首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
对来自假单胞菌ZJU26中的R-2-卤代酸脱卤酶(DehI-R)进行同源模建,分析其与底物的相互作用,为解析酶的底物对映体选择性提供理论依据.采用Sybyl中的APM模块首次构建并优化了R-2-卤代酸脱卤酶的三维结构,并用Procheck 验证结构模型的合理性.使用Suflex-Docking模块将结构模型与底物分别进行对接,分析相互之间的作用.序列比对结果显示,R-2-卤代酸脱卤酶与恶臭假单胞菌PP3中DehI的相似性达23.71%.Deh-R模建后的结构与模板很好的吻合.模型比对分析DehI-R中参与催化的残基,除Asn2.03外大部分都比较保守.分子对接结果表明,R-2-氯丙酸和S-2-氯丙酸都可以结合到活性位点上,决定其选择性的是值点Asn203,在RS-2-卤代酸脱卤酶所对应位点的残基为Ala,相比之下,Aan具备较大的空间位阻,从而阻止了S-2-氯丙酸的反应.利用Sybyl中的Biopolymer模块对R-2-卤代酸脱卤酶中的Asn203突变成具有不同空间位阻的Ala、Gly和Gln.突变酶与底物对接结果进一步证实了Asn203位点对R-2-卤代酸脱卤酶的底物对映体选择性作用.  相似文献   

2.
一种新型微生物卤醇脱卤酶的研究进展   总被引:1,自引:1,他引:1  
卤醇脱卤酶是细菌降解环境中重要污染物有机卤化物的关键酶之一,具有与其他已知脱卤酶不同的脱卤机制。它是一类通过分子内亲核取代机制催化邻卤醇转化为环氧化物的脱卤酶,可以高效催化有机邻卤醇进行脱卤反应,在治理环境污染方面具有十分重要作用。此外,在催化环氧化物和邻卤醇之间的转化反应中,卤醇脱卤酶具有很高的立体选择性,因而在手性药物合成方面也有广阔的应用前景。我们着重从卤化物生物降解途径、脱卤机制及应用等方面介绍了卤醇脱卤酶的最新研究进展,同时对卤醇脱卤酶改造的新方法进行了阐述与展望。  相似文献   

3.
立体选择性是2-卤代酸脱卤酶最重要的性质之一,但目前其手性识别过程尚不明确,对其进行研究和解析具有重要意义。以来自假单胞菌ZJU26的R-2-氯丙酸脱卤酶dehDIV-R为模型,研究了R-2-卤代酸脱卤酶的手性识别过程。首先通过测定反应产物的构型,确定dehDIV-R催化底物为SN2反应。通过Discovery Studio 3.0对dehDIV-R进行同源模建及底物分子对接,由对接结果和序列比对确定dehDIV-R立体选择性的关键位点Asn236,预测dehDIV-R的立体选择性与反应时底物到达反应位置的空间位阻密切相关。对dehDIV-R进行虚拟突变,将Asn236位点突变成具有不同空间位阻的残基Ala和Ser,并分别与底物分子进行分子对接,预测突变酶的立体选择性。根据预测结果,对Asn236氨基酸残基进行定点突变,发现在Asn236突变为Ala后的A1酶显示出对RS底物的活力;在Asn236突变为Ser后的S1酶显示出与原始酶相反的立体选择性,实现了立体选择性的反转。与模型的预测结果相符,证明了模型的合理性。  相似文献   

4.
微生物卤代烷烃脱卤酶研究进展   总被引:1,自引:0,他引:1  
卤代烷烃脱卤酶是降解卤代脂肪族化合物的关键酶类,在各种地理环境中的不同微生物中广泛存在,在生物降解和工业生产等方面具有重要的应用价值。目前已经生化鉴定了20个卤代烷烃脱卤酶。近些年来对这些酶的酶学特征、蛋白质结构和系统进化进行了详细的研究。同时,为满足应用实践的需求还对卤代烷烃脱卤酶进行了蛋白质工程改造研究。本文将对卤代烷烃脱卤酶研究的一些新的进展进行综述。  相似文献   

