共查询到19条相似文献,搜索用时 78 毫秒
1.
人类疾病动物模型在医学研究中起着非常重要的作用,而自然发生的人类疾病已远远不能满足医学研究的需要。利用基因打靶技术开展人类疾病动物模型的研究具有广阔的应用前景。本文就基因打靶技术及其在人类疾病动物模型研究中的应用做一介绍。 相似文献
2.
4.
随着人类基因组计划完成,人类遗传信息的解码推动着疾病诊疗迈入基因组学时代。许多医学领域中的“罕见病”和“不治之症”也被逐渐揭开了神秘的面纱,越来越多的疾病被确证为遗传性疾病。2012年,CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated enzyme)基因编辑技术的发现和应用,是近十年生物医学领域最具革命性的突破之一。该技术具有简便、高效、适用性广泛等特点,不但被广泛应用于基因功能研究,而且也在遗传病的基因治疗临床试验上取得重要进展。针对遗传背景明确的单基因遗传病,CRISPR/Cas可通过对目的 DNA序列进行精准靶向编辑,实现对内源基因序列的改变或者基因功能的重新调控,为治愈部分重大遗传性疾病提供了新的工具和治疗策略。目前,多个基于CRISPR/Cas技术研发的基因药物已经进入临床试验,并取得了令人鼓舞的阶段性成果。本文就目前已公布临床试验的基因编辑药物研究进展进行回顾与展望。 相似文献
5.
发展对人类疾病有效的预测、预防、诊断和治疗等途径,一直是人口健康领域关注的焦点.任何人类疾病似乎都可归咎于遗传背景和环境因素的共同作用,并影响到疾病的发生、病程、药物疗效和预后等.最有效的研究策略足直接针对患者的各方面临床研究,但这一策略常常会而临着同一临床症状却有不同病因(异质性)、个体差异显著(如治疗效果因人而异)以及难以回溯性地研究人类疾病的发生、发展(如发病以前的事件或经历)等问题,而且医学伦理学的要求使得大量医学研究和新药新疗法不能直接应用于人体,必须先有动物实验阐明其安全性和必要性.最佳的研究策略足创建人类疾病的动物模型,因为可严格地控制病因、遗传背景、环境因子等,也可跟踪性研究动物模型病症的发生、发展、治疗反应和结局等,但这一策略也常常面临着一系列问题和误解.对此,在<动物学研究>出版<灵长类动物与人类疾病模型>专刊之际,撰写此评述性论文,将系列问题和误解一一提出,并讨论其应对策略. 相似文献
6.
8.
CRISPR-Cas9基因编辑技术在病毒感染疾病治疗中的应用 总被引:1,自引:0,他引:1
CRISPR-Cas9基因编辑技术是基于细菌或古细菌CRISPR介导的获得性免疫系统衍生而来,由一段RNA通过碱基互补配对识别DNA,指导Cas9核酸酶切割识别的双链DNA,诱发同源重组或非同源末端链接,进而实现在目的DNA上进行编辑。病毒通过特异的受体侵染细胞,其基因组在细胞内发生复制、转录、翻译等过程完成其生活周期,某些DNA病毒或逆转录病毒基因组会整合到宿主基因组中。基因治疗是病毒感染疾病治疗的新趋势。因此,基因编辑技术在持续感染的病毒或潜伏感染病毒疾病治疗中具有重大的潜在意义。文章主要从CRISPR-Cas9作用机制以及在病毒感染疾病治疗中的应用等方面进行了综述。 相似文献
9.
规律成簇间隔的短回文序列(Clustered regularly interspaced short palindromic repeats,CRISPR)是细菌和古菌中的获得性免疫系统,利用该系统能定点进行基因编辑。最近,科学家发现了新的CRISPR-associated (Cas)蛋白,其中由Cas12a介导的基因编辑能显著降低脱靶率。文中对CRISPR/Cas系统的发现历史、组成和分类、工作原理进行概述,并总结了该系统的最新研究进展及在斑马鱼Danio rerio中的应用。 相似文献
10.
11.
Ali Zarei Vahid Razban Seyed Ebrahim Hosseini Seyed Mohammad Bagher Tabei 《The journal of gene medicine》2019,21(4)
A set of unique sequences in bacterial genomes, responsible for protecting bacteria against bacteriophages, has recently been used for the genetic manipulation of specific points in the genome. These systems consist of one RNA component and one enzyme component, known as CRISPR (“clustered regularly interspaced short palindromic repeats”) and Cas9, respectively. The present review focuses on the applications of CRISPR/Cas9 technology in the development of cellular and animal models of human disease. Making a desired genetic alteration depends on the design of RNA molecules that guide endonucleases to a favorable genomic location. With the discovery of CRISPR/Cas9 technology, researchers are able to achieve higher levels of accuracy because of its advantages over alternative methods for editing genome, including a simple design, a high targeting efficiency and the ability to create simultaneous alterations in multiple sequences. These factors allow the researchers to apply this technology to creating cellular and animal models of human diseases by knock‐in, knock‐out and Indel mutation strategies, such as for Huntington's disease, cardiovascular disorders and cancers. Optimized CRISPR/Cas9 technology will facilitate access to valuable novel cellular and animal genetic models with respect to the development of innovative drug discovery and gene therapy. 相似文献
12.
