首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The involvement of central angiotensinergic and cholinergic mechanisms in the effects of the intracerebroventricularly injected somatostatin analog octreotide (Oct) on drinking, blood pressure, and vasopressin secretion in the rat was investigated. Intracerebroventricular Oct elicited prompt drinking lasting for 10 min. Water consumption depended on the dose of Oct (0.01, 0.1, and 0. 4 microgram). The drinking response to Oct was inhibited by pretreatments with the intracerebroventricularly injected angiotensin-converting enzyme inhibitor captopril, the AT(1)/AT(2) angiotensin receptor antagonist saralasin, the selective AT(1) receptor antagonist losartan, or the muscarinic cholinergic receptor antagonist atropine. The dipsogenic effect of Oct was not altered by prior subcutaneous injection of naloxone. Oct stimulated vasopressin secretion and enhanced blood pressure. These responses were also blocked by pretreatments with captopril or atropine. Previous reports indicate that the central angiotensinergic and cholinergic mechanisms stimulate drinking and vasopressin secretion independently. We suggest that somatostatin acting on sst2 or sst5 receptors modulates central angiotensinergic and cholinergic mechanisms involved in the regulation of fluid balance.  相似文献   

2.
In lactating rats, ANG II receptor binding in the arcuate nucleus (ARH) and median eminence is decreased. To further evaluate brain angiotensinergic activity during lactation, we assessed angiotensinogen (AON) mRNA by in situ hybridization in forebrains of day 10 or 11 postpartum lactating and diestrous rats. AON mRNA was abundantly expressed in the ARH, preoptic, suprachiasmatic, supraoptic, paraventricular, and dorsomedial hypothalamic nuclei, and other regions, similar to that reported in male rat brains. AON mRNA levels were decreased 27% in the midcaudal ARH of lactating rats but did not differ between lactating or diestrous rats in any of the other brain areas examined. Immunofluorescence for AON and glial fibrillary acidic protein or tyrosine hydroxylase confirmed that the AON immunoreactivity in the ARH was limited to astrocytes. Confocal microscopy revealed close appositions of AON-positive astrocytes to dopaminergic neurons in the ARH. The decrease in AON mRNA in the midcaudal ARH during lactation coupled with decreased ARH ANG II receptor binding suggests that lactating rats are less subject to ANG II-mediated inhibition of prolactin secretion.  相似文献   

3.
Rats were tested for dipsogenic and pressor responses to intracerebroventricularly (icv) administered Ang II and for dipsogenic responses to icv administered carbachol in the absence and presence of pertussis toxin, also administered icv. Pertussis toxin did not inhibit the pressor or dipsogenic responses to Ang II, but did inhibit the dipsogenic responses to carbachol. This suggests that the pressor and dipsogenic responses to Ang II in the brain are not mediated by a pertussis toxin-sensitive G protein, but that the muscarinic cholinergic dipsogenic response is mediated by a pertussis toxin-sensitive G protein.  相似文献   

4.
Central angiotensin II (ANG II) regulates thirst. Because thromboxane A2-prostaglandin H2 (TP) receptors are expressed in the brain and mediate some of the effects of ANG II in the vasculature, we investigated the hypothesis that TP receptors mediate the drinking response to intracerebroventricular (icv) injections of ANG II. Pretreatment with the specific TP-receptor antagonist ifetroban (Ifet) decreased water intake with 50 ng/kg icv ANG II (ANG II + Veh, 7.2 +/- 0.7 ml vs. ANG II + Ifet, 2.8 +/- 0.8 ml; n = 5 rats; P < 0.001) but had no effect on water intake induced by hypertonic saline (NaCl + Veh, 8.4 +/- 1.1 ml vs. NaCl + Ifet, 8.9 +/- 1.8 ml; n = 5 rats; P = not significant). Administration of 0.6 microg/kg icv of the TP-receptor agonist U-46,619 did not induce drinking when given alone but did increase the dipsogenic response to a near-threshold dose of 15 ng/kg icv ANG II (ANG II + Veh, 1.1 +/- 0.7 vs. ANG II + U-46,619, 4.5 +/- 0.9 ml; n = 5 rats; P < 0.01). We conclude that central TP receptors contribute to the dipsogenic response to ANG II.  相似文献   

