首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both systemically administered furosemide and isoproterenol produce water intake (i.e., thirst). Curiously, however, in light of the endocrine and hemodynamic effects produced by these treatments, they are remarkably ineffective in eliciting intake of hypertonic saline solutions (i.e., operationally defined as sodium appetite). Recent work indicates that bilateral injections of the serotonin receptor antagonist methysergide into the lateral parabrachial nuclei (LPBN) markedly enhance a preexisting sodium appetite. The present studies establish that a de novo sodium appetite can be induced with LPBN-methysergide treatment under experimental conditions in which only water is typically ingested. The effects of bilateral LPBN injections of methysergide were studied on the intake of water and 0. 3 M NaCl following acute (beginning 1 h after treatment) diuretic (furosemide)-induced sodium and water depletion and following subcutaneous isoproterenol treatment. With vehicle injected into the LPBN, furosemide treatment and isoproterenol injection both caused water drinking but essentially no intake of hypertonic saline. In contrast, bilateral treatment of the LPBN with methysergide induced the intake of 0.3 M NaCl after subcutaneous furosemide and isoproterenol. Water intake induced by subcutaneous furosemide or isoproterenol was not changed by LPBN-methysergide injections. The results indicate that blockade of LPBN-serotonin receptors produces a marked intake of hypertonic NaCl (i.e., a de novo sodium appetite) after furosemide treatment as well as subcutaneous isoproterenol.  相似文献   

2.
The present study investigated the role of corticotropin-releasing hormone (CRH) in the lateral parabrachial nucleus (LPBN) in the behavioral control of body fluid homeostasis by determining the effect of bilateral injections of the CRH receptor antagonist, alpha-helical corticotropin-releasing factor (CRF)(9-41), and the CRH receptor agonist, CRH, on sodium chloride (salt appetite) and water (thirst) intake. Groups of adult, male Sprague-Dawley rats had stainless-steel cannulas implanted bilaterally into the LPBN and were sodium depleted or water deprived. Bilateral injections of alpha-helical CRF(9-41) into the LPBN significantly potentiated water and salt intake in the sodium-depleted rats when access to fluids was restored. Bilateral injections of alpha-helical CRF(9-41) into the LPBN (1.0 microg) also increased sodium appetite in water-deprived rats. Conversely, in sodium-depleted animals, bilateral injections of CRH inhibited sodium chloride intake. These results suggest that there is an endogenous CRH inhibitory mechanism operating in the LPBN to modulate the intake of sodium (salt appetite). This mechanism may contribute to the behavioral control of restoration of body fluid homeostasis in sodium-deficient states.  相似文献   

3.
Na and water intakes of Na-depleted sheep are influenced by changes in cerebral Na concentration. The effect of intracerebroventricular infusion of somatostatin or losartan, the ANG II type 1 receptor antagonist, on the Na appetite and thirst of Na-depleted sheep during infusions that decrease (intracerebroventricular hypertonic mannitol) or increase (intracerebroventricular or systemic hypertonic NaCl) cerebral Na concentration was investigated. Na intake was increased but water intake was unchanged during intracerebroventricular infusion of hypertonic mannitol. The increased Na appetite caused by intracerebroventricular infusion of hypertonic mannitol was decreased by concurrent intracerebroventricular infusion of either somatostatin or losartan, with somatostatin being most effective. Water intake was increased during intracerebroventricular infusion of hypertonic mannitol and somatostatin. Na intake was decreased and water intake was increased during systemic or intracerebroventricular infusion of hypertonic NaCl. Intracerebroventricular infusion of losartan blocked both (Na and water intake), whereas somatostatin did not influence either of these changes in intake. The results further consolidate a role for somatostatin and ANG II in the central mechanisms controlling Na appetite and thirst of sheep.  相似文献   

