首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
sn-1,2-Diacylglycerol (DAG) mass and translocation of protein kinase C alpha and beta to a membrane fraction increased approximately 7 min after insemination of Xenopus laevis eggs. The DAG mass increase of 48 pmol (from 62 to 110 pmol/cell) was greater than that for inositol 1,4,5-trisphosphate (IP3; an increase of approximately 170 fmol or approximately 280-fold smaller than the DAG increase), and DAG peaks approximately 5 min after IP3. Choline mass (a measure of phosphatidyl choline-specific phospholipase D) also peaked before DAG and the choline increase (134 pmol/cell) was greater than that of DAG. There was no detectable change in phosphocholine mass (a measure of phosphatidylcholine-specific phospholipase C). During first cleavage, DAG decreased, PKC translocation was low, and choline increased and peaked (whereas published work shows an increase in IP3 mass). Artificial elevation of intracellular calcium ([Ca2+]i) increased DAG levels but prevention of the [Ca2+]i increase after fertilization did not block DAG production. Thus, sperm stimulate production of DAG and choline through [Ca2+]i-independent and [Ca2+]i-dependent paths.  相似文献   

2.
Eggs of the ascidian Ciona intestinalis were loaded with the calcium indicator fura-2 via whole-cell clamp electrodes and changes in cytoplasmic calcium and cell currents were monitored during fertilization either in separate eggs or simultaneously in the same egg. The first indication of egg activation was the fertilization current; which reached peak values around 1 nA after 30 s. A wave of elevated calcium was detectable between 5 s and 30 s (mean = 21 s) after the start of the fertilization current. This wave spread across the egg increasing cytoplasmic calcium levels to at least 10 microM. When the fertilization current and calcium wave were complete and cytoplasmic calcium levels were decreasing to prefertilization levels, a cortical contraction wave spread across the egg surface. In eggs showing normal fertilization current, the calcium wave and the contraction wave were in the same direction. A region of elevated calcium persisted at the animal pole. Changing cytoplasmic calcium levels locally by local application of ionophore A23187 caused a contraction wave originating at the site of ionophore application. Increasing cytoplasmic calcium uniformly by facilitating calcium entry through voltage-regulated channels did not result in a contraction wave.  相似文献   

3.
Interaction of sperm and egg at fertilization induces well-coordinated molecular events including specific recognition between species, adhesion and fusion, that lead to the formation of a zygote, a totipotent cell that develops into a new individual. A calcium signal, common to a great number of species, from marine invertebrates to mammals, is essential to activate the metabolism of the unfertilized oocyte. However, how fertilization triggers this calcium signal and initiates development of the early embryo is far from understood. The signaling pathways activated in eggs may be similar to those described in somatic cells, since changes in intracellular free calcium and in mitosis activating protein (MAP) kinase activity occur in both systems after activation. Several hypotheses are currently proposed, implying a spermatic ligand binding to a specific receptor expressed at the egg surface, or where the fused sperm either allows the transit of external calcium into the egg or injects one (or several) activating factor(s). It is still not known which of these ideas is true. We concentrate in this review on the possible signaling pathways involving IP3 (inositol trisphosphate), since its production is involved in most species to generate the fertilization calcium wave.  相似文献   

4.
Calcium signaling is known to be associated with cytokinesis; however, the detailed spatio-temporal pattern of calcium dynamics has remained unclear. We have studied changes of intracellular free calcium in cleavage-stage Xenopus embryos using fluorescent calcium indicator dyes, mainly Calcium Green-1. Cleavage formation was followed by calcium transients that localized to cleavage furrows and propagated along the furrows as calcium waves. The calcium transients at the cleavage furrows were observed at each cleavage furrow at least until blastula stage. The velocity of the calcium waves at the first cleavage furrow was approximately 3 microns/s, which was much slower than that associated with fertilization/egg activation. These calcium waves traveled only along the cleavage furrows and not in the direction orthogonal to the furrows. These observations imply that there exists an intracellular calcium-releasing activity specifically associated with cleavage furrows. The calcium waves occurred in the absence of extracellular calcium and were inhibited in embryos injected with heparin an inositol 1,4,5-trisphosphate (InsP3) receptor antagonist. These results suggest that InsP3 receptor-mediated calcium mobilization plays an essential role in calcium wave formation at the cleavage furrows.  相似文献   

