首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum was modified with pyridoxal 5'-phosphate and then reduced with sodium borohydride. Both carboxylase and oxygenase activities were lost when one molecule of pyridoxal 5'-phosphate was bound per enzyme dimer. Peptide maps of modified enzyme showed one N6-(phosphopyridoxal)lysine-containing peptide. This peptide was isolated by gel filtration and cation-exchange chromatography and its sequence determined as Ala-Leu-Gly-Arg-Pro-Glu-Val-Asp-(PLP-Lys)-Gly-Thr-Leu-Val-Ile-Lys. Since activation of the enzyme with Mg2+/CO2 enhances pyridoxal 5'-phosphate modification and subsequent inactivation and the substrate ribulose bisphosphate protects against modification, the modified lysyl group is most certainly at the catalytic site and not at the activation site of the enzyme.  相似文献   

2.
W B Whitman  F R Tabita 《Biochemistry》1978,17(7):1282-1287
Ribulose 1,5-bisphosphate carboxylase isolated from Rhodospirillum rubrum was strongly inhibited by low concentrations of pyridoxal 5'-phosphate. Activity was protected by the substrate ribulose bisphosphate and to a lesser extent by other phosphorylated compounds. Pyridoxal phosphate inhibition was enhanced in the presence of magnesium and bicarbonate, but not in the presence of either compound alone. Concomitant with inhibition of enzyme activity, pyridoxal phosphate forms a Schiff base with the enzyme which is reversible upon dialysis and reducible with sodium borohydride. Subsequent to reduction of the Schiff base with tritiated sodium borohydride, tritiated N6-pyridoxyllysine could be identified in the acid hydrolysate of the enzyme. Only small amounts of this compound were present when the reduction was performed in the presence of carboxyribitol bisphosphate, an analogue of the intermediate formed during the carboxylation reaction. Therefore, it is concluded that pyridoxal phosphate modifies a lysyl residue close to or at the active site of ribulose bisphosphate carboxylase.  相似文献   

3.
Philip G. Koga  Richard L. Cross 《BBA》1982,679(2):269-278
1. Soluble beef-heart mitochondrial ATPase (F1) was incubated with [3H]pyridoxal 5′-phosphate and the Schiffbase complex formed was reduced with sodium borohydride. Spectral measurements indicate that lysine residues are modified and gel electrophoresis in the presence of detergent shows the tritium label to be associated with the two largest subunits, α and β. 2. In the absence of protecting ligands, the loss of ATP hydrolysis activity is linearly dependent on the level of pyridoxylation with complete inactivation correlating to 10 mol pyridoxamine phosphate incorporated per mol enzyme. Partial inactivation of F1 with pyridoxal phosphate has no effect on either the Km for ATP or the ability of bicarbonate to stimulate residual hydrolysis activity, suggesting a mixed population of fully active and fully inactive enzyme. 3. In the presence of excess magnesium, the addition of ADP or ATP, but not AMP, decreases the rate and extent of modification of F1 by pyridoxal phosphate. The non-hydrolyzable ATP analog, 5′-adenylyl-β, γ-imidodiphosphate, is particularly effective in protecting F1 against both modification and inactivation. Efrapeptin and Pi have no effect on the modification reaction. 4. Prior modification of F1 with pyridoxal phosphate decreases the number of exchangeable nucleotide binding sites by one. However, pyridoxylation of F1 is ineffective in displacing endogenous nucleotides bound at non-catalytic sites and does not affect the stoichiometry of Pi binding. 5. The ability of nucleotides to protect against modification and inactivation by pyridoxal phosphate and the loss of one exchangeable nucleotide site with the pyridoxylation of F1 suggest the presence of a positively charged lysine residue at the catalytic site of an enzyme that binds two negatively charged substrates.  相似文献   

