首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependence of filamentous fungal protease secretion on morphology was investigated by employing the recombinant Aspergillus niger strain AB4.1[pgpdAGLAGFP] which contains a gene for the glucoamylase-GFP (green fluorescence protein) fusion protein. Different inoculum levels were used to obtain different sizes of pellet or free mycelia. The extracellular protease activity of the cultures varied with the pellet size and decreased dramatically when the morphology was changed from free mycelia to pellets. The culture with an optimal pellet size of 1.6 mm was obtained from an inoculum of 4 x 10(6) spores/mL. It resulted in a specific protease activity of 158 units/L, only one-third of that in free mycelial growth, and a maximum specific GFP yield of 0.98 mg/g (cell mass) compared to 0. 29 mg/g for free mycelial growth with an inoculum of 10(7) spores/mL. The results indicate that this bioprocessing strategy can be effectively used to inhibit protease activity in filamentous fungal fermentation and thereby to enhance heterologous protein production.  相似文献   

2.
【目的】系统研究吸附法和同时培养法对所形成混合菌丝球的外观形态、内部结构及其去除2-氯酚效果的影响。【方法】采用吸附法和同时培养法将可降解2-氯酚的光合细菌PSB-1D固定在黄孢原毛平革菌(Phanerochaete chrysosporium)DH-1发酵而成的菌丝球上,形成混合菌丝球。以单一菌丝球为对照,利用光学显微镜、扫描电镜等仪器观察混合菌丝球的外观形态和内部结构,考察2种方法对混合菌丝球成球效果的影响;以无菌培养液为空白对照,考察游离光合细菌、单一菌丝球、2种方法形成混合菌丝球对2-氯酚的降解效能。【结果】在吸附法形成的混合菌丝球上,光合细菌主要集中在过渡区;而同时培养法将光合细菌牢固地包埋在菌丝球内核区,并大量簇状附着生长在菌丝交联的空隙处和每根菌丝上。在接种等量孢子和光合细菌的前提下,同时培养法较吸附法操作时间更短,成球数量更多,形成菌丝球干湿比更大,单位菌丝干重上固定的细菌数量更多。菌丝球降解体系和游离光合细菌对2-氯酚的降解均符合一级动力学特征。同时培养法形成的混合菌丝球降解效果最好,7 d内对初始浓度为50 mg/L的2-氯酚降解率可达89%以上,降解速率常数为0.3286 mg/(L·d),2-氯酚半衰期t1/2为2.8 d。【结论】首次报道黄孢原毛平革菌包埋固定化光合细菌形成混合菌丝球。该研究为生物质固定化材料的实际应用提供理论依据。  相似文献   

3.
4.
This study investigated the effects of surfactant additives and medium pH on mycelial morphology and exopolysaccharide (EPS) production in liquid culture of a valuable medicinal fungus Cordyceps sinensis Cs-HK1. In the medium containing 20 g l−1 glucose and 6 g l−1 peptone as the sole nitrogen source, the Cs-HK1 fungal mycelia formed smooth and spherical pellets about 1.8-mm mean diameter. The mycelial pellets became less uniform at pH (4.0–5.0) lower than the optimum (pH 6.0) or turned to filamentous form at higher pH (8–9). Surfactants added to the medium inhibited pellet formation, resulting in smaller and looser pellets. Tween 80 exhibited a remarkable promoting effect on EPS production, increasing the EPS yield more than twofold at 1.5% (w/v), which was most probably attributed to the stimulation of EPS biosynthesis and release from the fungal cells by Tween 80.  相似文献   

5.
Trichoderma reesei is an important cellulase producer and its secondary mycelial phase is responsible for cellulase expression and secretion in submerged fermentation. Little is known regarding the effects of fungal morphology on cellulase production by Trichoderma sp. In this study we aimed to extend the understanding of cellulase production by T. reesei, especially correlating cellulase productivity with pellet morphology and with its secretome characteristics. We found that T. reesei was more likely to form pellets in malt extract broth than in potato dextrose broth. CaCO(3) helped in formation of fine pellets in malt extract broth. 10(9) spores/ml resulted in formation of pellets with the size of 0.13 ± 0.047 mm. LC/MS spectrometry analysis indicated that the secretomes from pellet was different from that of mycelial mat under the same fermentation conditions. Optimization tests showed that lactose, xylose and Pluronic F68 are important for efficient production of cellulases with FPU activity in the pellets fermentation. This is the first report on the artificial formation of pellets by Trichoderma sp. as well as correlation between physiological characteristic of the pellets and cellulase production by T. reesei. The findings from this study can be used for improvement of cellulase productivity.  相似文献   