5.
李安章  邵宗泽 《微生物学报》2014,54(9):1063-1072
【目的】柴油食烷菌(Alcanivorax dieselolei)B-5是重要的石油降解菌。为研究其对卤代化合物的降解范围和降解机制,【方法】以不同的卤代化合物作为唯一碳源,观察菌株B-5在其中的生长情况;通过多重序列比对、系统发育分析和三维结构同源建模,分析该菌株基因组内一个假定的卤代烷烃脱卤酶(Haloalkane dehalogenase,HLD)DadA;利用大肠杆菌异源表达、纯化DadA,并测定了其对46个卤代底物的酶活。【结果】菌株B-5能够利用C3-C18链长范围的多种卤代化合物为唯一碳源生长;在系统进化树中,DadA相对独立于其他HLD-II亚家族成员,但具有典型的HLD-II亚家族的催化五联体残基;DadA确实具有脱卤活性,但该酶特异性高,底物范围明显小于其他已鉴定的HLDs,仅对1,2,3-三溴丙烷、1,2-二溴-3-氯丙烷和2,3-二氯-1-丙烯有脱卤酶活。【结论】因为DadA对很多B-5菌株可以利用做碳源的卤代底物没有脱卤酶活,所以推测B-5菌中可能还有其他脱卤酶参与了卤代烷烃的降解。菌株B-5及其卤代烷烃脱卤酶DadA在卤代烷烃污染物的生物降解方面具有应用潜力。  相似文献   

6.
手性环氧氯丙烷是一种重要的三碳手性合成子,在医药、农药、化工、材料等领域有着广泛的应用。开发以甘油替代石油基原料合成手性环氧氯丙烷的绿色合成工艺具有重要的开发价值。生物催化技术可有效提高过程安全性与原子经济性,降低"三废"排放,提升产品质量。阐述了生物催化合成手性环氧氯丙烷关键酶技术的研究进展,进行了生物合成路线设计、卤化酶酶库构建、卤醇脱卤酶与环氧化物水解酶的筛选与改造、卤醇脱卤酶/环氧化物水解酶双酶串联合成手性环氧氯丙烷工艺构建等技术开发,为手性环氧氯丙烷绿色生物合成技术的研究与应用提供理论基础与技术支持。  相似文献   

7.
环境中的多数有机卤化物具有高毒性和低可降解性,卤醇脱卤酶可以催化邻卤醇进行分子内亲和取代生成相应的环氧化物,在消除有机卤化物的污染方面具有十分重要的作用.此外,在催化环氧化物和邻卤醇之间的转化反应中卤醇脱卤酶具有很高的立体选择性,因而在手性药物合成方面也有广阔的应用前景.宏基因组是生境中全部微小生物遗传物质的总和,极大地扩展了微生物资源的利用空间.本文介绍了卤醇脱卤酶的特性及利用宏基因组方法筛选新的卤醇脱卤酶的两种方法及各自的优缺点.  相似文献   

8.
作为一类多功能生物催化剂,卤醇脱卤酶在手性β-取代醇和环氧化合物合成应用方面备受关注.目前催化功能较为清楚的卤醇脱卤酶不足40种,且绝大部分催化性能并不能满足科学研究和实际应用的要求,因此挖掘并鉴定更多的卤醇脱卤酶具有重要意义.本文克隆表达了来源于红螺菌科细菌Rhodospirillaceae bacterium中一个...  相似文献   

9.
卤醇脱卤酶( halohydrin dehalogenase),也叫卤醇-卤化氢裂解酶,通过分子内亲核取代机制催化芳香族或者脂肪族邻卤醇转化为环氧化物和卤化氢,是微生物降解有机卤化合物的关键酶之一.有机卤化合物已成为当今重要环境污染物之一,主要是由于工业排废以及人工合成卤化物的广泛应用造成的.在自然界中,大部分异生质卤化物自降解能力很差,同时许多化合物被疑是致癌或高诱变物质.因此,应用微生物和脱卤酶降解有机卤化物己引起人们广泛的关注,在环境污染治理,特别是手性环氧化物合成方面等都具有十分重要的作用.  相似文献   