4.
The macrolide-type antibiotic chlorothricin inhibits pyruvate carboxylases purified from rat liver, chicken liver and Azotobacter vinelandii. Under standard assay conditions the concentration of chlorothricin required for half-maximal inhibition of oxalacetate synthesis is 0.26 mM (rat liver), 0.12 mM (chicken liver), and 0.5 mM (Azobacter vinelandii). Inhibition by chlorothricin appears non-competitive in character when measured as a function of the concentration of the substrates of the pyruvate carboxylase reaction as well as of CoASAc and Mg2+. This pattern of inhibition suggests that this antibiotic interacts at unique sites on chicken and rat liver pyruvate carboxylase which are distinct from both the catalytic and activator sites. Interaction of chlorothricin with the two vertebrate liver pyruvate carboxylases differs from the effect exerted by this antibiotic on pyruvate carboxylase purified from Azotobacter vinelandii. A sigmoidal relationship between initial velocity and inhibitor concentration is observed for the vertebrate enzymes under most conditions whereas a hyperbolic profile characterizes the concentration dependence of inhibition of the Azotobacter vinelandii enzyme by chlorothricin. In the case of rat liver pyruvate carboxylase chlorothricin does not alter the extent of cooperativity in the relationship between initial rate and CoASAc concentration. However, a small but significant increase of the Hill coefficient from a value of 2.7 in the absence of antibiotic to that of 3.3 in the presence of 0.5 mM chlorothricin is observed for chicken liver pyruvate carboxylase. Chlorothricin decreases the rate of inactivation observed when rat liver pyruvate carboxylase is incubated with trinitrobenzenesulfonate and when chicken liver pyruvate carboxylase is incubated at 2 degrees C. The maximal decrease in inactivation observed in the presence of saturating concentrations of antibiotic is 50% for cold inactivation of the chicken liver enzyme and 60% for inactivation of the enzyme from rat liver by trinitrobenzenesulfonate. In both cases a sigmoidal relationship is observed between inactivation rate and chlorothricin concentration. These data as well as the initial rate studies suggest that multiple interacting sites for this antibiotic are present on the vertebrate liver pyruvate carboxylases. The occupancy of these sites appears to cause significant distortion of both the catalytic and the activator sites.  相似文献   

5.
Chemical modifications of spinach leaf nitrate reductase, and its 28,000 M(r) fragment with phenylglyoxal, 2,3-butanedione and pyridoxal phosphate reduce the catalytic activity of the enzyme. The kinetics of the modification indicate a rapid inactivation followed by a slower rate of inactivation. NADH-nitrate reductase, NADH-cytochrome c reductase and NADH-ferricyanide reductase activities of the nitrate reductase complex are inactivated at a faster rate when compared to the loss of FMNH2-nitrate reductase and reduced methyl viologen (MVH)-nitrate reductase activities. NADH protects the inactivation of NADH-ferricyanide reductase activity of the 28,000 M(r) fragment of nitrate reductase. These data suggest that nitrate reductase contains active sites of arginine and lysine residues that are involved in the NADH binding site of the enzyme.  相似文献   

6.
Activated ribulosebisphosphate carboxylase/oxygenase from spinach was treated with glyoxylate plus or minus the transition-state analog, carboxyarabinitol bisphosphate, or the inactive enzyme with pyridoxal phosphate plus or minus the substrate, ribulose bisphosphate. Covalently modified adducts with glyoxylate or pyridoxal phosphate were formed following reduction with sodium borohydride. The derivatized enzymes were carboxymethylated and digested with trypsin; the labeled peptides which were unique to the unprotected samples were purified by ion-exchange chromatography and gel filtration. Both glyoxylate and pyridoxal phosphate were associated with only one major peptide, which in each case was subjected to amino acid analysis and sequencing. The sequence was -Tyr-Gly-Arg-Pro-Leu-Leu-Gly-Cys(Cm)-Thr-Ile-Lys-Lys*-Pro-Lys-, with both reagents exhibiting specificity for the same lysine residue as indicated by the asterisk. This peptide is identical to that previously isolated from spinach carboxylase labeled with either of two different phosphorylated affinity reagents and homologous to one from Rhodospirillum rubrum carboxylase modified by pyridoxal phosphate. The species invariance of this lysine residue, number 175, and the substantial conservation of adjacent sequence support the probability for a functional role in catalysis of the lysyl epsilon-amino group.  相似文献   