6.
The effect of filamentous fungal morphology on heterologous protein secretion was investigated using the recombinant Aspergillus niger strain AB4.1[pgpdAGLAGFP], which contained the gene coded for the GLA-GFP (glucoamylase-green fluorescence protein) fusion protein. Three culturing systems were studied to develop different morphological forms of the fungus. Free-cell cultures in conventional stirred-tank bioreactors grew in pellet form with various sizes depending on culturing conditions. Cells immobilized on cotton cloth grew in mycelial form in a rotating fibrous bed (RFB) and a static fibrous bed (SFB) bioreactors. The expression of the fusion protein was growth-associated and dependent on the fungal morphology. Immobilized cells produced 10-fold more GFP and glucoamylase than well-oxygenated free-cell pellets. In free-cell cultures, excretion of the fusion protein occurred mainly from cell autolysis, when oxygen or nutrient were depleted, whereas protein secretion took place from the beginning of the fermentation in immobilized-cell cultures. Also, protein secretion was found to be strongly dependent on morphology. Small pellets of a 1-mm size secreted 82% of GFP produced, whereas 43% of GFP remained intracellular in larger pellets of 5 mm. Complete secretion of GFP was obtained with cells immobilized on the fibrous matrix. The improvement in heterologous protein synthesis and secretion can be attributed to the filamentous mycelial morphology since protein secretion occurred predominantly at the tips of growing hyphae. Secretion of proteases occurred mainly in the stationary phase or when cell autolysis were induced by nutrient depletion and was not dependent on morphology, although immobilizing the cells also reduced protease activity. The RFB bioreactor gave the best fermentation performance because of its ability to control the cell morphology that was amenable to efficient oxygen transfer and protein secretion.  相似文献   

7.
Several models have been developed simulating O2 transfer in bioreactors, but three limitations are often found: (i) an inadequate kinetic representation of O2 consumption or wrong boundary conditions, (ii) unrealistic parameter values, and (iii) inadequate experimental systems. In our study we minimized those possible sources of error. Oxygen uptake rate, void fraction of the pellet, and external O2 mass transfer coefficient were experimentally obtained from bioreactor studies in which pellets of Gibberella fujikuroi were naturally formed. Michaelis-Menten kinetics and diffusion equations were used to describe the O2 consumption rate and to evaluate the effectiveness factor in dynamic mode. The nonlinear mathematical model proposed was solved by the orthogonal collocation technique. The O2 consumption rate in pellets of G. fujikuroi of 1.7-2.0 mm is only marginally inhibited by diffusion constraints under conditions tested. Simulation analysis showed that the effectiveness factor decreased as the Thiele modulus and pellet diameter increased. The proposed model was applied to experimental data reported for other fungal pellets and allowed to predict optimal conditions for O2 transfer into mycelial pellets.  相似文献   

8.
The effects of dissolved oxygen tension and mechanical forces on fungal morphology were both studied in the submerged fermentation of Aspergillus awamori. Pellet size, the hairy length of pellets, and the free filamentous mycelial fraction in the total biomass were found to be a function of the mechanical force intensity and to be independent of the dissolved oxygen tension provided that the dissolved oxygen tension was neither too low (5%) nor too high (330%). When the dissolved oxygen concentration was close to the saturation concentration corresponding to pure oxygen gas, A. awamori formed denser pellets and the free filamentous mycelial fraction was almost zero for a power input of about 1 W/kg. In the case of very low dissolved oxygen tension, the pellets were rather weak and fluffy so that they showed a very different appearance. The amount of biomass per pellet surface area appeared to be affected only by the dissolved oxygen tension and was proportional to the average dissolved oxygen tension to the power of 0.33. From this it was concluded that molecular diffusion was the dominant mechanism for oxygen transfer in the pellets and that convection and turbulent flow in the pellets were negligible in submerged fermentations. The biomass per wet pellet volume increased with the dissolved oxygen tension and decreased with the size of the pellets. This means that the smaller pellets formed under a higher dissolved oxygen tension had a higher intrinsic strength. Correspondingly, the porosity of the pellets was a function of the dissolved oxygen tension and the size of pellets. Within the studied range, the void fraction in the pellets was high and always much more than 50%.  相似文献   