10.
脱卤酶化学修饰的研究   总被引:1,自引:0,他引:1  
脱卤酶是催化α-卤酸转化为α-羟基酸的酶。本文用各种化学修饰剂对脱卤酶YL、109和H-2进行化学修饰。实验结果表明作用于丝氨酸、赖氨酸、色氨酸残基的试剂对酶活无明显影响,而作用于组氨酸、精氨酸和带羧基氨基酸残基的试剂使酶活降低。底物对化学修饰剂有保护作用。组氨酸、精氨酸和带羧基氨基酸(答氨酸或天冬氨酸)残基为脱卤酶活力所必需。  相似文献   

11.
Dehalogenases are of high interest due to their potential applications in bioremediation and in synthesis of various industrial products. DehL is an L-2-haloacid dehalogenase (EC 3.8.1.2) that catalyses the cleavage of halide ion from L-2-halocarboxylic acid to produce D-2-hydroxycarboxylic acid. Although DehL utilises the same substrates as the other L-2-haloacid dehalogenases, its deduced amino acid sequence is substantially different (<25%) from those of the rest L-2-haloacid dehalogenases. To date, the 3D structure of DehL is not available. This limits the detailed understanding of the enzyme’s reaction mechanism. The present work predicted the first homology-based model of DehL and defined its active site. The monomeric unit of the DehL constitutes α/β structure that is organised into two distinct structural domains: main and subdomains. Despite the sequence disparity between the DehL and other L-2-haloacid dehalogenases, its structural model share similar fold as the experimentally solved L-DEX and DehlB structures. The findings of the present work will play a crucial role in elucidating the molecular details of the DehL functional mechanism.  相似文献   

12.
DL-2-Haloacid dehalogenase from Pseudomonas sp. strain 113 (DL-DEX) catalyzes the hydrolytic dehalogenation of both D- and L-2-haloalkanoic acids to produce the corresponding L- and D-2-hydroxyalkanoic acids, respectively, with inversion of the C2 configuration. DL-DEX is a unique enzyme: it acts on the chiral carbon of the substrate and uses both enantiomers as equivalent substrates. We have isolated and sequenced the gene encoding DL-DEX. The open reading frame consists of 921 bp corresponding to 307 amino acid residues. No sequence similarity between DL-DEX and L-2-haloacid dehalogenases was found. However, DL-DEX had significant sequence similarity with D-2-haloacid dehalogenase from Pseudomonas putida AJ1, which specifically acts on D-2-haloalkanoic acids: 23% of the total amino acid residues of DL-DEX are conserved. We mutated each of the 26 residues with charged and polar side chains, which are conserved between DL-DEX and D-2-haloacid dehalogenase. Thr65, Glu69, and Asp194 were found to be essential for dehalogenation of not only the D- but also the L-enantiomer of 2-haloalkanoic acids. Each of the mutant enzymes, whose activities were lower than that of the wild-type enzyme, acted on both enantiomers of 2-haloacids as equivalent substrates in the same manner as the wild-type enzyme. We also found that each enantiomer of 2-chloropropionate competitively inhibits the enzymatic dehalogenation of the other. These results suggest that DL-DEX has a single and common catalytic site for both enantiomers.  相似文献   

13.
Haloacid dehalogenases catalyse the removal of halides from organic haloacids and are of interest for bioremediation and for their potential use in the synthesis of industrial chemicals. We present the crystal structure of the homodimer DehI from Pseudomonas putida strain PP3, the first structure of a group I α-haloacid dehalogenase that can process both l- and d-substrates. The structure shows that the DehI monomer consists of two domains of ∼ 130 amino acids that have ∼ 16% sequence identity yet adopt virtually identical and unique folds that form a pseudo-dimer. Analysis of the active site reveals the likely binding mode of both l- and d-substrates with respect to key catalytic residues. Asp189 is predicted to activate a water molecule for nucleophilic attack of the substrate chiral centre resulting in an inversion of configuration of either l- or d-substrates in contrast to d-only enzymes. These details will assist with future bioengineering of dehalogenases.  相似文献   

