首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The molecular organization and functional activity of porins isolated from the outer membrane (OM) of the Yersinia enterocolitica and three phylogenetically close nonpathogenic Yersinia species (Y. intermedia, Y. kristensenii, and Y. frederiksenii) cultured at 6-8 degrees C were comparatively studied for the first time. The proteins were isolated in two molecular forms (trimeric and monomeric), and their spatial structures were characterized by the methods of optical spectroscopy, CD and intrinsic protein fluorescence. The studied porins were shown to belong to the beta-structural proteins (they have 59-96% total beta structures and 0-17% alpha helices). The spatial structures of the proteins were demonstrated to depend on the nature of the detergent used for solubilization. Unlike the enterobacterial pore-forming proteins, the porin trimers are less stable to sodium dodecyl sulfate (SDS). The spatial structures of the porins become more compact after the substitution of octyl beta-D-glucoside for SDS: the content of beta structures increases and the accessibility of Trp residues to solvent decreases. It was established with the use of the technique of bilayer lipid membranes that the functional properties of the porins are similar to those of the OmpF proteins of Gram-negative bacteria. Trimers are functionally active forms of the porins. Special features of the pore-forming activity of the Yersinia porins were revealed to depend on the microorganism species and the value of the membrane potential.  相似文献   

2.
The amino acid sequences of the Yersinia pseudotuberculosis porin (YPS) and Y. pestis porin (YPT) have recently deduced but their three-dimensional structures were not known. These sequences were analyzed using the servers 3D-PSSM and PredPort. The YPS and YPT porins were shown to have a high degree of identity (above 50%) in primary and secondary structures. The three-dimensional models of the Yersinia pseudotuberculosis porin (YPS) and Y. pestis porin (YPT) were obtained using the homology modeling approach, SWISS-MODEL Protein Modeling Server and 3-D structure of PhoE porin from E. coli as template. The superposition of the Calpha-atoms of the monomers of the Yersinia porins and PhoE porin gave a root mean square deviations of 0.47 A and 0.43 A for YPS and YPT respectively. Yersinia porins were found to be very similar in their three-dimensional structure to other non-specific enterobacterial porins, having the same features of overall fold and disposition of loop L3. The intrinsic structures of the monomer pores of YPS and YPT were investigated and their conductances were predicted with the program HOLE. The good correspondence between the theoretical and experimental magnitudes of YPS conductance was found. The Yersinia porins were determined to be unusual in containing the substitution, Glu replaced by Val, in a highly conserved pentapeptide (Pro-Glu-Phe-Gly-Gly-Asp), located in the loop L3 tip that disturbs the functionally important cluster of the acidic amino acids in the constriction site. Comparative analysis of structural organization of YPS and E. coli OmpF porin in the regions involved in subunit association and pore lumen was performed. The YPS porin functional properties were predicted. The differences between these porins in polar interactions playing a significant role in stabilization of the porin trimers were found and discussed in term of the variations in trimer stability. The Yersinia porins were shown to have the highest degree of the structural similarity. The differences between the porins were observed in their external loops. Their loops L6 and loops L8 showed 71.4 and 52.9% of sequence identity, respectively. The arrangement of charged residues clustered in the channel external vestibule of these porins was found to be also different suggesting the possible differences in their functional properties. The surface exposed regions of Yersinia porins involved in their potential sequential antigenic determinants were compared. The structural basis of their cross reactivity and antigenic differences is discussed.  相似文献   

3.
Three Yersinia pestis strains isolated from humans and one laboratory strain (EV76) were grown in rich media at 28 degrees C and 37 degrees C and their outer membrane protein composition compared by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Several proteins with molecular weights ranging from 34 kDa to 71 kDa were observed to change in relative abundance in samples grown at different temperatures. At least seven Y. pestis outer membrane proteins showed a temperature-dependent and strain-specific behaviour. Some differences between the outer membrane proteins of full-pathogenic wild isolates and the EV76 strain could also be detected and the relevance of this finding on the use of laboratory strains as a reference to the study of Y. pestis biological properties is discussed.  相似文献   

4.
Y. pestis, Y. pseudotuberculosis, Y. enterocolitica, Y. frederiksenii, Y. intermedia, Y. kristensenii and Y. ruckeri grown at 4 degrees C were characterized by fatty acid composition with a high content of C16:1 and C18:1, as well as the proportion of saturated to nonsaturated fatty acids equal to, on the average, 2.0. In Yersinia lipopolysaccharides a relatively high level of C16:1 and C12:0 was observed with the prevalence of 3-OH-C14:0. In the fatty-acid spectra of both cells and lipopolysaccharides no essential difference was noted. Thus, during growth at low temperature differences, earlier detected in the studied Yersinia species grown at 37 degrees C and making it possible to divide 7 Yersinia species into 2 groupes, were completely leveled. These results confirmed the close phylogenetic relationship between the Yersinia species under study and were indicative of more pronounced biological community of Yersinia under the conditions of growth at low temperature.  相似文献   