4.
Serotonin [5-hydroxytryptamine (5-HT)] and CCK injected into the lateral parabrachial nucleus (LPBN) inhibit NaCl and water intake. In this study, we investigated interactions between 5-HT and CCK into the LPBN to control water and NaCl intake. Male Holtzman rats with cannulas implanted bilaterally in the LPBN were treated with furosemide + captopril to induce water and NaCl intake. Bilateral LPBN injections of high doses of the 5-HT antagonist methysergide (4 microg) or the CCK antagonist proglumide (50 microg), alone or combined, produced similar increases in water and 1.8% NaCl intake. Low doses of methysergide (0.5 microg) + proglumide (20 microg) produced greater increases in NaCl intake than when they were injected alone. The 5-HT(2a/2c) agonist 2,5-dimetoxy-4-iodoamphetamine hydrobromide (DOI; 5 microg) into the LPBN reduced water and NaCl intake. After proglumide (50 microg) + DOI treatment, the intake was not different from vehicle treatment. CCK-8 (1 microg) alone produced no effect. CCK-8 combined with methysergide (4 microg) reduced the effect of methysergide on NaCl intake. The data suggest that functional interactions between 5-HT and CCK in the LPBN may be important for exerting inhibitory control of NaCl intake.  相似文献   

5.
This study investigated the involvement of serotonergic mechanisms of the lateral parabrachial nucleus (LPBN) in the control of sodium (Na+) excretion, potassium (K+) excretion, and urinary volume in unanesthetized rats subjected to acute isotonic blood volume expansion (0.15 M NaCl, 2 ml/100 g of body wt over 1 min) or control rats. Plasma oxytocin (OT), vasopressin (VP), and atrial natriuretic peptide (ANP) levels were also determined in the same protocol. Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used. In rats treated with vehicle in the LPBN, blood volume expansion increased urinary volume, Na+ and K+ excretion, and also plasma ANP and OT. Bilateral injections of serotonergic receptor antagonist methysergide (1 or 4 microg/200 etal) into the LPBN reduced the effects of blood volume expansion on increased Na+ and K+ excretion and urinary volume, while LPBN injections of serotonergic 5-HT(2a)/HT(2c) receptor agonist, 2.5-dimetoxi-4-iodoamphetamine hydrobromide (DOI; 1 or 5 microg/200 etal) enhanced the effects of blood volume expansion on Na+ and K+ excretion and urinary volume. Methysergide (4 microg) into the LPBN decreased the effects of blood volume expansion on plasma ANP and OT, while DOI (5 microg) increased them. The present results suggest the involvement of LPBN serotonergic mechanisms in the regulation of urinary sodium, potassium and water excretion, and hormonal responses to acute isotonic blood volume expansion.  相似文献   

6.
Hypothalamic paraventricular nucleus (PVN) has an important role in the regulation of water and sodium intake. Several researches described the presence of 5-HT1 receptors in the central nervous system. 5-HT1A was one of the prime receptors identified and it is found in the somatodendritic and post-synaptic forms. Therefore, the aim of this study was to investigate the participation of serotonergic 5-HT1A receptors in the PVN on the sodium intake induced by sodium depletion followed by 24 h of deprivation (injection of the diuretic furosemide plus 24  h of sodium-deficient diet). Rats (280–320 g) were submitted to the implant of cannulas bilaterally in the PVN. 5-HT injections (10 and 20 μg/0.2 μl) in the PVN reduced NaCl 1.8% intake. 8-OH-DPAT injections (2.5 and 5.0 μg/0.2 μl) in the PVN also reduced NaCl 1.8% intake. pMPPF bilateral injections (5-HT1A antagonist) previously to 8-OH-DPAT injections have completely blocked the inhibitory effect over NaCl 1.8% intake. 5-HT1A antagonists partially reduced the inhibitory effect of 5-HT on NaCl 1.8% intake induced by sodium depletion. In contrast, the intake of palatable solution (2% sucrose) under body fluid-replete conditions was not changed after bilateral PVN 8-OH-DPTA injections. The results show that 5-HT1A serotonergic mechanisms in the PVN modulate sodium intake induced by sodium loss. The finding that sucrose intake was not affected by PVN 5-HT1A activation suggests that the effects of the 5-HT1A treatments on the intake of NaCl are not due to mechanisms producing a nonspecific decrease of all ingestive behaviors.  相似文献   