5.
The fertilization Ca2+ wave in Xenopus laevis is a single, large wave of elevated free Ca2+ that is initiated at the point of sperm-egg fusion and traverses the entire width of the egg. This Ca2+ wave involves an increase in inositol-1,4,5-trisphosphate (IP3) resulting from the interaction of the sperm and egg, which then results in the activation of the endoplasmic reticulum Ca2+ release machinery. The extraordinarily large size of this cell (1.2 mm diameter) together with the small surface region of sperm-receptor activation makes special demands on the IP3-dependent Ca2+ mobilizing machinery. We propose a detailed model of the fertilization Ca2+ wave in Xenopus eggs that requires an accompanying wave of IP3 production. While the Ca2+ wave is initiated by a localized increase of IP3 near the site of sperm-egg fusion, the Ca2+ wave propagates via IP3 production correlated with the Ca2+ wave-possibly via Ca(2+)-mediated PLC activation. Such a Ca(2+)-mediated IP(3) production wave has not been required previously to explain the fertilization Ca2+ wave in eggs; we argue this is necessary to explain the observed IP3 dynamics in Xenopus eggs. To test our hypothesis, we have measured the IP3 levels from 20 nl "sips" of the egg cortex during wave propagation. We were unable to detect the low IP3 levels in unfertilized eggs, but after fertilization, [IP3] ranged from 175 to 430 nM at the sperm entry point and from 120 to 700 nM 90 degrees away once the Ca2+ wave passed that region about 2 min after fertilization. Prior to the Ca2+ wave reaching that region the IP3 levels were undetectable. Since significant IP3 could not diffuse to this region from the sperm entry point within 2 min, this observation is consistent with a regenerative wave of IP3 production.  相似文献   

6.
The calcium ([Ca(2+)](i)) oscillations associated with mammalian fertilization and required to induce egg activation occur during M-phase stages of the cell cycle. The molecular mechanisms underlying this regulation remain unproven and may be multi-layered. Type 1 inositol 1,4,5-trisphosphate receptors (IP(3)R-1), which mediate [Ca(2+)](i) release during fertilization, have emerged as key regulatory units because they contain multiple phosphorylation consensus sites and undergo changes in cellular location and mass prior to and following fertilization. Hence, control of IP(3)R-1 function together with regulation of PLCzeta activity, the putative sperm factor, may combine to impart cell cycle and species-specific [Ca(2+)](i) oscillations characteristic of mammalian fertilization.  相似文献   

7.
Microtubules in ascidian eggs during meiosis, fertilization, and mitosis   总被引:14,自引:0,他引:14  
The sequential changes in the distribution of microtubules during germinal vesicle breakdown (GVBD), fertilization, and mitosis were investigated with antitubulin indirect immunofluorescence microscopy in several species of ascidian eggs (Molgula occidentalis, Ciona savignyi, and Halocynthia roretzi). These alterations in microtubule patterns were also correlated with observed cytoplasmic movements. A cytoplasmic latticework of microtubules was observed throughout meiosis. The unfertilized egg of M. occidentalis had a small meiotic spindle with wide poles; the poles became focused after egg activation. The other two species had more typical meiotic spindles before fertilization. At fertilization, a sperm aster first appeared near the cortex close to the vegetal pole. It enlarged into an unusual asymmetric aster associated with the egg cortex. The sperm aster rapidly grew after the formation of the second polar body, and it was displaced as far as the equatorial region, corresponding to the site of the myoplasmic crescent, the posterior half of the egg. The female pronucleus migrated to the male pronucleus at the center of the sperm aster. The microtubule latticework and the sperm aster disappeared towards the end of first interphase with only a small bipolar structure remaining until first mitosis. At mitosis the asters enlarged tremendously, while the mitotic spindle remained remarkably small. The two daughter nuclei remained near the site of cleavage even after division was complete. These results document the changes in microtubule patterns during maturation in Ascidian oocytes, demonstrate that the sperm contributes the active centrosome at fertilization, and reveal the presence of a mitotic apparatus at first division which has an unusually small spindle and huge asters.  相似文献   