5.
Rats with chronic nucleus of the solitary tract lesions (NTS-X) drink water and release vasopressin (VP) in response to reduced blood volume despite an absence of neural signals from cardiac and arterial baroreceptors. The present study determined whether rats with NTS-X have a greater sensitivity to circulating ANG II, which may contribute to the drinking and VP responses to hypovolemia. In conscious control rats and rats with NTS-X, ANG II was infused intravenously for 1 h at 10, 100, or 250 ng. kg(-1). min(-1). At the two higher doses, ANG II stimulated more water intake with a shorter latency to drink in rats with NTS-X than in control rats. In contrast, infusion of ANG II produced comparable increases in plasma VP in the two groups. At the two higher doses, ANG II produced an enhanced increase in arterial pressure (AP) in rats with NTS-X, and the bradycardia seen in control rats was reversed to a tachycardia. Infusion of hypertonic saline, which did not alter AP or heart rate, produced comparable drinking and VP release in the two groups. These results demonstrate that chronic NTS-X increases the dipsogenic response of rats to systemic ANG II but has no effect on ANG II-induced VP release or the osmotic stimulation of these responses.  相似文献   

6.
Previous studies have shown that angiotensin II (ANG II) increases glucose utilization in the subfornical organ and stimulates drinking behavior. We investigated with the deoxyglucose method whether atriopeptin III, an atrial natriuretic peptide (ANP), would prevent this enhanced glucose metabolism and interfere with the drinking response in the presence of ANG II. Two rat models with high circulating levels of ANG II were studied: the homozygous Brattleboro and ANG II-infused Sprague-Dawley rats. ANP decreased the normally enhanced glucose utilization in the subfornical organ in the Brattleboro rat and inhibited ANG II-stimulated glucose metabolism in the subfornical organ of Sprague-Dawley rats. This effect was accompanied by decreased ANG II-stimulated water intake. These findings indicate that ANP may act at the level of subfornical organ to antagonize the dipsogenic action of ANG II.  相似文献   

7.
The present study examined physiological and cellular responses to central application of ANG II in ovine fetuses and determined the fetal central ANG-mediated dipsogenic sites in utero. Chronically prepared near-term ovine fetuses (130 +/- 2 days) received injection of ANG II (1.5 microg/kg icv). Fetuses were monitored for 3.5 h for swallowing activity, after which animals were killed and fetal brains were perfused for subsequent Fos staining. Intracerebroventricular ANG II significantly increased fetal swallowing in near-term ovine fetuses (1.1 +/- 0.2 to 4.5 +/- 1.0 swallows/min). The initiation of stimulated fetal swallowing activity was similar to the latency of thirst responses (drinking behavior) elicited by central ANG II in adult animals. ANG II evoked increased Fos staining in putative dipsogenic centers, including the subfornical organ, organum vasculosum of the lamina terminalis, and median preoptic nucleus. Intracerebroventricular injection of ANG II also caused c-fos expression in the fetal hindbrain. These results indicate that an ANG II-mediated central dipsogenic mechanism is intact before birth, acting at sites consistent with the dipsogenic neural network. Central ANG II mechanisms likely contribute to fetal body fluid and amniotic fluid regulation.  相似文献   

8.
9.
S J Cooper 《Life sciences》1983,32(21):2453-2459
Several investigators have shown that anxiolytic benzodiazepines stimulate additional water consumption in rats made thirsty by water deprivation. The present report extends this work by showing that chlordiazepoxide (CDP) enhanced drinking in rats challenged with either cellular or extracellular dehydration, following hypertonic saline or polyethylene glycol injection respectively. Since CDP also increased drinking in control animals, it may have produced a direct dipsogenic effect which acted additively with respect to the physiological thirst challenges. In contrast, CDP did not enhance water intake during the dipsogenic action of the beta-adrenergic agonist, isoproterenol. The data provide new evidence that benzodiazepine mechanisms may be involved in thirst and the controls of drinking.  相似文献   

10.
The effect of intracerebroventricular (ICV) injection of atrial natriuretic factor (ANF) on drinking and pressor responses induced by centrally administered angiotensin II (AII) was examined in the rat. The ICV injection of ANF attenuated water intake induced by AII or 48-hr water deprivation. In contrast, ANF did not affect AII-induced pressor responses. The ICV injection of ANF did not cause recognizable change in blood pressure in spontaneously hypertensive rats or Wistar-Kyoto rats. These results suggested that ANF in the brain is involved in the central control of water intake. Brain ANF may be considered as a selective antagonist of the dipsogenic effect of AII but not its pressor effect.  相似文献   