7.
M J Modak 《Biochemistry》1976,15(16):3620-3626
Pyridoxal 5'-phosphate at concentrations greater than 0.5 mM inhibits polymerization of deoxynucleoside triphosphate catalyzed by a variety of DNA polymerases. The requirement for a phosphate as well as aldehyde moiety of pyridoxal phosphate for inhibition to occur is clearly shown by the fact that neither pyridoxal nor pyridoxamine phosphate are effective inhibitors. Since the addition of nonenzyme protein or increasing the amount of template primer exerted no protective effect, there appears to be specific affinity between pyridoxal phosphate and polymerase protein. The deoxynucleoside triphosphates, however, could reverse the inhibition. The binding of pyridoxal 5'-phosphate to enzyme appears to be mediated through classical Schiff base formation between the pyridoxal phosphate and the free amino group(s) present at the active site of the polymerase protein. Kinetic studies indicate that inhibition by pyridoxal phosphate is competitive with respect to substrate deoxynucleoside triphosphate(s).  相似文献   

8.
Phosphoenolpyruvate carboxylase from maize leaves was inactivated by pyridoxal 5'-phosphate in the dark and in the light. A two-step reversible mechanism is proposed for inactivation in the dark, which involves the formation of a noncovalent complex prior to a Schiff base with amino groups of the enzyme. Spectral analysis of pyridoxal 5'-phosphate-modified phosphoenolpyruvate carboxylase showed absorption maxima at 432 and 327 nm, before and after reduction with NaBH4, respectively, suggesting that epsilon-amino groups of lysine residues are the reactive groups in the enzyme. A correlation between spectral data and the maximal inactivation obtained with several concentrations of inhibitor allowed us to establish that the incorporation of 4 mol of pyridoxal 5'-phosphate per mole of holoenzyme accounts for total inactivation. The absence of modifier bound to phosphoenolpyruvate carboxylase when the modification was carried out in the presence of phosphoenolpyruvate and MgCl2 suggests the existence of an essential lysine residue at the catalytic site of the enzyme. Modification of phosphoenolpyruvate carboxylase in the light under an oxygen atmosphere resulted in an irreversible inactivation, which was completely protected by phosphoenolpyruvate and MgCl2. Spectral analysis of the photomodified enzyme showed an absorption peak of 320 nm, suggesting light-mediated addition of a nucleophilic residue (probably an imidazole group) to the pyridoxal 5'-phosphate-lysine azomethine bond.  相似文献   

9.
Pyridoxal 5'-phosphate rapidly abolished the DNA-hydrolyzing activities as well as DNA-dependent ATP-ase activity of the recBC enzyme of Escherichia coli. Pyridoxal also had an inhibitory effect on the enzyme but less effective than that of pyridoxal 5'-phosphate. Pyridoxamine 5'-phosphate, pyridoxamine, or pyridoxine had no effect on the activities of the enzyme. The inhibition was rapidly reversed by dilution but could be made irreversible by reduction with sodium borohydride prior to dilution. This suggests the formation of Schiff base between pyridoxal 5'-phosphate and an epsilon-amino group of a lysine residue which is essential for the enzyme activity. Pyridoxal 5'-phosphate is a competitive inhibitor of DNA substrate but not of ATP. Furthermore, the presence of DNA substrate protected the enzyme from inactivation by the reduction but the presence of ATP showed no effect. Thus, the recBC enzyme appears to have an essential lysine residue at or near the DNA binding site of the enzyme, and the enzyme possesses two independent catalytic sites, such as a DNA binding site and an ATP binding site.  相似文献   