8.
The single axis (oral-aboral) and two planes of symmetry of the ctenophore Beroe ovata become established with respect to the position of zygote nucleus formation and the orientation of first cleavage. Bisection of Beroe eggs at different times revealed that differences in egg organisation are established in relation to the presumptive oral-aboral axis before first cleavage. Lateral fragments produced after but not before the time of first mitosis developed into larvae lacking comb-plates on one side. Time-lapse video demonstrated that waves of cytoplasmic reorganisation spread through the layer of peripheral cytoplasm (ectoplasm) of the egg during the 80 minute period between pronuclear fusion and first cleavage, along the future oral-aboral axis. These waves are manifest as the progressive displacement and dispersal of plaques of accumulated organelles around supernumerary sperm nuclei, and a series of surface movements. Their timing and direction of propagation suggest they may be involved in establishing cytoplasmic differences with respect to the embryonic axis.Inhibitor experiments suggested that the observed cytoplasmic reorganisation involves microtubules. Nocodazole and taxol, which prevent microtubule turnover,blocked plaque dispersal and reduced surface movements.The microfilament-disrupting drug cytochalasin B did not prevent plaque dispersal but induced abnormal surface contractions. We examined changes in microtubule organisation using immunofluorescence on eggs fixed at different times and in live eggs following injection of rhodamine-tubulin. Giant microtubule asters become associated with each male pronucleus after the end of meiosis. Following pronuclear fusion they disappear successively, those nearest the zygote nucleus shrinking first, to establish gradients of aster size within single eggs. Regional differences in microtubule behaviour around the time of mitosis were revealed by brief taxol treatment, which induced the formation of small microtubule asters in the region of the nucleus or spindle during both first and second cell cycles. The observed wave of change may thus reflect the local appearance and spreading of mitotic activity as the zygote nucleus approaches mitosis.  相似文献   

9.
《The Journal of cell biology》1986,103(6):2333-2342
Sea urchin egg activation at fertilization is progressive, beginning at the point of sperm entry and moving across the egg with a velocity of 5 microns/s. This activation wave (Kacser, H., 1955, J. Exp. Biol., 32:451-467) has been suggested to be the result of a progressive release of calcium from a store within the egg cytoplasm (Jaffe, L. F., 1983, Dev. Biol., 99:265-276). The progressive release of calcium may be due to the production of inositol trisphosphate (InsP3), a second messenger. We show here that a wave of calcium release crosses the Lytechinus pictus egg; the peak of the wave travels with a velocity of 5 microns/s; microinjection of InsP3 causes the release of calcium within the egg; calcium release (as judged by fertilization envelope elevation) is abolished by prior injection of the calcium chelator EGTA; neomycin, an inhibitor of InsP3 production, does not prevent the release of calcium in response to InsP3 but does abolish the wave of calcium release; the egg cytoplasm rapidly buffers microinjected calcium; the calcium concentration required to cause fertilization membrane elevation when microinjected is very similar to that required to stimulate the production of InsP3 in vitro; and the progressive fertilization membrane elevation seen after microinjection of calcium buffers appears to be due to diffusion of the buffer across the egg cytoplasm rather than to the induction of the activation wave. We conclude that InsP3 diffuses through the egg cytoplasm much more readily than calcium ions and that calcium-stimulated production of InsP3 and InsP3-induced calcium release from an internal store can account for the progressive release of calcium at fertilization.  相似文献   

