首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Little is known about the impact of the total cavopulmonary connection (TCPC) on resting and exercise hemodynamics in a single ventricle (SV) circulation. The aim of this study was to elucidate this mechanism using a lumped parameter model of the SV circulation. Pulmonary vascular resistance (1.96+/-0.80 WU) and systemic vascular resistances (18.4+/-7.2 WU) were obtained from catheterization data on 40 patients with a TCPC. TCPC resistances (0.39+/-0.26 WU) were established using computational fluid dynamic simulations conducted on anatomically accurate three-dimensional models reconstructed from MRI (n=16). These parameters were used in a lumped parameter model of the SV circulation to investigate the impact of TCPC resistance on SV hemodynamics under resting and exercise conditions. A biventricular model was used for comparison. For a biventricular circulation, the cardiac output (CO) dependence on TCPC resistance was negligible (sensitivity=-0.064 l.min(-1).WU(-1)) but not for the SV circulation (sensitivity=-0.88 l.min(-1).WU(-1)). The capacity to increase CO with heart rate was also severely reduced for the SV. At a simulated heart rate of 150 beats/min, the SV patient with the highest resistance (1.08 WU) had a significantly lower increase in CO (20.5%) compared with the SV patient with the lowest resistance (50%) and normal circulation (119%). This was due to the increased afterload (+35%) and decreased preload (-12%) associated with the SV circulation. In conclusion, TCPC resistance has a significant impact on resting hemodynamics and the exercise capacity of patients with a SV physiology.  相似文献   

2.
Total cavopulmonary connection is the result of a series of palliative surgical repairs performed on patients with single ventricle heart defects. The resulting anatomy has complex and unsteady hemodynamics characterized by flow mixing and flow separation. Although varying degrees of flow pulsatility have been observed in vivo, non-pulsatile (time-averaged) boundary conditions have traditionally been assumed in hemodynamic modeling, and only recently have pulsatile conditions been incorporated without completely characterizing their effect or importance. In this study, 3D numerical simulations with both pulsatile and non-pulsatile boundary conditions were performed for 24 patients with different anatomies and flow boundary conditions from Georgia Tech database. Flow structures, energy dissipation rates and pressure drops were compared under rest and simulated exercise conditions. It was found that flow pulsatility is the primary factor in determining the appropriate choice of boundary conditions, whereas the anatomic configuration and cardiac output had secondary effects. Results show that the hemodynamics can be strongly influenced by the presence of pulsatile flow. However, there was a minimum pulsatility threshold, identified by defining a weighted pulsatility index (wPI), above which the influence was significant. It was shown that when wPI<30%, the relative error in hemodynamic predictions using time-averaged boundary conditions was less than 10% compared to pulsatile simulations. In addition, when wPI<50, the relative error was less than 20%. A correlation was introduced to relate wPI to the relative error in predicting the flow metrics with non-pulsatile flow conditions.  相似文献   

3.
The issue of the correct determination of the mechanical power dissipated by the blood flow in the circulatory system is very important. This parameter is particularly critical when the patient's circulation has to overcome structural impairments, such as, e.g., in the case of only one functional ventricle. The surgical palliation of such a condition, which is a relatively common form of congenital heart disease, calls for an optimization of the new connection's hydrodynamics. Starting from the general formulation of the energy dissipation rate in a given control volume, this paper discusses the critical assumptions of the formula usually employed to assess the power dissipation in complex connections, such as the total cavopulmonary connection (TCPC). A new formula is derived, in which the mean elevation of the outlet and inlet sections is shown to be relevant, through the use of the piezometric pressure. Moreover, the flow profile at the boundary of the control volume is also important, since the usual approach implicitly assumes that the flow is perfectly flat: this assumption is doubtful, especially in the venous return (as in the TCPC). In the experimental part of the study, the power dissipation was measured in a physical model of the TCPC, and a large difference was found between the usual method and the proposed one, especially at low regime (85% relative difference, at 1.5 l/min total cardiac output). The proposed approach should be adopted in order to improve the accuracy of the hydrodynamical performance's assessment of surgical connections (e.g., TCPC) or implantable devices (e.g., valved conduit).  相似文献   

4.
The flow field and energetic efficiency of total cavopulmonary connection (TCPC) models have been studied by both in vitro experiment and computational fluid dynamics (CFD). All the previous CFD studies have employed the structured mesh generation method to create the TCPC simulation model. In this study, a realistic TCPC model with complete anatomical features was numerically simulated using both structured and unstructured mesh generation methods. The flow fields and energy losses were compared in these two meshes. Two different energy loss calculation methods, the control volume and viscous dissipation methods, were investigated. The energy losses were also compared to the in vitro experimental results. The results demonstrated that: (1) the flow fields in the structured model were qualitatively similar to the unstructured model; (2) more vortices were present in the structured model than in the unstructured model; (3) both models had the least energy loss when flow was equally distributed to the left and right pulmonary arteries, while high losses occurred for extreme pulmonary arterial flow splits; (4) the energy loss results calculated using the same method were significantly different for different meshes; and (5) the energy loss results calculated using different methods were significantly different for the same mesh.  相似文献   