10.
The mutant IP7 of Escherichia coli B requires isoleucine or pyridoxine for growth as a consequence of a mutation in the gene coding for biosynthetic threonine deaminase. The mutation of IP7 was shown to be of the nonsense type by the following data: (1) reversion to isoleucine prototrophy involves the formation of external suppression at a high frequency, as shown by transduction experiments; and (ii) the isoleucine requirement is suppressed by lysogenization with a phage carrying the amber suppressor su-3. Cell extracts of the mutant strain contain a low activity of threonine deaminase. The possibility that this activity is biodegradative was ruled out by kinetic experiments. The mutant threonine deaminase was purified to homogeneity by conventional procedures. The enzyme is a dimer of identical subunits of an approximate molecular weight of 43,000 (Grimminger and Feldner, 1974), whereas the wild-type enzyme is a tetramer of 50,000-dalton subunits (Calhoun et al., 1973; Grimminger et al., 1973). The mutant enzyme is not inhibited by isoleucine and does not bind isoleucine, as shown by equilibrium dialysis experiments. Pyridoxal phosphate enhances the maximum catalytic activity of the mutant enzyme by a factor of five, whereas the wild-type enzyme is not affected. In wild-type and mutant threonine deaminase the ratio of protein subunits and bound pyridoxal phosphate is 2:1. The activation of threonine deaminase from strain IP7 is due to a second coenzyme binding site, as shown by (i) spectrophotometric titration of the enzyme with pyridoxal phosphate and by (ii) measurement the pyridoxal phosphate content of the enzyme after sodium borohydride reduction of the protein. The observation of one pyridoxal phosphate binding site per peptide dimer in the wild-type enzyme and of two binding sites per dimer in the mutant strongly suggests that one of the potential sites in the wild-type enzyme is masked by allosteric effects. The factors responsible for the half-of-the-sites reactivity of the coenzyme sites appear to be nonoperative in the mutant protein.  相似文献   

11.
Starch phosphorylase from Corynebacterium callunae is a dimeric protein in which each mol of 90 kDa subunit contains 1 mol pyridoxal 5'-phosphate as an active-site cofactor. To determine the mechanism by which phosphate or sulfate ions bring about a greater than 500-fold stabilization against irreversible inactivation at elevated temperatures (> or = 50 degrees C), enzyme/oxyanion interactions and their role during thermal denaturation of phosphorylase have been studied. By binding to a protein site distinguishable from the catalytic site with dissociation constants of Ksulfate = 4.5 mM and Kphosphate approximately 16 mM, dianionic oxyanions induce formation of a more compact structure of phosphorylase, manifested by (a) an increase by about 5% in the relative composition of the alpha-helical secondary structure, (b) reduced 1H/2H exchange, and (c) protection of a cofactor fluorescence against quenching by iodide. Irreversible loss of enzyme activity is triggered by the release into solution of pyridoxal 5'-phosphate, and results from subsequent intermolecular aggregation driven by hydrophobic interactions between phosphorylase subunits that display a temperature-dependent degree of melting of secondary structure. By specifically increasing the stability of the dimer structure of phosphorylase (probably due to tightened intersubunit contacts), phosphate, and sulfate, this indirectly (1) preserves a functional active site up to approximately 50 degrees C, and (2) stabilizes the covalent protein cofactor linkage up to approximately 70 degrees C. The effect on thermostability shows a sigmoidal and saturatable dependence on the concentration of phosphate, with an apparent binding constant at 50 degrees C of approximately 25 mM. The extra stability conferred by oxyanion-ligand binding to starch phosphorylase is expressed as a dramatic shift of the entire denaturation pathway to a approximately 20 degrees C higher value on the temperature scale.  相似文献   