7.
To address the relative contribution of central and peripheral angiotensin II (ANG II) type 1A receptors (AT(1A)) to blood pressure and volume homeostasis, we generated a transgenic mouse model [neuron-specific enolase (NSE)-AT(1A)] with brain-restricted overexpression of AT(1A) receptors. These mice are normotensive at baseline but have dramatically enhanced pressor and bradycardic responses to intracerebroventricular ANG II or activation of endogenous ANG II production. Here our goal was to examine the water and sodium intake in this model under basal conditions and in response to increased ANG II levels. Baseline water and NaCl (0.3 M) intakes were significantly elevated in NSE-AT(1A) compared with nontransgenic littermates, and bolus intracerebroventricular injections of ANG II (200 ng in 200 nl) caused further enhanced water intake in NSE-AT(1A). Activation of endogenous ANG II production by sodium depletion (10 days low-sodium diet followed by furosemide, 1 mg sc) enhanced NaCl intake in NSE-AT(1A) mice compared with wild types. Fos immunohistochemistry, used to assess neuronal activation, demonstrated sodium depletion-enhanced activity in the anteroventral third ventricle region of the brain in NSE-AT(1A) mice compared with control animals. The results show that brain-selective overexpression of AT(1A) receptors results in enhanced salt appetite and altered water intake. This model provides a new tool for studying the mechanisms of brain AT(1A)-dependent water and salt consumption.  相似文献   

8.
Prior sodium restriction cross-sensitizes rats to the psychomotor effects of amphetamines and vice versa. Repeated central injections of vasopressin (VP) induce a psychomotor sensitization similar to amphetamine sensitization and repeated sodium deficiency. Thus brain VP signaling may be a common mechanism involved in mediating these two motivational systems. In experiment 1, we tested the hypothesis that rats previously sensitized to central VP would show enhanced psychomotor responses to amphetamine. Rats were administered saline, VP (50 ng), or amphetamine (1 mg/kg or 3 mg/kg) on days 1 and 2, and given saline or amphetamine on day 3. Amphetamine produced psychomotor arousal in all groups. However, amphetamine on day 3 elicited a significantly greater psychomotor response in rats that had prior injections of amphetamine or VP than in rats previously treated with saline. In experiment 2, the hypothesis that prior experience with central VP would cross-sensitize rats to drinking hypertonic sodium (NaCl) solutions was tested. Rats were administered VP (50 ng) or saline for 3 days. On the fourth day, nondeprived rats were given access to 0.3 M NaCl and water for 1 h. Control and saline-treated rats only drank 1 ml of 0.3 M NaCl, but rats previously exposed to central VP drank significantly more hypertonic saline (4 ml). These results show that prior experience with central VP cross-sensitizes rats to the psychomotor stimulant effects of amphetamine and the ingestion of concentrated NaCl solutions. This pattern of cross-sensitization links central VP signaling, amphetamine, and sodium deficiency, and therefore it may play a role in the cross-sensitization between sodium appetite and amphetamines.  相似文献   

9.
To examine the behavioral and neural control of body fluid homeostasis, water and saline intake of C57BL/6 mice was monitored under ad libitum conditions, after treatments that induce water or salt intake, and after ablation of the periventricular tissue of the anteroventral third ventricle (AV3V). Mice have nocturnal drinking that is most prevalent after the offset and before the onset of lights. When given ad libitum choice, C57BL/6 mice show no preference for saline over water at concentrations up to 0.9% NaCl and a progressive aversion to saline above that concentration. Systemic hypertonic saline, isoproterenol, and polyethylene glycol treatments are dipsogenic; however, systemic ANG II is not. Intracerebroventricular injections of both hypertonic saline and ANG II are dipsogenic, and diuretic treatment followed by a short period of sodium deprivation induces salt intake. After ablation of the AV3V, mice can be nursed to recovery from initial adipsia and, similar to rats, show chronic deficits to dipsogenic treatments. Taken together, the data indicate that mechanisms controlling thirst in response to cellular dehydration in C57BL/6 mice are similar to rats, but there are differences in the efficacy of extracellular dehydration-related mechanisms, especially for systemic ANG II, controlling thirst and salt appetite.  相似文献   