5.
Particle image velocimetry (PIV) and phase contrast magnetic resonance imaging (PC-MRI) have not been compared in complex biofluid environments. Such analysis is particularly useful to investigate flow structures in the correction of single ventricle congenital heart defects, where fluid dynamic efficiency is essential. A stereolithographic replica of an extracardiac total cavopulmonary connection (TCPC) is studied using PIV and PC-MRI in a steady flow loop. Volumetric two-component PIV is compared to volumetric three-component PC-MRI at various flow conditions. Similar flow structures are observed in both PIV and PC-MRI, where smooth flow dominates the extracardiac TCPC, and superior vena cava flow is preferential to the right pulmonary artery, while inferior vena cava flow is preferential to the left pulmonary artery. Where three-component velocity is available in PC-MRI studies, some helical flow in the extracardiac TCPC is observed. Vessel cross sections provide an effective means of validation for both experiments, and velocity magnitudes are of the same order. The results highlight similarities to validate flow in a complex patient-specific extracardiac TCPC. Additional information obtained by velocity in three components further describes the complexity of the flow in anatomic structures.  相似文献   

6.
The total cavopulmonary connection (TCPC) is a palliative cardiothoracic surgical procedure used in patients with one functioning ventricle that excludes the heart from the systemic venous to pulmonary artery pathway. Blood in the superior and inferior vena cavae (SVC, IVC) is diverted directly to the pulmonary arteries. Since only one ventricle is left in the circulation, minimizing pressure drop by optimizing connection geometry becomes crucial. Although there have been numerical and in-vitro studies documenting the effect of connection geometry on overall pressure drop, there is little published data examining the effect of SVC-IVC flow rate ratio on detailed fluid mechanical structures within the various connection geometries. We present here results from a numerical study of the TCPC connection, configured with various connections and SVC:IVC flow ratios. The role of major flow parameters: shear stress, secondary flow, recirculation regions, flow stagnation regions, and flow separation, was examined. Results show a complex interplay among connection geometry, flow rate ratio and the types and effects of the various flow parameters described above. Significant changes in flow structures affected local distribution of pressure, which in turn changed overall pressure drop. Likewise, changes in local flow structure also produced changes in maximum shear stress values; this may have consequences for platelet activation and thrombus formation in the clinical situation. This study sheds light on the local flow structures created by the various connections andflow configurations and as such, provides an additional step toward understanding the detailed fluid mechanical behavior of the more complex physiological configurations seen clinically.  相似文献   

7.
8.
9.
Compared with the abdominal aorta, the hemodynamic environment in the inferior vena cava (IVC) is not well described. With the use of cine phase-contrast magnetic resonance imaging (MRI) and a custom MRI-compatible cycle in an open magnet, we quantified mean blood flow rate, wall shear stress, and cross-sectional lumen area in 11 young normal subjects at the supraceliac and infrarenal levels of the aorta and IVC at rest and during dynamic cycling exercise. Similar to the aorta, the IVC experienced significant increases in blood flow and wall shear stress as a result of exercise, with greater increases in the infrarenal level compared with the supraceliac level. At the infrarenal level during resting conditions, the IVC experienced higher mean flow rate than the aorta (1.2 +/- 0.5 vs. 0.9 +/- 0.4 l/min, P < 0.01) and higher mean wall shear stress than the aorta (2.0 +/- 0.6 vs. 1.3 +/- 0.6 dyn/cm(2), P < 0.005). During exercise, wall shear stress remained higher in the IVC compared with the aorta, although not significantly. It was also observed that, whereas the aorta tapers inferiorly, the IVC tapers superiorly from the infrarenal to the supraceliac location. The hemodynamic and anatomic data of the IVC acquired in this study add to our understanding of the venous circulation and may be useful in a clinical setting.  相似文献   

10.
11.
Twelve subjects with spinal cord injuries and four controls (all male) were exposed to heat while sitting at rest or working at each of three environmental temperatures, 30, 35 and 40 degrees C, with a relative humidity of 50%. Exercise was accomplished at a load of 50 W on a friction-braked cycle ergometer which was armcranked or pedalled. Functional electrical stimulation of the legs was provided to the subjects with quadriplegia and paraplegia to allow them to pedal a cycle ergometer. The data showed that individuals with quadriplegia had the poorest tolerance for heat. As an example, in this group, accomplishing armcrank ergometry while working at an environmental temperature of 40 degrees C resulted in an increase in aural temperature of 2 degrees C in 30 min. The aural temperature of individuals with paraplegia working for the same length of time under the same conditions rose approximately 1 degree C. There was virtually no change in the aural temperature in the control subjects.  相似文献   