10.
Although confocal microscopy has typically been utilized in studies of fixed specimens, its potential for exploring dynamic processes in living cells is rapidly being realized. In this report, confocal laser scanning microscopy is used to analyze the calcium wave that occurs following fertilization in living sea urchin eggs microinjected with the calcium-sensitive fluorescent probes fluo-3 or calcium green. Time-lapse recordings of optical sections depicting calcium dynamics within the eggs are also subjected to volumetric reconstructions. Such analyses indicate that (1) cytoplasmic free calcium levels become elevated throughout the fertilized egg, (2) fertilization also causes the egg nucleus to undergo a transient increase in free calcium, and (3) normal cleavage can be obtained following time-lapse imaging of the calcium waves.  相似文献   

11.
The egg of ascidians (urochordate), as virtually all animal and plant species, displays Ca2+ signals upon fertilisation. These Ca2+ signals are repetitive Ca2+ waves that initiate in the cortex of the egg and spread through the whole egg interior. Two series of Ca2+ waves triggered from two distinct Ca2+ wave pacemakers entrain the two meiotic divisions preceding entry into the first interphase. The second messenger inositol (1,4,5) trisphosphate (IP3) is the main mediator of these global Ca2+ waves. Other Ca2+ signalling pathways (RyR and NAADPR) are functional in the egg but they mediate localised cortical Ca2+ signals whose physiological significance remains unclear. The meiosis I Ca2+ wave pacemaker is mobile and relies on intracellular Ca2+ release from the endoplasmic reticulum (ER) induced by a large production of IP3 at the sperm aster site. The meiosis II Ca2+ wave pacemaker is stably localised in a vegetal protrusion called the contraction pole. It is probable that a local production of IP3 in the contraction pole determines the site of this second pacemaker while functional interactions between ER and mitochondria regulate its activity. Finally, a third ectopic pacemaker can be induced by a global increase in IP3, making the ascidian egg a unique system where three different Ca2+ wave pacemakers coexist in the same cell.  相似文献   

12.
It is well known that stimulation of egg metabolism after fertilization is due to a rise in intracellular free calcium concentration. In sea urchin eggs, this first calcium signal is followed by other calcium transients that allow progression through mitotic control points of the cell cycle of the early embryo. How sperm induces these calcium transients is still far from being understood. In sea urchin eggs, both InsP3 and ryanodine receptors contribute to generate the fertilization calcium transient, while the InsP3 receptor generates the subsequent mitotic calcium transients. The identity of the mechanisms that generate InsP3 after fertilization remains an enigma. In order to determine whether PLCgamma might be the origin of the peaks of InsP3 production that punctuate the first mitotic cell cycles of the fertilized sea urchin egg, we have amplified by RT-PCR several fragments of sea urchin PLCgamma containing the two SH2 domains. The sequence shares similarities with SH2 domains of PLCgamma from mammals. One fragment was subcloned into a bacterial expression plasmid and a GST-fusion protein was produced and purified. Antibodies raised to the GST fusion protein demonstrate the presence of PLCgamma protein in eggs. Microinjection of the fragment into embryos interferes with mitosis. A related construct made from bovine PLCgamma also delayed or prevented entry into mitosis and blocked or prolonged metaphase. The bovine construct also blocked the calcium transient at fertilization, in contrast to a tandem SH2 control construct which did not inhibit either fertilization or mitosis. Our data indicate that PLCgamma plays a key role during fertilization and early development.  相似文献   