10.
The effects of intracerebroventricular pretreatment with muscarinic (scopolamine or methylscopolamine; 2.7 nmol or 5.4 nmol) or nicotinic (mecamylamine, 2.7 nmol or 5.4 nmol) cholinergic receptor antagonists on plasma free fatty acid increases induced by intracerebroventricular injections of carbachol in conscious resting pigeons (Columba livia) were examined. Plasma glucose levels were also measured throughout the experiments. Pretreatment with methylscopolamine suppressed the lipolytic effect of carbachol injections, while mecamylamine left this response unchanged. Neither carbachol treatment alone, nor the pretreatments with cholinergic agents affected glucose levels. Subsequently, the effects of intracerebroventricular injections of methylscopolamine were investigated in 24-h food-deprived pigeons. The increase in free fatty acid levels after fasting was of a magnitude similar to that observed after carbachol treatment; intracerebroventricular injections of methylscopolamine (5.4 nmol) transiently but powerfully decreased plasma free fatty acids in 24-h food-deprived pigeons to levels comparable to those of free-feeding animals. The fasting-induced decrease in glucose levels was not affected by this treatment. These data indicate that the lipolytic response induced by carbachol may be mediated by central muscarinic cholinergic receptors and that this central cholinergic mechanism partially contributes to plasma free fatty acid increases observed during fasting. Furthermore, the absence of effects on glucose levels suggests that these cholinergic mechanisms participate selectively in the lipolytic component of the metabolic response to fasting.  相似文献   

11.
Previous studies demonstrated the inhibitory participation of serotonergic (5-HT) and oxytocinergic (OT) neurons on sodium appetite induced by peritoneal dialysis (PD) in rats. The activity of 5-HT neurons increases after PD-induced 2% NaCl intake and decreases after sodium depletion; however, the activity of the OT neurons appears only after PD-induced 2% NaCl intake. To discriminate whether the differential activations of the 5-HT and OT neurons in this model are a consequence of the sodium satiation process or are the result of stimulation caused by the entry to the body of a hypertonic sodium solution during sodium access, we analyzed the number of Fos-5-HT- and Fos-OT-immunoreactive neurons in the dorsal raphe nucleus and the paraventricular nucleus of the hypothalamus-supraoptic nucleus, respectively, after isotonic vs. hypertonic NaCl intake induced by PD. We also studied the OT plasma levels after PD-induced isotonic or hypertonic NaCl intake. Sodium intake induced by PD significantly increased the number of Fos-5-HT cells, independently of the concentration of NaCl consumed. In contrast, the number of Fos-OT neurons increased after hypertonic NaCl intake, in both depleted and non-depleted animals. The OT plasma levels significantly increased only in the PD-induced 2% NaCl intake group in relation to others, showing a synergic effect of both factors. In summary, 5-HT neurons were activated after body sodium status was reestablished, suggesting that this system is activated under conditions of satiety. In terms of the OT system, both OT neural activity and OT plasma levels were increased by the entry of hypertonic NaCl solution during sodium consumption, suggesting that this system is involved in the processing of hyperosmotic signals.  相似文献   

12.
We examined the effects of hypotension and fluid depletion on water and sodium ingestion in rats in response to intracerebroventricular infusions of ANG II. Hypotension was produced by intravenous infusion of the vasodilator drug minoxidil (25 microg x kg(-1) x min(-1)) concurrently with the angiotensin-converting enzyme inhibitor captopril (0.33 mg/min) to prevent endogenous ANG II formation. Hypotension increased water intake in response to intracerebroventricular ANG II (30 ng/h) but not intake of 0.3 M NaCl solution and caused significant urinary retention of water and sodium. Acute fluid depletion was produced by subcutaneous injections of furosemide (10 mg/kg body wt) either alone or with captopril (100 mg/kg body wt sc) before intracerebroventricular ANG II (15 or 30 ng/h) administration. Fluid depletion increased water intake in response to the highest dose of intracerebroventricular ANG II but did not affect saline intake. In the presence of captopril, fluid depletion increased intakes of both water and saline in response to both doses of intracerebroventricular ANG II. Because captopril administration causes hypotension in fluid-depleted animals, the results of the two experiments suggest that hypotension in fluid-replete animals preferentially increases water intake in response to intracerebroventricular ANG II and in fluid-depleted animals increases both salt and water intake in response to intracerebroventricular ANG II.  相似文献   