11.
It is known that mice injected peripherally with ANG II do not show a drinking response but that cFos immunoreactivity (ir) is induced in brain regions similar to those in rats. We now show in Crl:CD1(ICR) mice that peripheral injection of the ANG II type 1 receptor antagonist losartan was sufficient to prevent this induction of Fos-ir in the subfornical organ (SFO). Injection of ANG II into the lateral cerebral ventricle produced a robust water intake in mice and induced Fos-ir in SFO, as well as in median preoptic (MnPO) and paraventricular (PVN) nuclei. Peripheral injection of losartan blocked this drinking response and prevented the induction of Fos-ir in each of these brain regions. Hypovolemia produced by polyethylene glycol (PEG) produced a robust water intake but no evidence of sodium appetite, and it induced Fos-ir in SFO, MnPO, and PVN. Peripheral injection of losartan did not affect this drinking response. Fos-ir induced by PEG in SFO and MnPO was reduced by treatment with losartan, while that induced in the PVN was further increased by losartan. Sodium depletion with furosemide and low-sodium diet produced a strong sodium appetite and induced Fos-ir in SFO and MnPO. Treatment with losartan completely blocked the sodium appetite, as well as the induction of Fos-ir in these brain regions. These data indicate that endogenous production of ANG II and action at forebrain receptors is critically involved in depletion-related sodium appetite in mice. The absence of an effect of losartan on PEG-induced drinking suggests the critical involvement of other factor(s) such as arterial or venous baroreceptor input, and we discuss how this factor could also explain why peripheral ANG II is not dipsogenic in mice.  相似文献   

12.
The teleost adrenomedullin (AM) family consists of three groups, AM1/AM4, AM2/AM3, and AM5. In the present study, we examined the effects of homologous AM1, AM2, and AM5 on drinking and renal function after peripheral or central administration in conscious freshwater eels. AM2 and AM5, but not AM1, exhibited dose-dependent (0.01-1 nmol/kg) dipsogenic and antidiuretic effects after intra-arterial bolus injection. The antidiuretic effect was significantly correlated with the degree of associated hypotension. To avoid the potential indirect osmoregulatory effects of AM-induced hypotension, infusion of AMs was also performed at nondepressor doses. Drinking was enhanced dose-dependently at 0.1-3 pmol.kg(-1).min(-1) of AM2 and AM5, matching the potency and efficacy of angiotensin II (ANG II), the most potent dipsogenic hormone known thus far. AM2 and AM5 infusion also induced mild antidiuresis, while AM1 caused antinatriuresis. Additionally, AMs were injected into the third and fourth ventricles of conscious eels to assess their site of dipsogenic action. However, none of the AMs at 0.05-0.5 nmol induced drinking, while ANG II was highly dipsogenic. AM2 and ANG II injected into the third ventricle increased arterial pressure while AM5 decreased it in a dose-dependent manner, and both AM2 and AM5 decreased blood pressure when injected into the fourth ventricle. These data suggest that circulating AM2 and AM5 act on a target site in the brain that lacks the blood-brain barrier. Collectively, the present study showed that AM2 and AM5 are potent osmoregulatory hormones in the eel, and their actions imply involvement in seawater adaptation of this euryhaline species.  相似文献   

13.
Experiments were performed to determine if glucocorticoids potentiate central hypertensive actions of ANG II. Male Sprague-Dawley rats were treated for 3 days to 3 wk with corticosterone (Cort). Experiments were performed in conscious rats that had previously been instrumented with arterial and venous catheters and an intracerebroventricular guide cannula in a lateral ventricle. Baseline arterial pressure (AP) was greater in Cort-treated rats than in control rats (119 +/- 2 vs. 107 +/- 1 mmHg, P < 0.01). Microinjection of ANG II intracerebroventricularly produced a significantly larger increase in AP in Cort-treated rats than in control rats. For example, at 30 ng ANG II, AP increased by 23 +/- 1 and 16 +/- 2 mmHg in Cort-treated and control rats, respectively (P < 0.01). Microinjection of an angiotensin type 1 receptor antagonist significantly decreased AP (-6 +/- 2 mmHg) and heart rate (-26 +/- 7 beats/min) in Cort-treated but not control rats. Increases in AP produced by intravenous administration of ANG II were not different between control and Cort-treated rats. Intravenous injections of ANG II antagonist had no significant effects on mean AP or heart rate in control or Cort-treated rats. Therefore, a sustained increase in plasma Cort augments the central pressor effects of ANG II without altering the pressor response to peripheral administration of the hormone.  相似文献   

