrin, diethylenetriaminepenta-acetic acid, desferral, and apolactoferrin. The time required to release 50% of the previously accumulated iron into medium supplemented with chelator is 15 h. In the absence of added chelators iron is released as a low molecular weight complex, whereas in the presence of chelator the iron is found complexed to the chelator. Uptake of iron is inhibited by 250 microM primaquine or 2.5 microM monensin. However, the release of iron is not inhibited by these drugs. Intracellular iron is stored bound to ferritin. A model for the release of iron by BeWo cells and its implication for transplacental iron transport is discussed.  相似文献   

18.
19.
Ferric minerals in ferritins are protected from cytoplasmic reductants and Fe2+ release by the protein nanocage until iron need is signaled. Deletion of ferritin genes is lethal; two critical ferritin functions are concentrating iron and oxidant protection (consuming cytoplasmic iron and oxygen in the mineral). In solution, opening/closing (gating) of eight ferritin protein pores controls reactions between external reductant and the ferritin mineral; pore gating is altered by mutation, low heat, and physiological urea (1 mm) and monitored by CD spectroscopy, protein crystallography, and Fe2+ release rates. To study the effects of a ferritin pore gating mutation in living cells, we cloned/expressed human ferritin H and H L138P, homologous to the frog open pore model that was unexpressable in human cells. Human ferritin H L138P behaved like the open pore ferritin model in vitro as follows: (i) normal protein cage assembly and mineralization, (ii) increased iron release (t1/2) decreased 17-fold), and (iii) decreased alpha-helix (8%). Overexpression (> 4-fold), in HeLa cells, showed for ferritin H L138P equal protein expression and total cell 59Fe but increased chelatable iron, 16%, p < 0.01 (59Fe in the deferoxamine-containing medium), and decreased 59Fe in ferritin, 28%, p < 0.01, compared with wild type. The coincidence of decreased 59Fe in open pore ferritin with increased chelatable 59Fe in cells expressing the ferritin open pore mutation suggests that ferritin pore gating influences to the amount of iron (59Fe) in ferritin in vivo.  相似文献   

20.
X-ray structures of bovine heart cytochrome c oxidase with bound respiratory inhibitors (O(2) analogues) have been determined at 1.8-2.05? resolution to investigate the function of the O(2) reduction site which includes two metal sites (Fe(a3)(2+) and Cu(B)(1+)). The X-ray structures of the CO- and NO-bound derivatives indicate that although there are three possible electron donors that can provide electrons to the bound O(2), located in the O(2) reduction site, the formation of the peroxide intermediate is effectively prevented to provide an O(2)-bound form as the initial intermediate. The structural change induced upon binding of CN(-) suggests a non-sequential 3-electron reduction of the bound O(2)(-) for the complete reduction without release of any reactive oxygen species. The X-ray structure of the derivative with CO bound to Cu(B)(1+) after photolysis from Fe(a3)(2+) demonstrates weak side-on binding. This suggests that Cu(B) controls the O(2) supply to Fe(a3)(2+) without electron transfer to provide sufficient time for collection of protons from the negative side of the mitochondrial membrane. The proton-pumping pathway of bovine heart cytochrome c oxidase includes a hydrogen-bond network and a water channel located in tandem between the positive and negative side of the mitochondrial membrane. Binding of a strong ligand to Fe(a3) induces a conformational change which significantly narrows the water channel and effectively blocks the back-leakage of protons from the hydrogen bond network. The proton pumping mechanism proposed by these X-ray structural analyses has been functionally confirmed by mutagenesis analyses of bovine heart cytochrome c oxidase. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号