13.
蒋星红  钱忠明 《动物学报》1998,44(3):308-313
用SD种系清醒大鼠,观察脑室注射高渗物质引起的饮水及c-fos在脑内的表达部位。实验结果表明,脑室内微量注射1.5mol/L、3mol/L NaCl或3mol/L蔗糖均可诱导饮水反应,并在前脑的终板血管器官、正中视前核和下丘脑视上核与室旁核中见到Fos样免疫反应阳性细胞,同样在后脑的最后区、臂旁外侧核与孤束核中也能见到Fos样免疫反应阳性细胞,同样在后脑的最后区、臂旁外侧核与孤束核中也能见到Fos  相似文献   

14.
Sodium-deprived rats develop a salt appetite and show changes in gustatory responses to NaCl in the periphery and brain stem; salt-sensitive neurons respond less to hypertonic NaCl than do corresponding cells in replete controls. By administering DOCA and renin, we generated a need-free sodium appetite quickly enough to permit us to monitor the activity of individual neurons in the nucleus of the solitary tract before and after its creation, permitting a more powerful within-subjects design. Subjects received DOCA pretreatment followed by an intracerebroventricular infusion of renin. In animals that were tested behaviorally, this resulted in elevated intake of 0.5 M NaCl. In neural recordings, renin caused decreased responding to hypertonic NaCl across all neurons and in the salt-sensitive neurons that were most responsive to NaCl before infusion. Most sugar-sensitive cells, in contrast, gave increased phasic responses to NaCl. These results confirm that sodium appetite is accompanied by decreased responding to NaCl in salt-sensitive neurons, complemented by increased activity in sugar-sensitive cells, even when created rapidly and independently of need.  相似文献   

15.
Sodium and potassium excretion and urine output have been studied in rats following water loading and intracerebroventricular (i.c.v.) injection of isotonic saline (NaCl-0.15M), gamma-amino butyric acid (GABA), picrotoxin, carbachol, GABA plus picrotoxin, GABA plus carbachol and GABA plus atropine. GABA injection decreased sodium and potassium excretion. Picrotoxin or carbachol injection elicited natriuresis and kaliuresis. GABA injection decreased the effects of the carbachol and atropine injection decreased the effects of the GABA on sodium and potassium excretion. These results suggest an interaction between gabaergic and cholinergic pathways in the control of sodium and potassium excretion.  相似文献   

16.
Activation of the renin-angiotensin system in the brain is considered important in the arousal and expression of sodium appetite. To clarify the effects of directly activating this hormonal cascade, taste neurons in the nucleus of the solitary tract of rats were tested with a battery of sapid stimuli after intracerebroventricular injection of renin or its vehicle. The rats were chronically prepared but lightly anesthetized during the recording procedure. Eighty-five taste neurons were tested: 46 after renin injections and 39 after vehicle. Neural activity was counted for 5.0-s periods without stimulation (spontaneous) and during stimulation with water and sapid chemicals. The averaged responses to each of the standard stimuli (0.1 M NaCl, 0.3 M sucrose, 0.01 M citric acid, and 0.01 M quinine hydrochloride) did not differ significantly between the two conditions. When the rats were tested with a concentration range of NaCl, however, after renin the average responses to the hypertonic 0.3 and 1.0 M stimuli were reduced to 74 and 70%, respectively, compared with those after vehicle injections. A similar tendency was evident for the subsample of neurons that responded best to NaCl, but the effect was smaller. These data are consistent with, but not as dramatic as, those reported after dietary-induced sodium appetite.  相似文献   

17.
Water intakes in response to hypertonic, hypovolemic, and dehydrational stimuli were investigated in mice lacking angiotensin II as a result of deletion of the angiotensinogen gene (Agt-/- mice), and in C57BL6 wild-type (WT) mice. Baseline daily water intake in Agt-/- mice was approximately threefold that of WT mice because of a renal developmental disorder of the urinary concentrating mechanisms in Agt-/- mice. Intraperitoneal injection of hypertonic saline (0.4 and 0.8 mol/l NaCl) caused a similar dose-dependent increase in water intake in both Agt-/- and WT mice during the hour following injection. As well, Agt-/- mice drank appropriate volumes of water following water deprivation for 7 h. However, Agt-/- mice did not increase water or 0.3 mol/l NaCl intake in the 8 h following administration of a hypovolemic stimulus (30% polyethylene glycol sc), whereas WT mice increased intakes of both solutions during this time. Osmoregulatory regions of the brain [hypothalamic paraventricular and supraoptic nuclei, median preoptic nucleus, organum vasculosum of the lamina terminalis (OVLT), and subfornical organ] showed an increased number of neurons exhibiting Fos-immunoreactivity in response to intraperitoneal hypertonic NaCl in both Agt-/- mice and WT mice. Polyethylene glycol treatment increased Fos-immunoreactivity in the subfornical organ, OVLT, and supraoptic nuclei in WT mice but only increased Fos-immunoreactivity in the supraoptic nucleus in Agt-/- mice. These data show that brain angiotensin is not essential for the adequate functioning of neural pathways mediating osmoregulatory thirst. However, angiotensin II of either peripheral or central origin is probably necessary for thirst and salt appetite that results from hypovolemia.  相似文献   