14.
The role of ANG II, a potent dipsogenic hormone, in copious drinking of seawater eels was examined. SQ-14225 (SQ), an angiotensin-converting enzyme inhibitor, infused intra-arterially at 0.01-1 microgram. kg(-1). min(-1), depressed drinking and arterial blood pressure in a dose-dependent manner. The inhibition was accompanied by a small decrease in plasma ANG II concentration, which became significant at 1 microgram. kg(-1). min(-1). After the infusate was changed back to the vehicle, the depression of drinking and arterial pressure continued for >2 h, although plasma ANG II concentration rebounded above the level before SQ infusion. By contrast, infusion of anti-ANG II serum (0.01-1 microgram. kg(-1). min(-1)) did not suppress drinking and arterial pressure, although plasma ANG II concentration decreased to undetectable levels. Plasma atrial natriuretic peptide and plasma osmolality, which influence drinking rate in eels, did not change during SQ or antiserum infusions. These results suggest that the renin-angiotensin system plays only a minor role in the vigorous drinking observed in seawater eels. The results also suggest that the antidipsogenic and vasodepressor effects of SQ in seawater eels are not due solely to the inhibition of ANG II formation in plasma.  相似文献   

15.
The subfornical organ (SFO) is sensitive to both ANG II and ACh, and local application of these agents produces dipsogenic responses and vasopressin release. The present study examined the effects of cholinergic drugs, ANG II, and increased extracellular osmolarity on dissociated, cultured cells of the SFO that were retrogradely labeled from the supraoptic nucleus. The effects were measured as changes in cytosolic calcium in fura 2-loaded cells by using a calcium imaging system. Both ACh and carbachol increased intracellular ionic calcium concentration ([Ca2+]i). However, in contrast to the effects of muscarinic receptor agonists on SFO neurons, manipulation of the extracellular osmolality produced no effects, and application of ANG II produced only moderate effects on [Ca2+]i in a few retrogradely labeled cells. The cholinergic effects on [Ca2+]i could be blocked with the muscarinic receptor antagonist atropine and with the more selective muscarinic receptor antagonists pirenzepine and 4-diphenylacetoxy-N-methylpiperdine methiodide (4-DAMP). In addition, the calcium in the extracellular fluid was required for the cholinergic-induced increase in [Ca2+]i. These findings indicate that ACh acts to induce a functional cellular response in SFO neurons through action on a muscarinic receptor, probably of the M1 subtype and that the increase of [Ca2+]i, at least initially, requires the entry of extracellular Ca2+. Also, consistent with a functional role of M1 receptors in the SFO are the results of immunohistochemical preparations demonstrating M1 muscarinic receptor-like protein present within this forebrain circumventricular organ.  相似文献   

16.
Central infusion of an angiotensin type 1 (AT(1)) receptor blocker prevents sympathetic hyperactivity and hypertension in Dahl salt-sensitive (S) rats on high salt. In the present study, we examined whether central infusion of a direct renin inhibitor exerts similar effects. Intracerebroventricular infusion of aliskiren at the rate of 0.05 mg/day markedly inhibited the increase in ANG II levels in the cerebrospinal fluid and in blood pressure (BP) caused by intracerebroventricular infusion of rat renin. In Dahl S rats on high salt, intracerebroventricular infusion of aliskiren at 0.05 and 0.25 mg/day for 2 wk similarly decreased resting BP in Dahl S rats on high salt. In other groups of Dahl S rats, high salt intake for 2 wk increased resting BP by ~25 mmHg, enhanced pressor and sympathoexcitatory responses to air-stress, and desensitized arterial baroreflex function. All of these effects were largely prevented by intracerebroventricular infusion of aliskiren at 0.05 mg/day. Aliskiren had no effects in rats on regular salt. Neither high salt nor aliskiren affected hypothalamic ANG II content. These results indicate that intracerebroventricular infusions of aliskiren and an AT(1) receptor blocker are similarly effective in preventing salt-induced sympathetic hyperactivity and hypertension in Dahl S rats, suggesting that renin in the brain plays an essential role in the salt-induced hypertension. The absence of an obvious increase in hypothalamic ANG II by high salt, or decrease in ANG II by aliskiren, suggests that tissue levels do not reflect renin-dependent ANG II production in sympathoexcitatory angiotensinergic neurons.  相似文献   