12.
M B Murataliev 《Biochemistry》1992,31(51):12885-12892
The evidence is presented that the ADP- and Mg(2+)-dependent inactivation of MF1-ATPase during MgATP hydrolysis requires binding of ATP at two binding sites: one is catalytic and the second is noncatalytic. Binding of the noncatalytic ATP increases the rate of the inactive complex formation in the course of ATP hydrolysis. The rate of the enzyme inactivation during ATP hydrolysis depends on the medium Mg2+ concentration. High Mg2+ inhibits the steady-state activity of MF1-ATPase by increasing the rate of formation of inactive enzyme-ADP-Mg2+ complex, thereby shifting the equilibrium between active and inactive enzyme forms. The Mg2+ needed for MF1-ATPase inactivation binds from the medium independent from the MgATP binding at either catalytic or noncatalytic sites. The inhibitory ADP molecule arises at the MF1-ATPase catalytic site as a result of MgATP hydrolysis. Exposure of the native MF1-ATPase with bound ADP at a catalytic site to 1 mM Mg2+ prior to assay inactivates the enzymes with kinact 24 min-1. The maximal inactivation rate during ATP hydrolysis at saturating MgATP and Mg2+ does not exceed 10 min-1. The results show that the rate-limiting step of the MF1-ATPase inactivation during ATP hydrolysis with excess Mg2+ precedes binding of Mg2+ and likely is the rate of formation of enzyme with ADP bound at the catalytic site without bound P(i). This complex binds Mg2+ resulting in inactive MF1-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The possible interaction of the phosphate moiety of pyridoxal phosphate with a guanidinium group in glutamate apodecarboxylase was investigated. The holoenzyme is not inactivated significantly by incubation with butanedione, glyoxal, methylglyoxal, or phenylglyoxal. However, the apoenzyme is inactivated by these arginine reagents in time-dependent processes. Phenylgloxal inactivates the apoenzyme most rapidly. The inactivation follows pseudo-first-order kinetics at high phenylglyoxal to apoenzyme ratios. The rate of inactivation is proportional to phenylglyoxal concentration, increases with increasing pH, and is also dependent on the type of buffer present. The rate of inactivation of the apoenzyme by phenylglyoxal is fastest in bicarbonate — carbonate buffer and increases with increasing bicarbonate — carbonate concentration. Phosphate, which inhibits the binding of pyridoxal phosphate to the apoenzyme, protects the apodecarboxylase against inactivation by phenylglyoxal. When the apodecarboxylase is inactivated with [14C]phenylglyoxal, approximately 1.6 mol of [14C]phenylglyoxal is incorporated per mol subunit. The phenylglyoxal is thought to modify an arginyl residue at or near the pyridoxal phosphate binding site of glutamate apodecarboxylase.  相似文献   

14.
G G Lu  Y Lindqvist  G Schneider 《Proteins》1992,12(2):117-127
A macroscopic approach has been employed to calculate the electrostatic potential field of nonactivated ribulose-1,5-bisphosphate carboxylase and of some complexes of the enzyme with activator and substrate. The overall electrostatic field of the L2-type enzyme from the photosynthetic bacterium Rhodospirillum rubrum shows that the core of the dimer, consisting of the two C-terminal domains, has a predominantly positive potential. These domains provide the binding sites for the negatively charged phosphate groups of the substrate. The two N-terminal domains have mainly negative potential. At the active site situated between the C-terminal domain of one subunit and the N-terminal domain of the second subunit, a large potential gradient at the substrate binding site is found. This might be important for polarization of chemical bonds of the substrate and the movement of protons during catalysis. The immediate surroundings of the activator lysine, K191, provide a positive potential area which might cause the pK value for this residue to be lowered. This observation suggests that the electrostatic field at the active site is responsible for the specific carbamylation of the epsilon-amino group of this lysine side chain during activation. Activation causes a shift in the electrostatic potential at the position of K166 to more positive values, which is reflected in the unusually low pK of K166 in the activated enzyme species. The overall shape of the electrostatic potential field in the L2 building block of the L8S8-type Rubisco from spinach is, despite only 30% amino acid homology for the L-chains, strikingly similar to that of the L2-type Rubisco from Rhodospirillum rubrum. A significant difference between the two species is that the potential is in general more positive in the higher plant Rubisco. In particular, the second phosphate binding site has a considerably more positive potential, which might be responsible for the higher affinity for the substrate of L8S8-type enzymes. The higher potential at this site might be due to two remote histidine residues, which are conserved in the plant enzymes.  相似文献   