13.
Sperm fusion with the egg initiates a signaling cascade that releases intracellular calcium (Ca(i) (2+)) from the endoplasmic reticulum (ER). In sea urchins, Ca(2+) is released as a single, large transient via two distinct pathways. The first depends on inositol 1,4,5-triphosphate (IP(3)) production and triggers the initial phase of Ca(2+) release, while the second depends on nitric oxide (NO) production and is thought to maintain the duration of the Ca(2+) wave. We identified a sea urchin homolog of the seven trans-membrane G protein-coupled receptor for histamine (suH(1)R) on the egg cell surface that activates NO production. Treatment with histamine (HA) causes fluctuations in the resting levels of NO in the egg, while antagonists or antibodies of H(1)R inhibit the rise of NO normally observed at fertilization. Inhibition of suH(1)R function decreases the maintenance, but not the amplitude, of the Ca(2+) transient and suggests that it is an integral part of the overall pathway leading to egg activation at fertilization in sea urchins.  相似文献   

14.
Animal egg inherits a maternal centrosome from the meiosis-II spindle and sperm can introduce another centrosome at fertilization. It has been believed that in most animals only the sperm centrosome provides the division poles for mitosis in zygotes. This uniparental (paternal) inheritance of the centrosome must depend on the loss of the maternal centrosome. In starfish, suppression of polar body (PB) extrusion is a prerequisite for induction of parthenogenesis (Washitani-Nemoto et al. (1994) Dev. Biol. 163, 293-301), suggesting that the centrosomes cast off into PBs have reproducing capacity. Due to the absence of centriole duplication in meiosis II of starfish oocytes, each centrosome of a meiosis-II spindle has only one single centriole, whereas in meiosis I each has a pair of centrioles (Sluder et al. (1989) Dev. Biol. 131, 567-579; Kato et al. (1990) Dev. Growth Differ. 32, 41-49). Hence, the first PB (PB1) has two centrioles, whereas the second PB (PB2) and the mature egg have only one centriole, respectively. The present study examined the reproductive capacity of PB centrosomes by transplanting them into artificially activated eggs, and then the recipient egg nucleus with the surrounding cytoplasm was removed. A transplanted PB2 centrosome with a single centriole formed a monopolar spindle at the first mitosis, followed by formation of a bipolar spindle in the next mitosis, leading to actual cleavage and subsequent development. This proves the reproducing capacity of the single centriole in the PB2 centrosome. The behavior of the transplanted PB1 centrosome was exactly the same as in the PB2 centrosome, in spite of the difference in the number of centrioles. These results clearly show that four maternal centrioles are heterogeneous in duplicating capacity, during meiosis only one centriole in each of the centrosomes of a meiosis-I spindle pole retains duplicating capacity, the reproductive centrioles are successively cast off into PBs, and finally a mature egg inheriting a nonreproductive centriole alone is formed, and the presence of a single reproductive centriole is sufficient condition for embryonic development in starfish.  相似文献   