9.
In liquid culture, filamentous organisms often grow in the form of pellets. Growth result in an increase in radius, whereas shear forces result in release of hyphal fragments which act as centers for further pellet growth and development. A previously published model for pellet growth of filamentous microorganisms has been examined and is found to be unstable for certain parameter values. This instability has been identified as being due to inaccuracies in estimating the numbers of fragments which seed the pellet population. A revised model has been formulated, based on similar premises, but adopting a finite element approach. This considers the population of pellets to be distributed in a range of size classes. Growth results in movement to classes of increasing pellet size, while fragments enter the smallest size class, from which they grow to form further pellets. The revised model is stable and predicts changes in the distribution of pellet sizes within a population growing in liquid batch culture. It considers pellet growth and death, with fragmentation providing new centers of growth within the pellet population, and predicts the effects of shear forces on pellet growth and size distribution. Predictions of pellet size distributions are tested using previously published data on the growth of fungal pellets and further predictions are generated which are suitable for experimental testing using cultures of filamentous fungi or actinomycetes. (c) 1995 John Wiley & Sons, Inc.  相似文献   

10.
Oxygen transfer into mycelial pellets   总被引:5,自引:0,他引:5  
The oxygen uptake rate in mycelial pellets of Aspergillus niger was studied experimentally and theoretically. The specific rate of respiration of mycelial pellets was found to decrease significantly with increasing pellet size. The distribution of respiratory activity in the mycelial pellets was evaluated and the specific rate of respiration of disrupted mycelia showed adaptation to the concentration of oxygen in the medium. The decrease of the specific rate of respiration of the mycelial pellets could be estimated according to diameter, mycelial density, oxygen diffusivity, and adaptation to the concentration of oxygen. Good agreement was found between the theoretical analysis and the experimental data.  相似文献   

11.
AIMS: The objective of this work was to investigate the morphological and rheological properties in submerged culture of the three different basidiomycetes Phellinus (P. baumii, P. gilvus and P. linteus) that produce pharmacologically important exopolysaccharides (EPS). METHODS AND RESULTS: In flask cultures, pH proved to be a critical factor affecting mycelial growth, morphological change and EPS production. The macroscopic morphologies observed under different pHs in flask cultures were also comparable: i.e. starfish-like pellets with a lesser extent of free mycelium appeared in P. baumii, whereas smooth pellets with higher amounts of free mycelium were observed in P. gilvus and P. linteus. The pelleted fermentations were further characterized in a 5-l stirred-tank fermenter by image analysis with respect to mean diameter, core area and pellet circularity. Phellinus baumii showed the largest pellet size (5.2 mm in diameter), whereas P. linteus had extremely small and spherical pellets. The culture broth of P. baumii and P. gilvus yielded extremely high apparent viscosities, ranging from 5 to 7 Pa s. CONCLUSIONS: Three important species of Phellinus showed significantly different morphological and rheological properties. The morphological variation of the three Phellinus species was closely linked to EPS productivity and the apparent viscosity of the whole broth. SIGNIFICANCE AND IMPACT OF THE STUDY: The morphological change in the three species of Phellinus was a good indicator for identifying cell activity for EPS production. Our finding may be beneficial for further optimization of other fungal fermentation processes for large-scale production of EPS.  相似文献   

12.
Summary Lignin peroxidases produced byPhanerochaete chrysosporium have several important potential industrial applications based on their ability to degrade lignin and lignin-like compounds. A stirred tank reactor system for the production of lignin peroxidases is described here. Included in this study is an examination of the mechanics of pellet biocatalyst formation and the optimization of an acetate buffered medium. Higher levels of lignin peroxidase were obtained with acetate buffer compared to the other buffer systems tested. Concentrations of 0.05% (w/v) Tween 80 and 0.4 mM veratryl alcohol gave optimal lignin peroxidase activity in acetate buffered medium. In shake flask cultures, mycelial fragments in the inoculum aggregated into pellets during the first eight hours of incubation and thereafter increased in size through the eighth day. The agitation rate in shake flask cultures affected pellet size, the number of pellets formed, and lignin peroxidase activity. Transfer of fungal pellets from shake flask culture to a continuously oxygenated baffled stirred tank reactor (STR) resulted in production of high lignin peroxidase titres comparable to those of shake flask cultures when the agitation rate, oxygen dispersion and foaming were closely controlled.  相似文献   