14.
Dehalogenases are environmentally important enzymes that detoxify organohalogens by cleaving their carbon-halogen bonds. Many microbial genomes harbour enzyme families containing dehalogenases, but a sequence-based identification of genuine dehalogenases with high confidence is challenging because of the low sequence conservation among these enzymes. Furthermore, these protein families harbour a rich diversity of other enzymes including esterases and phosphatases. Reliable sequence determinants are necessary to harness genome sequencing-efforts for accelerating the discovery of novel dehalogenases with improved or modified activities. In an attempt to extract dehalogenase sequence fingerprints, 103 uncharacterized potential dehalogenase candidates belonging to the α/β hydrolase (ABH) and haloacid dehalogenase-like hydrolase (HAD) superfamilies were screened for dehalogenase, esterase and phosphatase activity. In this first biochemical screen, 1 haloalkane dehalogenase, 1 fluoroacetate dehalogenase and 5 l -2-haloacid dehalogenases were found (success rate 7%), as well as 19 esterases and 31 phosphatases. Using this functional data, we refined the sequence-based dehalogenase selection criteria and applied them to a second functional screen, which identified novel dehalogenase activity in 13 out of only 24 proteins (54%), increasing the success rate eightfold. Four new l -2-haloacid dehalogenases from the HAD superfamily were found to hydrolyse fluoroacetate, an activity never previously ascribed to enzymes in this superfamily.  相似文献   

15.
The thrH gene product of Pseudomonas aeruginosa has been shown to complement both homoserine kinase (thrB gene product) and phosphoserine phosphatase (serB gene product) activities in vivo. Sequence comparison has revealed that ThrH is related to phosphoserine phosphatases (PSP, EC 3.1.3.3) and belongs to the l-2-haloacid dehalogenase-like protein superfamily. We have solved the crystal structures of ThrH in the apoform and in complex with a bound product phosphate. The structure confirms an overall fold similar to that of PSP. Most of the catalytic residues of PSP are also conserved in ThrH, suggesting that similar catalytic mechanisms are used by both enzymes. Spectrophotometry-based in vitro assays show that ThrH is indeed a phosphoserine phosphatase with a K(m) of 0.207 mm and k(cat) of 13.4 min(-1), comparable with those of other PSPs. More interestingly, using high pressure liquid chromatography-based assays, we have demonstrated that ThrH is able to further transfer the phosphoryl group to homoserine using phosphoserine as the phosphoryl group donor, indicating that ThrH has a novel phosphoserine:homoserine phosphotransferase activity.  相似文献   

16.
2-haloacid dehalogenases are enzymes that are capable of degrading 2-haloacid compounds. These enzymes are produced by bacteria, but so far they have only been purified and characterized from terrestrial bacteria. The present study describes the purification and characterization of 2-haloacid dehalogenase from the marine bacterium Pseudomonas stutzeri DEH130. P. Stutzeri DEH130 contained two kinds of 2-haloacid dehalogenase (designated as Dehalogenase I and Dehalogenase II) as detected in the crude cell extract after ammonium sulfate fractionation. Both enzymes appeared to exhibit stereo-specificity with respect to substrate. Dehalogenase I was a 109.9-kDa enzyme that preferentially utilized D-2-chloropropropionate and had optimum activity at pH 7.5. Dehalogenase II, which preferentially utilized L-2-chloropropionate, was further purified by ion-exchange chromatography and gel filtration. Purified Dehalogenase II appeared to be a dimeric enzyme with a subunit of 26.0-kDa. It had maximum activity at pH 10.0 and a temperature of 40 °C. Its activity was not inhibited by DTT and EDTA, but strongly inhibited by Cu2+, Zn2+, and Co2+. The K m and V max for L-2-chloropropionate were 0.3 mM and 23.8 μmol/min/mg, respectively. Its substrate specificity was limited to short chain mono-substituted 2-halocarboxylic acids, with no activity detected toward fluoropropionate and monoiodoacetate. This is the first report on the purification and characterization of 2-haloacid dehalogenase from a marine bacterium.  相似文献   

