首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatial and genetic unit of bacterial population structure is the clone. Surprisingly, very little is known about the spread of a clone (spatial distance between clonally related bacteria) and the relationship between spatial distance and genetic distance, especially at very short scale (microhabitat scale), where cell division takes place. Agrobacterium spp. Biovar 1 was chosen because it is a soil bacterial taxon easy to isolate. A total of 865 microsamples 500 microm in diameter were sampled with spatial coordinates in 1 cm(3) of undisturbed soil. The 55 isolates obtained yielded 42 ribotypes, covering three genomic species based on amplified ribosomal DNA restriction analysis (ARDRA) of the intergenic spacer 16S-23S, seven of which contained two to six isolates. These clonemates (identical ARDRA patterns) could be found in the same microsample or 1 cm apart. The genetic diversity did not change with distance, indicating the same habitat variability across the cube. The mixing of ribotypes, as assessed by the spatial position of clonemates, corresponded to an overlapping of clones. Although the population probably was in a recession stage in the cube (10(3) agrobacteria g(-1)), a high genetic diversity was maintained. In two independent microsamples (500 microm in diameter) at the invasion stage, the average genetic diversity was at the same level as in the cube. Quantification of the microdiversity landscape will help to estimate the probability of encounter between bacteria under realistic natural conditions and to set appropriate sampling strategies for population genetic analysis.  相似文献   

2.
We looked at the diversity of NO2 oxidizers at field scale by examining isolates at clump scale and in microsamples of soil (diameter, 50 μm). The genetic distances (as determined by amplified ribosomal DNA restriction analysis performed with Nitrobacter-specific primers) in a small clump of soil were as large as those between reference strains from large geographical areas. Diversity in individual microsamples was shown by serotyping.  相似文献   

3.
A Pseudomonas 2,4-diacetylphloroglucinol (DAPG)-producing population that occurred naturally on the roots, in rhizosphere soil of Zea mays and in the nonrhizosphere soil was investigated in order to assess the microbial diversity at five stages of plant growth. A total of 1,716 isolates were obtained, and 188 of these isolates were able to produce DAPG. DAPG producers were isolated at each stage of plant growth, indicating that the maize rhizosphere is colonized by natural DAPG producers throughout development. The frequency of DAPG producers was very low in the first stage of plant growth and increased over time. An analysis of the level of biodiversity of the DAPG producers at the species level was performed by comparing the AluI restriction patterns of the 16S ribosomal DNAs (rDNAs) amplified by PCR from 167 isolates. This comparison allowed us to cluster the isolates into four amplified rDNA restriction analysis (ARDRA) groups, and the main group (ARDRA group 1) contained 89.8% of the isolates. The diversity of the 150 isolates belonging to ARDRA group 1 was analyzed by the random amplified polymorphic DNA (RAPD) technique. An analysis of RAPD patterns by a molecular variance method revealed that there was a high level of genetic diversity in this population and that the genetic diversity was related to plant age. Finally, we found that some of the DAPG producers, which originated from all stages of plant growth, had the same genotype. These DAPG producers could be exploited in future screening programs for biocontrol agents.  相似文献   

4.
Fluorescent Pseudomonas strains were isolated from 38 undisturbed pristine soil samples from 10 sites on four continents. A total of 248 isolates were confirmed as Pseudomonas sensu stricto by fluorescent pigment production and group-specific 16S ribosomal DNA (rDNA) primers. These isolates were analyzed by three molecular typing methods with different levels of resolution: 16S rDNA restriction analysis (ARDRA), 16S-23S rDNA intergenic spacer-restriction fragment length polymorphism (ITS-RFLP) analysis, and repetitive extragenic palindromic PCR genomic fingerprinting with a BOX primer set (BOX-PCR). All isolates showed very similar ARDRA patterns, as expected. Some ITS-RFLP types were also found at every geographic scale, although some ITS-RFLP types were unique to the site of origin, indicating weak endemicity at this level of resolution. Using a similarity value of 0.8 or more after cluster analysis of BOX-PCR fingerprinting patterns to define the same genotypes, we identified 85 unique fluorescent Pseudomonas genotypes in our collection. There were no overlapping genotypes between sites as well as continental regions, indicating strict site endemism. The genetic distance between isolates as determined by degree of dissimilarity in BOX-PCR patterns was meaningfully correlated to the geographic distance between the isolates' sites of origin. Also, a significant positive spatial autocorrelation of the distribution of the genotypes was observed among distances of <197 km, and significant negative autocorrelation was observed between regions. Hence, strong endemicity of fluorescent Pseudomonas genotypes was observed, suggesting that these heterotrophic soil bacteria are not globally mixed.  相似文献   