13.
One of the practical problems in scaling-up the production of fungal inocula for environmental applications is how to provide essential humidity for fungal growth. Pelleted solid substrate was used as a fungal biomass carrier. It was coated with alginate or agar hydrogels that contained mycelial fragments of the white-rot fungi Trametes versicolor or Irpex lacteus. To follow fungal growth and formation of mycelial coat over pelleted substrate, the fluorescein-diacetate hydrolysing activity (FDA) assay and visual inspection were used. Both fungi were able to overgrow the pelleted substrate in 5–6 days, at a relative humidity (RH) of 86.3% or higher. The enrichment of alginate hydrogel with nutrients or coating of pelleted substrate with more hydrophilic agar hydrogel enabled I. lacteus to overgrow the pellets at a lower RH of 83.6%. Fungal inocula produced at lower RH possessed lower final moisture contents and had greater mechanical strength. Conditioning of T. versicolor mycelial fragments, by a 3-h incubation in fresh growth medium, enhanced fungal growth over the pelleted substrate. A mathematical model was used to simulate and to explain moisture distribution in a hydrogel-coated pellet and the formation of mycelial coat, for various conditions of fungal inocula production.  相似文献   

14.
Ergosterol was measured in mycelia of seven species of aquatic hyphomycetes grown in malt-extract broth. The harvested 21 d old pellets were grouped into 5-6 classes based on size, which were analyzed separately. In all but one species, there was a significant, positive correlation between the amount of ergosterol per unit mass and pellet diameter. Ignoring this correlation could result in the misleading conclusion that there is no relationship between mycelial mass and its absolute ergosterol content. The highest ergosterol concentrations were close to the average generally used to convert the amount of ergosterol in environmental samples to fungal biomass; the average was about half that value.  相似文献   

15.
AIMS: The objective of the present study was to determine the optimal culture conditions for mycelial biomass and exo-polysaccharide (EPS) by Cordyceps militaris C738 in submerged culture. METHODS AND RESULTS: The optimal temperatures for mycelial biomass and EPS production were 20 degrees C and 25 degrees C, respectively, and corresponding optimal initial pHs were found to be 9 and 6, respectively. The suggested medium composition for EPS production was as follows: 6% (w/v) sucrose, 1% (w/v) polypeptone, and 0.05% (w/v) K2HPO4. The influence of pH on the fermentation broth rheology, morphology and EPS production of C. militaris C738 was carried out in a 5-l stirred-tank fermenter. The morphological properties were comparatively characterized by pellet roughness and compactness by use of image analyser between the culture conditions with and without pH control. The roughness and compactness of the pellets indicated higher values at pH-stat culture (pH 6.0), suggesting that larger and more compact pellets were desirable for polysaccharide production (0.91 g g(-1) cell d(-1). CONCLUSIONS: Under the optimized culture conditions (with pH control at 6), the maximum concentration of biomass and EPS were 12.7 g l(-1) and 7.3 g l(-1), respectively, in a 5-l stirred-tank fermenter. SIGNIFICANCE AND IMPACT OF THE STUDY: The critical effect of pH on fungal morphology and rheology presented in this study can be widely applied to other mushroom fermentation processes.  相似文献   

16.
Changing fungal morphology with the use of morphological engineering techniques leads to improving the production of metabolites by filamentous fungi in the submerged culture. Adding mineral microparticles is one such simple method to change fungal pellet size. Here, it was studied for a lovastatin producer, Aspergillus terreus ATCC 20542. The experiments were conducted in shake flasks and 10 μm talc microparticles were added to the preculture. Intrapellet oxygen concentration profiles were determined by an oxygen microprobe. Talc microparticles caused a decrease of A. terreus pellets diameter from about 2000 to 900 μm, dependent on their concentration in the preculture. Smaller pellets produced more lovastatin, whose titre exceeded then 120 mg L?1, utilising more lactose. The decrease in pellet size resulted in changes of oxygen concentration profiles in the pellets. The estimated critical pellet diameter, at which the non‐oxygenated zone was observed in the centre of the pellets, was 1700 μm. Smaller pellets were fully penetrated by oxygen. To conclude, facilitated diffusion of oxygen into the pellets of smaller diameter and their less dense structure made lactose utilisation by A. terreus more efficient, which ultimately increased lovastatin production in the runs with talc microparticles added, compared to the control runs.  相似文献   