17.
Haloacid dehalogenases are potentially involved in bioremediation of contaminated environments and few have been biochemically characterized from marine organisms. The l -2-haloacid dehalogenase (l -2-HAD) from the marine Bacteroidetes Zobellia galactanivorans DsijT (ZgHAD) has been shown to catalyze the dehalogenation of C2 and C3 short-chain l -2-haloalkanoic acids. To better understand its catalytic properties, its enzymatic stability, active site, and 3D structure were analyzed. ZgHAD demonstrates high stability to solvents and a conserved catalytic activity when heated up to 60°C, its melting temperature being at 65°C. The X-ray structure of the recombinant enzyme was solved by molecular replacement. The enzyme folds as a homodimer and its active site is very similar to DehRhb, the other known l -2-HAD from a marine Rhodobacteraceae. Marked differences are present in the putative substrate entrance sites of the two enzymes. The H179 amino acid potentially involved in the activation of a catalytic water molecule was confirmed as catalytic amino acid through the production of two inactive site-directed mutants. The crystal packing of 13 dimers in the asymmetric unit of an active-site mutant, ZgHAD-H179N, reveals domain movements of the monomeric subunits relative to each other. The involvement of a catalytic His/Glu dyad and substrate binding amino acids was further confirmed by computational docking. All together our results give new insights into the catalytic mechanism of the group of marine l -2-HAD.  相似文献   

18.
Haloacid dehalogenases are enzymes that cleave carbon-chlorine or carbon-bromine bonds of 2-haloalkanoates. X-ray-quality crystals of L-2-haloacid dehalogenase from the 1,2-dichloroethane-degrading bacterium Xanthobacter autotrophicus GJ10 have been grown at room temperature from 20% PEG 8000, 200 mM sodium formate at pH 6.8-7.0, using macroseeding techniques. The crystals, which diffract in the X-ray beam up to 2.0 A resolution, belong to the spacegroup C2221. Cell parameters are a = 58.8 A, b = 93.1 A, c = 84.2 A. A native data set to 2.3 A has been collected, with a completeness of 97% and an Rsym of 6.0%.  相似文献   

19.
Haloacid dehalogenases have potential applications in the pharmaceutical and fine chemical industry as well as in the remediation of contaminated land. The l-2-haloacid dehalogenase from the thermophilic archaeon Sulfolobus tokodaii has been cloned and over-expressed in Escherichia coli and successfully purified to homogeneity. Here we report the structure of the recombinant dehalogenase solved by molecular replacement in two different crystal forms. The enzyme is a homodimer with each monomer being composed of a core-domain of a β-sheet bundle surrounded by α-helices and an α-helical sub-domain. This fold is similar to previously solved mesophilic l-haloacid dehalogenase structures. The monoclinic crystal form contains a putative inhibitor l-lactate in the active site. The enzyme displays haloacid dehalogenase activity towards carboxylic acids with the halide attached at the C2 position with the highest activity towards chloropropionic acid. The enzyme is thermostable with maximum activity at 60°C and a half-life of over 1 h at 70°C. The enzyme is relatively stable to solvents with 25% activity lost when incubated for 1 h in 20% v/v DMSO.  相似文献   

20.
Haloalkane dehalogenases catalyse environmentally important dehalogenation reactions. These microbial enzymes represent objects of interest for protein engineering studies, attempting to improve their catalytic efficiency or broaden their substrate specificity towards environmental pollutants. This paper presents the results of a comparative study of haloalkane dehalogenases originating from different organisms. Protein sequences and the models of tertiary structures of haloalkane dehalogenases were compared to investigate the protein fold, reaction mechanism and substrate specificity of these enzymes. Haloalkane dehalogenases contain the structural motifs of alpha/beta-hydrolases and epoxidases within their sequences. They contain a catalytic triad with two different topological arrangements. The presence of a structurally conserved oxyanion hole suggests the two-step reaction mechanism previously described for haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. The differences in substrate specificity of haloalkane dehalogenases originating from different species might be related to the size and geometry of an active site and its entrance and the efficiency of the transition state and halide ion stabilization by active site residues. Structurally conserved motifs identified within the sequences can be used for the design of specific primers for the experimental screening of haloalkane dehalogenases. Those amino acids which were predicted to be functionally important represent possible targets for future site-directed mutagenesis experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号