15.
Acetyl phosphate produced an increase in the maximum velocity (Vmax. for the carboxylation of phosphoenolpyruvate catalysed by phosphoenolpyruvate carboxylase. The limiting Vmax. was 22.2 mumol X min-1 X mg-1 (185% of the value without acetyl phosphate). This compound also decreased the Km for phosphoenolpyruvate to 0.18 mM. The apparent activation constants for acetyl phosphate were 1.6 mM and 0.62 mM in the presence of 0.5 and 4 mM-phosphoenolpyruvate respectively. Carbamyl phosphate produced an increase in Vmax. and Km for phosphoenolpyruvate. The variation of Vmax./Km with carbamyl phosphate concentration could be described by a model in which this compound interacts with the carboxylase at two different types of sites: an allosteric activator site(s) and the substrate-binding site(s). Carbamyl phosphate was hydrolysed by the action of phosphoenolpyruvate carboxylase. The hydrolysis produced Pi and NH4+ in a 1:1 relationship. Values of Vmax. and Km were 0.11 +/- 0.01 mumol of Pi X min-1 X mg-1 and 1.4 +/- 0.1 mM, respectively, in the presence of 10 mM-NaHCO3. If HCO3- was not added, these values were 0.075 +/- 0.014 mumol of Pi X min-1 X mg-1 and 0.76 +/- 0.06 mM. Vmax./Km showed no variation between pH 6.5 and 8.5. The reaction required Mg2+; the activation constants were 0.77 and 0.31 mM at pH 6.5 and 8.5 respectively. Presumably, carbamyl phosphate is hydrolysed by phosphoenolpyruvate carboxylase by a reaction the mechanism of which is related to that of the carboxylation of phosphoenolpyruvate.  相似文献   

16.
In order to label phosphate binding sites, unadenylylated glutamine synthetase from Escherichia coli has been pyridoxylated by reacting the enzyme with pyridoxal 5'-phosphate followed by reduction of the Schiff base with NaBH4. A complete loss in Mg2+-supported activity is associated with the incorporation of 3 eq of pyridoxal-P/subunit of the dodecamer. At this extent of modification, however, the pyridoxylated enzyme exhibits substantial Mn2+-supported activity (with increased Km values for ATP and ADP). The sites of pyridoxylation appear to have equal affinities for pyridoxal-P and to be at the enzyme surface, freely accessible to solvent. At least one of the three covalently bound pyridoxamine 5'-phosphate groups is near the subunit catalytic site and acts as a spectral probe for the interactions of the manganese.enzyme with substrates. A spectral perturbation of covalently attached pyridoxamine-P groups is caused also by specific divalent cations (Mn2+, Mg2+ or Ca2+) binding at the subunit catalytic site (but not while binding to the subunit high affinity, activating Me2+ site). In addition, the feedback inhibitors, AMP, CTP, L-tryptophan, L-alanine, and carbamyl phosphate, perturb protein-bound pyridoxamine-P groups. The spectral perturbations produced by substrate and inhibitor binding are pH-dependent and different in magnitude and maximum wavelength. Adenylylation sites are not major sites of pyridoxylation.  相似文献   

17.
Comparison of the crystal structures of the L2 and L8S8 forms of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum and spinach respectively, reveals a remarkable similarity in the overall architecture of the L2 building blocks in the two enzymes. Within the L subunits, no large conformational differences such as domain-domain rotations were found. In spite of a somewhat different packing of the L subunits in the L2 dimer, the active sites of the two enzymes are highly conserved. Significant local conformational differences are, however, observed for the C-terminal part of the polypeptide chains as well as for loop 7, helix alpha 7, loop 8 and helix alpha 8 in the barrel domain. The small subunit forms extensive interactions with one of these alpha helices, alpha 8, in the spinach L8S8 enzyme. The loops are at the active site and one of them forms a phosphate binding site for the substrate. We suggest that the small subunit modulates substrate binding and, possibly, the carboxylation/oxygenation ratio by inducing conformational changes in the active site through interactions distant from this site.  相似文献   