17.
To examine the behavioral and neural control of body fluid homeostasis, water and saline intake of C57BL/6 mice was monitored under ad libitum conditions, after treatments that induce water or salt intake, and after ablation of the periventricular tissue of the anteroventral third ventricle (AV3V). Mice have nocturnal drinking that is most prevalent after the offset and before the onset of lights. When given ad libitum choice, C57BL/6 mice show no preference for saline over water at concentrations up to 0.9% NaCl and a progressive aversion to saline above that concentration. Systemic hypertonic saline, isoproterenol, and polyethylene glycol treatments are dipsogenic; however, systemic ANG II is not. Intracerebroventricular injections of both hypertonic saline and ANG II are dipsogenic, and diuretic treatment followed by a short period of sodium deprivation induces salt intake. After ablation of the AV3V, mice can be nursed to recovery from initial adipsia and, similar to rats, show chronic deficits to dipsogenic treatments. Taken together, the data indicate that mechanisms controlling thirst in response to cellular dehydration in C57BL/6 mice are similar to rats, but there are differences in the efficacy of extracellular dehydration-related mechanisms, especially for systemic ANG II, controlling thirst and salt appetite.  相似文献   

18.
The effect of central angiotensin AT(1) receptor blockade on thermoregulation and water intake after heat exposure was investigated. Rats were placed in a chamber heated to 39 +/- 1 degrees C for 60 min and then returned to their normal cage (at 22 degrees C), and water intake was measured for 120 min. Artificial cerebrospinal fluid (5 microl) was injected intracerebroventricularly 60 min before heat exposure in five control rats. Colonic temperature increased from 37.22 +/- 0.21 to 40.68 +/- 0.31 degrees C after 60 min. In six rats injected intracerebroventricularly with 10 microg of the AT(1) antagonist losartan, colonic temperature increased from 37.41 +/- 0.27 to 41.72 +/- 0.28 degrees C after 60 min. This increase was significantly greater than controls (P < 0.03). Losartan-treated rats drank 1.1 +/- 0.4 ml of water compared with 5.9 +/- 0.77 ml (P < 0.002) drank by control animals, despite a similar body weight loss in the two groups. Central losartan did not inhibit the drinking response to intracerebroventricular carbachol in heated rats, suggesting that losartan treatment did not nonspecifically depress behavior. We conclude that central angiotensinergic mechanisms have a role in both thermoregulatory cooling in response to heat exposure and also the ensuing water intake.  相似文献   

19.
Central injection of ANG II has been proposed to have dual effects on salt appetite including a direct stimulatory effect and an indirect inhibitory effect through an activation of central oxytocinergic neurons. The inhibition was demonstrated by pretreating rats with central ornithine vasotocin (OVT; oxytocin antagonist) 30 min before a central ANG II injection. The OVT pretreatment produced a large increase in ANG II-induced saline intake. The present paper reports a failure to replicate that influential experiment. However, we also report for the first time that OVT by itself: 1) provokes drinking of both water and saline solution with a latency almost as short as that produced by ANG II; 2) produces a mild pressor response; and 3) increases c-Fos expression in the organum vasculosum laminae terminalis (OVLT) and the median preoptic nucleus (MnPO). Oxytocin activity may provide an inhibitory control of drinking responses as has been suggested, but the inhibition is tonic and includes both water and saline drinking. Inhibition of this tonic activity may stimulate drinking by increasing neural activity in the OVLT and MnPO.  相似文献   

20.
Several studies have focused on the beneficial effects of peripheral angiotensin-(1-7) [Ang-(1-7)] in the regulation of cardiovascular function, showing its counterregulatory effect against the actions of angiotensin II (ANG II). However, its actions in the central nervous system are not completely understood. In the present study, we investigated the intracellular mechanisms underlying the action of ANG-(1-7) using the patch-clamp technique in neurons cultured from the hypothalamus of neonatal spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats. Superfusion of neurons with ANG II (100 nM) significantly increased neuronal firing in both strains of rats, and this chronotropic effect of ANG II was significantly enhanced in prehypertensive SHR neurons compared with WKY rat neurons. The enhanced chronotropic effect of ANG II was attenuated by a phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, LY 294002 (10 μM). Superfusion of neurons with ANG-(1-7) (100 nM) did not alter the neuronal firing rate in either SHR or WKY neurons; however, it significantly attenuated the chronotropic action of ANG II exclusively in prehypertensive SHR neurons. This counterregulatory effect of ANG-(1-7) on ANG II action in prehypertensive SHR neurons was attenuated by cotreatment with either A-779, a Mas receptor antagonist, or bisperoxovanadium, a phosphatase and tensin homologue deleted on chromosome ten (PTEN) inhibitor. In addition, incubation of WKY and prehypertensive SHR neurons with ANG-(1-7) significantly increased PTEN activity. The data demonstrate that ANG-(1-7) counterregulates the chronotropic action of ANG II via a PTEN-dependent signaling pathway in prehypertensive SHR neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号