17.
A rapid method for harvesting and immobilization of oleaginous microalgae using pellet-forming filamentous fungi was developed. The suitable conditions for pellet formation by filamentous fungi were determined. Among the strains tested, Trichoderma reesei QM 9414 showed superior pellet forming ability. Its pellets were used to harvest oleaginous microalga Scenedesmus sp. With increasing volume ratio of fungal pellets to microalgae culture up to 1:2, >94% of microalgal cells were rapidly harvested within 10 min. The ratio of fungal pellets could manipulate both harvesting time and initial concentration of microalgal cells in the pellets. The microalgae–fungal pellets were successfully used as immobilized cells for effective phytoremediation of secondary effluent from seafood processing plants under nonsterile condition. The chemical oxygen demand, total nitrogen, and total phosphorus removal were >74%, >44%, and >93%, respectively. The scanning electron microscopy showed that the microalgal cells were not only entrapped in the pellets but also got attached to the fungal hyphae with sticky exopolysaccharides, possibly secreted by the fungi. The extracted lipids from the pellets were mainly composed of C16–C18 (>83%) with their suitability as biodiesel feedstocks. This study has shown the promising strategy to rapidly harvest and immobilize microalgal cells and the possible application in phytoremediation of industrial effluent.  相似文献   

18.
The pellets from a culture of Streptomyces coelicolor A3(2) that were submerged shaken were disintegrated into numerous hyphal fragments by DNase treatment. The pellets were increasingly dispersed by hyaluronidase treatment, and mycelial fragments were easily detached from the pellets. The submerged mycelium grew by forming complexes with calcium phosphate precipitates or kaolin, a soil particle. Therefore, the pellet formation of Streptomyces coelicolor A3(2) can be considered a biofilm formation, including the participation of adhesive extracellular polymers and the insoluble substrates.  相似文献   

19.
Zhang S  Li A  Cui D  Yang J  Ma F 《Bioresource technology》2011,102(6):4360-4365
Mycelial pellet of Aspergillus niger Y3 was used as a biomass carrier to immobilize the aniline-degrading bacterium, Acinetobacter calcoaceticus JH-9 and the mix culture of the COD rapid degradation bacteria. In order to investigate its removal effect on aniline and COD, the combined mycelial pellets were applied in the SBR. Comparison of the performances was conducted between another SBR inoculated with sole strain JH-9 and the above SBR. The results showed that the stable degradations of aniline and COD were observed in both reactors. In the SBR with combined mycelial pellet, the biological removal efficiency was about 0.9 mg aniline/(L·d). It was much higher than that in the activated sludge reactor. Meanwhile, the performances of the sedimentation velocity, liquid-solid phase separation and the effluent quality were better in the SBR. According to SEM images and PCR-DGGE analysis, the species immobilized on the biomass carrier were more predominant in this system.  相似文献   

20.
The morphological type of a microorganism generally influences its metabolite production. In the present study, we investigated the effects of the mycelial morphology of shiitake (Lentinula edodes) on the production of 2-mercaptohistidine trimethylbetaine (ergothioneine, ESH) during liquid fermentation. Analyses of the distribution of ESH in mycelial cells of different morphological types revealed that the ESH content of pellets obtained from the liquid fermentation media was much greater than the content in the free mycelia and clumps. The concentration of ESH in pellets on day 15 of liquid fermentation reached 0.79 mg/g dry weight (DW), which is approximately three times the concentration found in mycelia clumps (0.28 mg/g DW) and free mycelia (0.31 mg/g DW). Macroscopic image analysis of the development and morphological changes of the pellets during a liquid fermentation period of up to 25 days indicated that pellet growth showed a highly positive correlation with the increase in ESH concentration (r 2 = 0.9851). A reduced agitation rate of 50 rpm for the culture medium was suitable for pellet formation and size enlargement. The results obtained in this work would be helpful in guiding the intentional manipulation of the distribution and enrichment of ESH in L. edodes through changes in liquid fermentation conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号