5.
OmpC-like porin was isolated from the outer membrane (OM) of Yersinia enterocolitica cultured at 37°C (the “warm” variant) and its physicochemical and functional properties were studied. The amino acid sequence of OmpC porin was established, and the primary structure and transmembrane topology of this protein were analyzed in comparison with the OmpF porin isolated from Y. enterocolitica cultured at 6°C (the “cold” variant). Both porins of Y. enterocolitica had a high homology degree (65%) between themselves and with OmpC and OmpF porins from OM of Escherichia coli (58 and 76% homology, respectively). The secondary structure of OmpC and OmpF porins from OM of Y. enterocolitica consists of 16 β-strands connected by short “periplasmic” and longer “extracellular” loops with disordered structure, according to the topological model developed for porins of E. coli. The molecular structures of OmpC and OmpF porins of Y. enterocolitica have significant differences in the structure of the “extracellular” loops and in the position of one of three tryptophan residues. Using the bilayer lipid membrane (BLM) technique, pores formed by OmpC porin of Y. enterocolitica were shown to differ in electrophysiological characteristics from channels of OmpF protein of this microorganism. The isolated OmpC porin reconstructed into BLM displayed functional plasticity similarly to OmpF protein and nonspecific porins of other enterobacteria. The conductivity level of the channels formed by this protein in the BLM was regulated by value of the applied potential.  相似文献   

6.
The production of bacteriocin-like substances by strains of Yersinia frederiksenii, Y. kristensenii and Y. intermedia in broth culture was established. These substances showed a selective activity against Y. enterocolitica, Y. frederiksenii, Y. kristensenii and Y. intermedia strains. Electron micrographs revealed the presence of phage tails in culture media. The production of these substances was detected in cultures grown at 25 degrees C but not in those grown at 37 degrees C, while these bacteriocin-like substances were active at 25 and 37 degrees C. Y. enterocolitica serogroups 0:3 and 0:9 were more susceptible to these bacterin-like substances than strains of Yersinia isolated from environmental sources.  相似文献   

7.
Study of the cultivation properties of 82 enterobacterial strains has revealed that the colonies of virulent Y. enterocolitica (serovars O3, O9) and Y. pseudotuberculosis (serovar I) are temperature-sensitive. This sign, closely connected with the presence and expression of the virulence plasmid with a molecular weight of 44-48 MD, is not characteristic of other strains. Virulent Yersinia grown in nutrient agar for 48 hours at 37 degrees C form colonies which are smaller in diameter than those formed during cultivation at 26 degrees C (with the significance of differences t greater than or equal to 4), their diameter at 37 degrees C not exceeding 1.0 mm. The test for the determination of the temperature-sensitive morphology of Yersinia colonies, along with the tests for other virulence markers, is probably suitable for the detection of the causative agents of yersiniosis or pseudotuberculosis.  相似文献   

8.
For 13 strains of Yersinia enterocolitica, there was a good correlation between the production of the broad-spectrum, mannose-resistant Yersinia haemagglutinin (MR/Y HA), the presence of fimbriae and high surface hydrophobicity. Each of these characters was expressed in cultures grown at low (less than 32 degrees C) but not at high (Greater than 35 degrees C) temperatures.  相似文献   

9.
Important pathogens in the genus Yersinia include the plague bacillus Yersinia pestis and two enteropathogenic species, Yersinia pseudotuberculosis and Yersinia enterocolitica. A shift in growth temperature induced changes in the number and type of acyl groups on the lipid A of all three species. After growth at 37 degrees C, Y. pestis lipopolysaccharide (LPS) contained the tetra-acylated lipid IV(A) and smaller amounts of lipid IV(A) modified with C10 or C12 acyl groups, Y. pseudotuberculosis contained the same forms as part of a more heterogeneous population in which lipid IV(A) modified with C16:0 predominated, and Y. enterocolitica produced a unique tetra-acylated lipid A. When grown at 21 degrees C, however, the three yersiniae synthesized LPS containing predominantly hexa-acylated lipid A. This more complex lipid A stimulated human monocytes to secrete tumour necrosis factor-alpha, whereas the lipid A synthesized by the three species at 37 degrees C did not. The Y. pestis phoP gene was required for aminoarabinose modification of lipid A, but not for the temperature-dependent acylation changes. The results suggest that the production of a less immunostimulatory form of LPS upon entry into the mammalian host is a conserved pathogenesis mechanism in the genus Yersinia, and that species-specific lipid A forms may be important for life cycle and pathogenicity differences.  相似文献   