15.
The entry into, and exit from, mitosis are controlled by a universal M-phase promoting factor (MPF) composed of at least p34cdc2 and a cyclin. Embryonic systems are convenient for studying the association and dissociation of the active MPF complex because oocytes and eggs are naturally arrested at a specific point of the cell cycle until progression to the next point is triggered by a hormonal signal or sperm. In amphibians, eggs prior to fertilization are arrested at metaphase 2 of meiosis due to the presence of a stabilized MPF complex. Fertilization (egg activation) produces a transient increase in intracellular free Ca2+, a propagating Ca2+ wave, that specifically triggers the destruction of cyclin, leading to MPF inactivation and entry into the first embryonic inter-phase. We have recently shown that intracellular pH (pHi) variations in amphibian eggs, a large increase at fertilization and small oscillations during the embryonic cell cycle, were temporally and functionally related to the corresponding changes in MPF activity. In addition, the recent finding that the pHi increase at fertilization in Xenopus eggs is a propagating, Ca(2+)-dependent pH wave which closely follows the Ca2+ wave, together with the absence in the egg plasma membrane of pHi-regulating systems responsible for that pHi increase, suggest the existence of cortical or subcortical vesicles acidifying in the wake of the Ca2+ wave, thus producing the pH wave.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
During fertilization and cleavage, embryos undergo transient rises in their intracellular free calcium levels that are postulated to provide essential signals enabling normal development to proceed. In order to analyze the spatiotemporal patterns and possible biological significance of these calcium transients, time-lapse confocal microscopy was used to monitor starfish embryos during normal development and following experimental manipulations that disrupted cleavage and/or the release of calcium ions from internal stores in the embryo. For such analyses, oocytes were co-injected with dextran-conjugated forms of the calcium-sensitive fluorochrome calcium green (CG) and the calcium-insensitive dye rhodamine (Rh) for dual-channel confocal ratioing. Based on CG/Rh ratioed images obtained every 15 sec far the first few hours of development, no prominent calcium spikes were typically evident at the onset of the first cell cycle as hormone-treated oocytes resumed maturation and underwent germinal vesicle breakdown (GVBD). Subsequently, fertilizations of post-GVBD oocytes caused a single prolonged calcium wave that reached relatively uniform amplitudes throughout the ooplasm. Within 90 min after fertilization, most starfish zygotes began to display clusters of repetitive calcium oscillations that typically—but not invariably—preceded nuclear envelope breakdown, anaphase onset, and the formation of the first cleavage furrow. Rapidly decaying calcium oscillations continued through at least the first five cleavages in specimens that developed into normal blastulae, and unlike fertilization-induced calcium waves, such spikes tended to be more pronounced in the cortical cytoplasm during early cleavages. Thus, three different types of calcium dynamics—no marked transients, a single nonoscillating wave, and repetitive oscillations—were observed as normally developing starfish underwent prefertilization maturation, fertilization, and cleavage, respectively, suggesting that the spatiotemporal patterns of calcium spiking can change during starfish early development. In specimens microinjected with colchicine, calcium transients were also visible in the absence of cell divisions, indicating that calcium spiking can be uncoupled from cytokinesis. To assess whether calcium fluxes are required for normal development, oocytes were also treated with haparia to black calcium release mediated by inositol 1,4,5-trisphosphate (IP3). Injections of heparin, but not the control molecule de-N-sulfated heparin, caused abnormal fertilization-induced calcium dynamics in a does-dependent fashion and typically abolished marked postfertilization calcium oscillations and normal cleavage. Based on correlative studies using caged IP3, heparin interfered with IP3-mediated calcium release, suggesting that such release is involved in the production of the free calcium elevations that occur in normally developing starfish embryos.  相似文献   

17.
Calcium waves are well-known hallmarks of egg activation that trigger resumption of the cell cycle and development of the embryo. These waves rapidly and efficiently assure that activation signals are transmitted to all regions of the egg. Although the mechanism by which the calcium wave propagates across an egg as large as that of Xenopus is not known, two models prevail. One model is a wave of calcium-induced calcium release (CICR) and the other is propagation by inositol-induced calcium release (IICR). IICR requires a wave of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis, generating two second messengers, IP3, which then releases calcium and DAG, which activates protein kinase C (PKC). We show here that a wave of PKC-green fluorescent protein travels across the egg immediately following, and at the same velocity as, the calcium wave. This is the first example of a PKC wave in a vertebrate egg and supports the IICR model of wave propagation.  相似文献   