Hepatic iron deposition in human disease and animal models 总被引:4,自引:0,他引:4
Iron deposition occurs in parenchymal cells of the liver in two major defects in human subjects (i) in primary iron overload (genetic haemochromatosis) and (ii) secondary to anaemias in which erythropolesis is increased (thalassaemia). Transfusional iron overload results in excessive storage primarily in cells of the reticule endothelial system. The storage patterns in these situations are quite characteristic. Excessive iron storage, particularly in parenchymal cells eventually results in fibrosis and cirrhosis. There is no animal model or iron overload which completely mimics genetics haemochromatosis but dietary iron loading with carbonyl iron or ferrocene does produce excessive parenchymal iron stores in the rat. Such models have been used to study iron toxicity and the action of iron chelators in the effective removal of excessive iron stores. 相似文献
13.
There are more than 40 different forms of inherited lysosomal storage diseases (LSDs) known to occur in humans and the aggregate incidence has been estimated to approach 1 in 7000 live births. Most LSDs are associated with high morbidity and mortality and represent a significant burden on patients, their families, and health care providers. Except for symptomatic therapies, many LSDs remain untreatable, and gene therapy is among the only viable treatment options potentially available. Therapies for some LSDs do exist, or are under evaluation, including heterologous bone marrow transplantation (BMT), enzyme replacement therapy (ERT), and substrate reduction therapy (SRT), but these treatment options are associated with significant concerns, including high morbidity and mortality (BMT), limited positive outcomes (BMT), incomplete response to therapy (BMT, ERT, and SRT), life-long therapy (ERT, SRT), and cost (BMT, ERT, SRT). Gene therapy represents a potential alternative therapy, albeit a therapy with its own attendant concerns. Animal models of LSDs play a critical role in evaluating the efficacy and safety of therapy for many of these conditions. Naturally occurring animal homologs of LSDs have been described in the mouse, rat, dog, cat, guinea pig, emu, quail, goat, cattle, sheep, and pig. In this review we discuss those animal models that have been used in gene therapy experiments and those with promise for future evaluations. 相似文献
14.
丙型肝炎病毒(HCV)感染是导致人类慢性病毒性肝炎、肝硬化和肝癌的最主要病因之一。由于缺乏合适的HCV感染实验动物模型,使得针对HCV感染更为有效的疗法及疫苗的研发滞后。黑猩猩是HCV感染研究的最佳实验动物,但由于其来源有限、价格昂贵及临床症状等诸多问题,其应用受限,因此发展新的实验动物模型用于HCV感染相关的基础和应用研究迫在眉睫。近年来,以啮齿类等动物为替代模型取得了不少进展,应用转基因等实验技术使替代动物感染了HCV,并成功应用于多个学科领域的研究。本文分析了HCV自然感染的实验动物、自然感染和非自然感染的替代实验动物在致病机制研究、药物评价和疫苗研发应用中的优缺点及未来研究趋势。 相似文献
15.
16.
17.
Abstract: The genetic similarity between humans and nonhuman primates makes nonhuman primates uniquely suited as models for genetic research on complex physiological and behavioral phenotypes. By comparison with human subjects, nonhuman primates, like other animal models, have several advantages for these types of studies: 1) constant environmental conditions can be maintained over long periods of time, greatly increasing the power to detect genetic effects; 2) different environmental conditions can be imposed sequentially on individuals to characterize genotype-environment interactions; 3) complex pedigrees that are much more powerful for genetic analysis than typically available human pedigrees can be generated; 4) genetic hypotheses can be tested prospectively by selective matings; and 5) essential invasive and terminal experiments can be conducted. Limitations of genetic research with nonhuman primates include cost and availability. However, the ability to manipulate both genetic and environmental factors in captive primate populations indicates the promise of genetic research with these important animal models for illuminating complex disease processes. The utility of nonhuman primates for biomedical research on human health problems is illustrated by examples concerning the use of baboons in studies of osteoporosis, alcohol metabolism, and lipoproteins. 相似文献
18.
Tina Rulli 《Bioethics》2019,33(9):1072-1082
Given recent advancements in CRISPR‐Cas9 powered genetic modification of gametes and embryos, both popular media and scientific articles are hailing CRISPR’s life‐saving, curative potential for people with serious monogenic diseases. But claims that CRISPR modification of gametes or embryos, a form of germline engineering, has therapeutic value are deeply mistaken. This article explains why reproductive uses of CRISPR, and germline engineering more generally, do not treat or save lives that would otherwise have a genetic disease. Reproductive uses of CRISPR create healthy people whose existence is not inevitable in the first place. Creating healthy lives has distinct and lesser moral value from saving or curing lives that would otherwise have genetic disease. The real value in reproductive uses of CRISPR is in helping a very limited population of people have healthy, genetically related children. This diminished value cannot compete with the concerns in opposition to germline engineering, nor is it worth the investment of research money. 相似文献
19.
Beurskens N Klaassens M Rottier R de Klein A Tibboel D 《Birth defects research. Part A, Clinical and molecular teratology》2007,79(8):565-572
BACKGROUND: Congenital diaphragmatic hernia (CDH) is a major life-threatening malformation, occurring in approximately 1 in 3,000 live births. Over the years, different animal models have been used to gain insight into the etiology of this complex congenital anomaly and to develop treatment strategies. However, to date the pathogenic mechanism is still not understood, and treatment remains difficult because of the associated pulmonary hypoplasia and pulmonary hypertension. METHODS: In this review, data available from several animal models will be discussed. The retinoic acid signaling pathway (RA pathway, retinoid pathway) will be addressed as a developmental pathway that is potentially disrupted in the pathogenesis of CDH. Furthermore, genetic factors involved in diaphragm and lung development will be discussed. CONCLUSIONS: With this review article, we aim to provide a concise overview of the current most important experimental genetic data available in the field of CDH. 相似文献