10.
The molecular organization and functional activity of porins isolated from the outer membrane (OM) of the Yersinia enterocolitica and three phylogenetically close nonpathogenic Yersinia species (Y. intermedia, Y. kristensenii, and Y. frederiksenii) cultured at 6–8°C were comparatively studied for the first time. The proteins were isolated in two molecular forms (trimeric and monomeric), and their spatial structures were characterized by the methods of optical spectroscopy, CD and intrinsic protein fluorescence. The studied porins were shown to belong to the β-structural proteins (they have 59–96% total β structures and 0–17% α helices). The spatial structures of the proteins were demonstrated to depend on the nature of the detergent used for solubilization. Unlike the enterobacterial pore-forming proteins, the porin trimers are less stable to sodium dodecyl sulfate (SDS). The spatial structures of the porins become more compact after the substitution of octyl β-D-glucoside for SDS: the content of β structures increases and the accessibility of Trp residues to solvent decreases. It was established with the use of the technique of bilayer lipid membranes that the functional properties of the porins are similar to those of the OmpF proteins of Gram-negative bacteria. Trimers are functionally active forms of the porins. Special features of the pore-forming activity of the Yersinia porins were revealed to depend on the microorganism species and the value of the membrane potential.  相似文献   

11.
A novel OmpY porin was predicted based on the Yersinia pseudotuberculosis genome analysis. Whereas it has the different genomic annotation such as "outer membrane protein N" (ABS46310.1) in str. IP 31758 or "outer membrane protein C2, porin" (YP_070481.1) in str. IP32953, it might be warranted to rename the OmpN/OmpC2 to OmpY, "outer membrane protein Y", where letter "Y" pertained to Yersinia. Both phylogenetic analysis and genomic localization clearly support that the OmpY porin belongs to a new group of general bacterial porins. The recombinant OmpY protein with its signal sequence was overexpressed in porin-deficient Escherichia coli strain. The mature rOmpY was shown to insert into outer membrane as a trimer. The OmpY porin, isolated from the outer membrane, was studied employing spectroscopic, electrophoretic and bilayer lipid membranes techniques. The far UV CD spectrum of rOmpY was essentially identical to that of Y. pseudotuberculosis OmpF. The near UV CD spectrum of rOmpY was weaker and smoother than that of OmpF. The rOmpY single-channel conductance was 180 ± 20 pS in 0.1 M NaCl and was lower than that of the OmpF porin. As was shown by electrophoretic and bilayer lipid membrane experiments, the rOmpY trimers were less thermostable than the OmpF trimers. The porins differed in the trimer-monomer transition temperature by about 20°C. The three-dimensional structural models of the Y. pseudotuberculosis OmpY and OmpF trimers were generated and the intra- and intermonomeric interactions stabilizing the porins were investigated. The difference in the thermal stability of OmpY and OmpF trimers was established to correlate with the difference in intermonomeric polar contacts.  相似文献   

12.
The polypeptide profile of the porin protein fraction of Yersinia ruckeri, a Gram-negative bacterium causing yersiniosis in fish, has been shown to depend on cultivation temperature. OmpF-like porins are expressed mainly in the outer membrane (OM) of the “cold” variant (4°C) of the microorganism and OmpC-like proteins are expressed in the OM of the “warm” variant (37°C). Both types of porins are present in the OM of Y. ruckeri at room temperature. The OmpF-like porin of the “cold” variant was isolated and characterized. The molecular weight and primary structure of the protein were determined. The methods of optical spectroscopy (circular dichroism and intrinsic protein fluorescence) have shown that the protein has a spatial structure typical of β-structured porins from the OM of Gram-negative bacteria. The functional activity of isolated protein was characterized by the bilayer lipid membrane (BLM) technique. The most probable level of channel conductivity was 320 ± 60 pS, corresponding to the channel conductivity of OmpF porins of the genus Yersinia. The distinctive feature of OmpF porin from Y. ruckeri is high thermostability of its functionally active conformation: the protein forms stable pores in the BLM even after heating to 85°C.  相似文献   