18.
Localized activation of Src-family protein kinases in the mouse egg   总被引:1,自引:0,他引:1  
Recent studies in species that fertilize externally have demonstrated that fertilization triggers localized activation of Src-family protein kinases in the egg cortex. However, the requirement for Src-family kinases in activation of the mammalian egg is different from lower species and the objective of this study was to characterize changes in the distribution and activity of Src-family protein tyrosine kinases (PTKs) during zygotic development in the mouse. Immunofluorescence analysis of mouse oocytes and zygotes with an anti-phosphotyrosine antibody revealed that fertilization stimulated accumulation of P-Tyr-containing proteins in the egg cortex and that their abundance was elevated in the region overlying the MII spindle. In addition, the poles of the MII spindle exhibited elevated P-Tyr levels. As polar body extrusion progressed, P-Tyr-containing proteins were especially concentrated in the region of cortex adjacent to the maternal chromatin and the forming polar body. In contrast, P-Tyr labeling of the spindle poles eventually disappeared as meiosis II progressed to anaphase II. In approximately 24% of cases, the fertilizing sperm nucleus was associated with increased P-Tyr labeling in the overlying cortex and oolemma. To determine whether Src-family protein tyrosine kinases could be responsible for the observed changes in the distribution of P-Tyr containing proteins, an antibody to the activated form of Src-family PTKs was used to localize activated Src, Fyn or Yes. Activated Src-family kinases were found to be strongly associated with the meiotic spindle at all stages of meiosis II; however, no concentration of labeling was evident at the egg cortex. The absence of cortical Src-family PTK activity continued until the blastocyst stage when strong cortical activity became evident. At the pronuclear stage, activated Src-family PTKs became concentrated around the pronuclei in close association with the nuclear envelope. This pattern was unique to the earliest stages of development and disappeared by the eight cell stage. Functional studies using chemical inhibitors and a dominant-negative Fyn construct demonstrated that Src-family PTKs play an essential role in completion of meiosis II following fertilization and progression from the pronuclear stage into mitosis. These data suggest that while Src-family PTKs are not required for fertilization-induced calcium oscillations, they do play a critical role in development of the zygote. Furthermore, activation of these kinases in the mouse egg is limited to distinct regions and occurs at specific times after fertilization.  相似文献   

19.
The fertilization Ca2+ wave in Xenopus laevis is a single, large wave of elevated free cytosolic Ca2+ concentration that emanates from the point of sperm-egg fusion and traverses the entire diameter of the egg. This phenomenon appears to involve an increase in inositol-1,4,5-trisphosphate (IP3) resulting from interaction of the sperm and egg, which then results in the activation of the endoplasmic reticulum Ca2+ release machinery. We have proposed models based on a static elevated distribution of IP3, and dynamic [IP3], however, these models have suggested that the fertilization wave passes through the center of the egg. Complementing these earlier models, we propose a more detailed model of the fertilization Ca2+ wave in Xenopus eggs to explore the hypothesis that IP3 is produced only at or near the plasma membrane. In this case, we find that the wave propagates primarily through the cortex of the egg, and that Ca2+ -induced production of IP3 at the plasma membrane allows IP3 to propagate in advance of the wave. Our model includes Ca2+ -dependent production of IP3 at the plasma membrane and IP3 degradation. Simulations in 1 dimension and axi-symmetric 3 dimensions illustrate the basic features of the wave.  相似文献   

20.
The role of calcium in cortical granule exocytosis and activation of the cell cycle at fertilization was examined in the mouse egg using the calcium chelator BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) and the fluorescent calcium indicator fluo-3. BAPTA and fluo-3 were introduced into zona-free mouse eggs by a 30-min incubation with 0.01-50 microM BAPTA acetoxymethyl ester (AM) and/or 1-20 microM fluo-3 AM prior to in vitro fertilization. Incubation of eggs in greater than or equal to 5.0 microM BAPTA AM inhibited cortical granule exocytosis in all cases. Introduction of the calcium chelator into the egg blocked second polar body formation at greater than or equal to 1.0 microM BAPTA AM. Sperm entry occurred in all eggs regardless of the BAPTA AM concentration. Sperm induce a large transient increase in calcium lasting 2.3 +/- 0.6 min, followed by repetitive transients lasting 0.5 +/- 0.1 min and occurring at 3.4 +/- 1.4-min intervals. Incubation with greater than or equal to 5.0 microM BAPTA AM inhibited all calcium transients. Introduction of BAPTA also inhibited calcium transients, exocytosis, and the resumption of meiosis following application of the calcium ionophore A23187 or SrCl2, which activate eggs. These results demonstrate that the calcium increase at fertilization is required for cortical granule exocytosis and resumption of the cell cycle in a mammalian egg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号