12.
13.
BACKGROUND: The total cavopulmonary connection (TCPC), a palliative correction for congenital defects of the right heart, is based on the corrective technique developed by Fontan and Baudet. Research into the TCPC has primarily focused on reducing power loss through the connection as a means to improve patient longevity and quality of life. The goal of our study is to investigate the efficacy of including a caval offset on the hemodynamics and, ultimately, power loss of a connection. As well, we will quantify the effect of vessel wall compliance on these factors and, in addition, the distribution of hepatic blood to the lungs. METHODS: We employed a computational fluid dynamic model of blood flow in the TCPC that includes both the non-Newtonian shear thinning characteristics of blood and the nonlinear compliance of vessel tissue. RESULTS: Power loss in the rigid-walled simulations decayed exponentially as caval offset increased. The compliant-walled results, however, showed that after an initial substantial decrease in power loss for offsets up to half the caval diameter, power loss increased slightly again. We also found only minimal mixing in both simulations of all offset models. CONCLUSIONS: The increase in power loss beyond an offset of half the caval diameter was due to an increase in the kinetic contribution. Reduced caval flow mixing, on the other hand, was due to the formation of a pressure head in the offset region which acts as a barrier to flow.  相似文献   

14.
15.
16.
Localization of atherosclerotic lesions in the abdominal aorta has been previously correlated to areas of adverse hemodynamic conditions, such as flow recirculation, low mean wall shear stress, and high temporal oscillations in shear. Along with its many systemic benefits, exercise is also proposed to have local benefits in the vasculature via the alteration of these regional flow patterns. In this work, subject-specific models of the human abdominal aorta were constructed from magnetic resonance angiograms of five young, healthy subjects, and computer simulations were performed under resting and exercise (50% increase in resting heart rate) pulsatile flow conditions. Velocity fields and spatial variations in mean wall shear stress (WSS) and oscillatory shear index (OSI) are presented. When averaged over all subjects, WSS increased from 4.8 +/- 0.6 to 31.6 +/- 5.7 dyn/cm2 and OSI decreased from 0.22 +/- 0.03 to 0.03 +/- 0.02 in the infrarenal aorta between rest and exercise. WSS significantly increased, whereas OSI decreased between rest and exercise at the supraceliac, infrarenal, and suprabifurcation levels, and significant differences in WSS were found between anterior and posterior sections. These results support the hypothesis that exercise provides localized benefits to the cardiovascular system through acute mechanical stimuli that trigger longer-term biological processes leading to protection against the development or progression of atherosclerosis.  相似文献   

17.
18.
19.
We sought to determine the cardiovascular responses to increasing exercise intensities in postmenopausal women with different physical activity levels and hormone replacement therapy (HRT) status. Forty-four women (11 sedentary, 19 physically active, 14 master athletes; 24 not on HRT, 20 on HRT) completed treadmill exercise at 40, 60, 80, and 100% of maximal oxygen consumption. Oxygen consumption, heart rate, blood pressure, and cardiac output, determined via acetylene rebreathing, were measured at each exercise intensity. HRT did not affect cardiovascular hemodynamics. Stroke volume (SV) decreased significantly between 40 and 100% of maximal oxygen consumption in all groups, and the decrease did not differ among groups. The greater oxygen consumption of the athletes at each intensity was due to their significantly greater cardiac output, which was the result of a significantly greater SV, compared with both of the less active groups. The athletes had significantly lower total peripheral resistance at each exercise intensity than did the two less active groups. There were no consistent significant hemodynamic differences between the physically active and sedentary women. These results indicate that SV decreases in postmenopausal women as exercise intensity increases to maximum, regardless of their habitual physical activity levels or HRT status.  相似文献   

20.
Thermoregulation at rest and during exercise in prepubertal boys   总被引:1,自引:0,他引:1  
Thermal balance was studied in 11 boys, aged 10-12 years, with various values for maximal oxygen uptake (VO2max), during two standardized sweating tests performed in a climatic chamber in randomized order. One of the tests consisted in a 90-min passive heat exposure [dry bulb temperature (Tdb) 45 degrees C] at rest. The second test was represented by a 60-min ergocycle exercise at 60% of individual VO2max (Tdb 20 degrees C). At rest, rectal temperature increased during heat exposure similar to observations made in adults, but the combined heat transfer coefficient reached higher values, reflecting greater radiative and convective heat gains in the children. Children also exhibited a greater increase in mean skin temperature, and a greater heat dissipation through sweating. Conversely, during the exercise sweating-test, although the increase in rectal temperature did not differ from that of adults for similar levels of exercise, evaporative heat loss was much lower in children, suggesting a greater radiative and convective heat loss due to the relatively greater body surface area. Thermophysiological reactions were not related to VO2max in children, in contrast to adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号