13.
C Barber  E Eylan 《Microbios》1977,20(81-82):145-152
Comparative agglutinations of homogeneous stable suspensions prepared with Yersinia enterocolitica growth at 37 degrees C and at 25 degrees C were performed with anti-sera prepared in rabbits with the bacteria grown at both these temperatures. Sera prepared with live Y. enterocolitica grown at 37 degrees C agglutinated both suspensions at a much lower titre than the sera prepared with formaldehyde-treated bacteria is grown at 25 degrees C. All the sera in which strongly precipitating antibodies were induced reacted, in agar-gel, against native and heated proteins. The small amounts of antipolysaccharides induced in all the sera reacted only in the ring test against the bacterial polysaccharides. The absorption of the sera prepared with live Y. enterocolitica grown at 37 degrees C, with antigens synthesized at 25 degrees C did not remove all the homologous antibodies; apparently, some determinants are specific for the bacteria grown at 37 degrees C. Morphological changes of the small rods to elongated bacilli and filamentous forms were observed in most cultures of the Y. enterocolitica grown at 37 degrees C; these changes coincided with a low yield of proteins and point to an inhibitory effect of the 37 degrees C temperature.  相似文献   

14.
Multiple antigenic peptides (MAPs), a sequence which include common antigenic epitopes of outer membrane porins (OM) bacteria of the genus Yersinia (Y. pseudotuberculosis, Y. enterocolitica, Y. pestis), pathogenic for humans have been synthesized. After immunization of BALB/c mice the antiserum to the peptide have been obtained. With the help of ELISA we showed that these sera interact with porins isolated from OM pathogenic Yersinia, and MAP interact with antibodies in sera from rabbits immunized with individual porins, and with antibodies in sera of patients with intestinal yersiniosis and pseudotuberculosis.  相似文献   

15.
The aim of the study was the investigation of bacteriocinogenic properties of 102 Yersinia enterocolitica strains. The influence of selected factors on the production of bacteriocins by Y. enterocolitica and properties of jersiniacin 44JPSBKOH were also investigated. Bacteriocinogenic properties of Y. enterocolitica strains were tested by using the delayed cross-streaking method. It was found that the production of bacteriocins by Y. enterocolitica depended on the type of media on which the producer and indicator strains were grown. It turned out that some strains of Y. enterocolitica showed bacteriocinogenic properties at 25 degrees C, 30 degrees C and 37 degrees C irrespective of the presence of manganese ions in medium. In the presence of iron ions these strains showed bacteriocinogenic properties only at 25 degrees C. Y. enterocolitica strains which required Mn2+ or Mn7+ ions for bacteriocins production showed this activity only at 25 degrees C but in presence of Fe3+ ions they had no bacteriocinogenic properties. The partially purified jersiniacin 44JPSBKOH is a protein, its molecular weight was estimated to be 40 kDa. Yersiniacin 44JPSBKOH was active in the pH range of 3 to 9. Its bactericidal activity was rapidly lost when heated to 100 degrees C and treated with proteolytic enzymes. Yersiniacin 44JPSBKOH showed bactericidal activity against other Y. enterocolitica strains and some strains of Pseudomonas aeruginosa isolated from humans.  相似文献   

16.
17.
18.
19.
rpoS, a gene that encodes an alternative sigma factor (also known as katF), is critical for the ability of Yersinia enterocolitica grown at 37 degrees C, but not at 26 degrees C, to survive diverse environmental insults such as high temperature, hydrogen peroxide, osmolarity, and low pH. However, a Y. enterocolitica rpoS mutant was not affected in expression of inv or ail, invasion of tissue culture cells, or virulence in mice.  相似文献   

20.
Growth temperature affected the structure of Yersinia enterocolitica Ye 3827 lipopolysaccharide (LPS). Although Y. enterocolitica Ye 3827 synthesized smooth LPS when grown at a low temperature (25 degrees C), partial smooth-rough transition occurred when the bacteria were grown at the physiological temperature (37 degrees C). The structural alteration was detected by bacteriophage-inactivation assay and chemical and immunological analyses. LPS prepared from bacteria grown at 25 degrees C inactivated a number of bacteriophages that recognize the O-antigenic polysaccharide portion of LPS, whereas more than 3000 times the amount of LPS from bacteria grown at 37 degrees C was required for the same degree of inactivation. The antigenic determinant(s) responsible for the major reaction between 25 degrees C-LPS and anti-25 degree C-bacteria was located on the O-antigenic polysaccharide portion of LPS, but those responsible for the major reaction between 37 degrees C-LPS and anti-37 degrees C-bacteria were located on the R-core or inner portion of LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号