18.
Central angiotensin II (ANG II) regulates thirst. Because thromboxane A2-prostaglandin H2 (TP) receptors are expressed in the brain and mediate some of the effects of ANG II in the vasculature, we investigated the hypothesis that TP receptors mediate the drinking response to intracerebroventricular (icv) injections of ANG II. Pretreatment with the specific TP-receptor antagonist ifetroban (Ifet) decreased water intake with 50 ng/kg icv ANG II (ANG II + Veh, 7.2 +/- 0.7 ml vs. ANG II + Ifet, 2.8 +/- 0.8 ml; n = 5 rats; P < 0.001) but had no effect on water intake induced by hypertonic saline (NaCl + Veh, 8.4 +/- 1.1 ml vs. NaCl + Ifet, 8.9 +/- 1.8 ml; n = 5 rats; P = not significant). Administration of 0.6 microg/kg icv of the TP-receptor agonist U-46,619 did not induce drinking when given alone but did increase the dipsogenic response to a near-threshold dose of 15 ng/kg icv ANG II (ANG II + Veh, 1.1 +/- 0.7 vs. ANG II + U-46,619, 4.5 +/- 0.9 ml; n = 5 rats; P < 0.01). We conclude that central TP receptors contribute to the dipsogenic response to ANG II.  相似文献   

19.
Subcutaneous administration of oxytocin (OT) increases water intake and sodium/urine excretion in food-deprived male rats. This study analyzes the effect of OT administration (at 0830 and 1430h) on the consumption of water and hypertonic NaCl (1.5%). In the first experiment, injections of OT increased the intake of hypertonic NaCl (but not of water) in food-deprived rats but not in ad lib-fed animals during the second 12 h (2030 to 0830) of the treatment day. The net concentration of the fluid consumed by OT/deprived animals was close to isotonic. In the second experiment, the initial effect of OT administration was an increase in urine volume and urinary sodium excretion and concentration by food-deprived animals during the first 12 h (0830 to 2030). These findings suggest that in food-deprived animals, systemic administration of OT induces NaCl intake as a consequence of previous urine loss and urinary sodium excretion.  相似文献   

20.
Male Brown Norway rats aged 4 mo (young) and 20 mo (old) received a series of experimental challenges to body fluid homeostasis over approximately 3 mo. Water was available for drinking in some tests, and both water and 0.3 M NaCl were available in others. The series included three episodes of extracellular fluid depletion (i.e., furosemide + 20 h of sodium restriction), two tests involving intracellular fluid depletion (i.e., hypertonic saline: 1 or 2 M NaCl at 2 ml/kg body wt sc), one test involving overnight food and fluid restriction, and testing with captopril adulteration of the drinking water (0.1 mg/ml) for several days. Old rats were significantly heavier than young rats throughout testing. Old rats drank less water and 0.3 M NaCl after sodium deprivation than young rats, in terms of absolute and body weight-adjusted intakes. Old rats drank only half as much water as young rats in response to subcutaneous hypertonic NaCl when intakes were adjusted for body weight. Old rats drank less 0.3 M NaCl than young rats after overnight food and fluid restriction when intakes were adjusted for body weight. In response to captopril adulteration of the drinking water, young rats significantly increased daily ingestion of 0.3 M NaCl when it was available as an alternative to water and significantly increased daily water intakes when only water was available, in terms of absolute and body weight-adjusted intakes. Old rats had no response to captopril treatment. These results add important new information to previous reports that aging rats have diminished thirst and near-absent salt appetite responses to regulatory challenges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号