18.
1. The inactivation of horse liver alcohol dehydrogenase by pyridoxal 5'-phosphate in phosphate buffer, pH8, at 10 degrees C was investigated. Activity declines to a minimum value determined by the pyridoxal 5'-phosphate concentration. The maximum inactivation in a single treatment is 75%. This limit appears to be set by the ratio of the first-order rate constants for interconversion of inactive covalently modified enzyme and a readily dissociable non-covalent enzyme-modifier complex. 2. Reactivation was virtually complete on 150-fold dilution: first-order analysis yielded an estimate of the rate constant (0.164min-1), which was then used in the kinetic analysis of the forward inactivation reaction. This provided estimates for the rate constant for conversion of non-covalent complex into inactive enzyme (0.465 min-1) and the dissociation constant of the non-covalent complex (2.8 mM). From the two first-order constants, the minimum attainable activity in a single cycle of treatment may be calculated as 24.5%, very close to the observed value. 3. Successive cycles of modification followed by reduction with NaBH4 each decreased activity by the same fraction, so that three cycles with 3.6 mM-pyridoxal 5'-phosphate decreased specific activity to about 1% of the original value. The absorption spectrum of the enzyme thus treated indicated incorporation of 2-3 mol of pyridoxal 5'-phosphate per mol of subunit, covalently bonded to lysine residues. 4. NAD+ and NADH protected the enzyme completely against inactivation by pyridoxal 5'-phosphate, but ethanol and acetaldehyde were without effect. 5. Pyridoxal 5'-phosphate used as an inhibitor in steady-state experiments, rather than as an inactivator, was non-competitive with respect to both NADH and acetaldehyde. 6. The partially modified enzyme (74% inactive) showed unaltered apparent Km values for NAD+ and ethanol, indicating that modified enzyme is completely inactive, and that the residual activity is due to enzyme that has not been covalently modified. 7. Activation by methylation with formaldehyde was confirmed, but this treatment does not prevent subsequent inactivation with pyridoxal 5'-phosphate. Presumably different lysine residues are involved. 8. It is likely that the essential lysine residue modified by pyridoxal 5'-phosphate is involved either in binding the coenzymes or in the catalytic step. 9. Less detailed studies of yeast alcohol dehydrogenase suggest that this enzyme also possesses an essential lysine residue.  相似文献   

19.
The active site(s) of the bifunctional regulatory protein of pyruvate,orthophosphate dikinase catalyze(s) the Pi-dependent activation (dephosphorylation) and ADP-dependent inactivation (phosphorylation) of maize leaf dikinase. The chemical modification studies of the regulatory protein active sites presented in this paper are interpreted as showing the two sites to be physically distinct. Pyridoxal 5'-phosphate and 2-nitro-5-thiocyanatobenzoate (NTCB) selectively inhibit the dikinase activating site, which is protected by the nonprotein substrate, Pi. Phenylglyoxal blocks both the activation and inactivation sites; the former is protected selectively by Pi and the latter by both the nonprotein substrate, ADP, and Pi. The Pi that protects the inactivation site is distinct from the activation substrate. Inhibition studies show Pi to be a parabolic competitive inhibitor of the ADP-dependent inactivation of dikinase, implying that besides substrate Pi, a second phosphate also binds to the regulatory protein. The above chemical modifications are not mutually exclusive; neither NTCB, 5,5'-dithiobis-(2-nitrobenzoate), nor pyridoxal 5'-phosphate blocks subsequent modification of the activation site by phenylglyoxal. Similarly, prior modification with NTCB does not affect modification by pyridoxal 5'-phosphate.  相似文献   

20.
Ribulose bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum is a homodimer of 50.5-kDa subunits with two substrate binding sites per molecule of dimer. To determine whether each subunit contains an independent active site or whether the active sites are created by intersubunit interactions, we have used a novel in vivo approach for producing heterodimers from catalytically inactive, site-directed mutants of the carboxylase. When the alleles encoding these mutant proteins are placed separately into compatible plasmids and coexpressed in the same Escherichia coli host, activity is observed at about 20% of the wild-type level. Analysis of the carboxylase purified from these cells reveals the presence of heterodimers of the two mutant proteins. This interallelic complementation demonstrates that domains from each of the subunits interact to form a shared active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号