5.
An understanding of the genetic variation within and between populations should allow scientists to address many problems, including those associated with endangered species and the release of genetically modified organisms into the environment. With respect to microorganisms, the release of genetically engineered microorganisms is likely to increase dramatically given the current growth in the bioremediation industry. In this study, genetic variation within a lotic, bacterial population of Janthinobacterium lividum was measured with restriction fragment length polymorphism analysis. Chromosomal DNA from 10 Kettle Creek (Hawk Mountain Sanctuary, Kempton, Pa.) J. lividum isolates was digested with six restriction endonucleases and probed with a 7.5-kb pKK3535 fragment containing the E. coli rrnB rRNA operon. Genetic variation, as measured in terms of nucleotide diversity, was high within the population. The 0.0781 value for genetic variation was especially high given the conservative nature of the genetic probe. The average percent similarity among isolates within the population was 67.25%. Pairwise comparisons of nucleotide diversity values (π) and similarity coefficients (F) yielded values ranging from 0.0032 to 0.1816 and 0.3363 to 0.9808, respectively. Putative clonemates were not present within the group of isolates; however, all isolates shared 14 fragments across a spectrum of six restriction enzymes. The presence of these common fragments indicates that restriction fragment length polymorphism analysis may provide population- or species-specific diagnostic markers for J. lividum. Data that suggest a plume effect with respect to the downstream movement of J. lividum are also presented. An increase in genetic variation within groups of isolates along the longitudinal gradient of Kettle Creek is also suggested.  相似文献   

6.
Rhizobacteria closely related to two recently described species of pseudomonads, Pseudomonas brassicacearum and Pseudomonas thivervalensis, were isolated from two geographically distinct wheat field soils in South Australia. Isolation was undertaken by either selective plating or immunotrapping utilizing a polyclonal antibody raised against P. brassicacearum. A subset of 42 isolates were characterized by amplified 16S ribosomal DNA restriction analysis (ARDRA), BIOLOG analysis, and gas chromatography-fatty acid methyl ester (GC-FAME) analysis and separated into closely related phenetic groups. More than 75% of isolates tested by ARDRA were found to have >95% similarity to either Pseudomonas corrugata or P. brassicacearum-P. thivervalensis type strains, and all isolates had >90% similarity to either type strain. BIOLOG and GC-FAME clustering showed a >70% match to ARDRA profiles. Strains representing different ARDRA groups were tested in two soil types for biological control activity against the soilborne plant pathogen Gaeumannomyces graminis var. tritici, the causative agent of take-all of wheat and barley. Three isolates out of 11 significantly reduced take-all-induced root lesions on wheat plants grown in a red-brown earth soil. Only one strain, K208, was consistent in reducing disease symptoms in both the acidic red-brown earth and a calcareous sandy loam. Results from this study indicate that P. brassicacearum and P. thivervalensis are present in Australian soils and that a level of genetic diversity exists within these two novel species but that this diversity does not appear to be related to geographic distribution. The result of the glasshouse pot trial suggests that some isolates of these species may have potential as biological control agents for plant disease.  相似文献   

7.
The marine chlorophyte Dunaliella tertiolecta was grown in continuous cultures under NH4+-N, NO2-N, NO3-N, and urea-N limitations. The effect of the nitrogen cell quota (Qn) on the steady-state growth rate (μ) was the same regardless of the N source. The relationship between μ and Qn was well described by the Droop equation, but only up to the true maximum growth rate ^μ (= cell washout rate). The ratio between the minimum cell quota (kQ) and the maximum cell quota (Qm) was 0.19. Hence, there is no substitute for determining ^μ experimentally. That there was no difference in growth response to different N sources suggests that no internal pooling of inorganic nitrogen occurred. Both the carbon (Qc) and phosphorus (Qp) cell quotas under N limitation increased with increasing μ in a threshold fashion: virtually no change in either cell quota up to ~0.8 ^μ, followed by a rapid and large increase up to ^μ. In addition, in the region of low μ, there was an increase in Qp with a decreasing medium N/P ratio of between 15 and 5 (by atoms). The results generally indicate the physiological limits in cellular constituency under N limitation. The usefulness of this information, however, in describing the response of natural populations of marine phytoplankton to transient nutrient exposures on the temporal and spatial microscales that most likely exist is of limited value.  相似文献   

8.
9.
Bats are the main pollinators and seed dispersers of Stenocereus thurberi, a xenogamous columnar cactus of northwestern Mexico and a good model to illustrate spatial dynamics of gene flow in long-lived species. Previous studies in this cactus showed differences among populations in the type and abundance of pollinators, and in the timing of flowering and fruiting. In this study we analyzed genetic variability and population differentiation among populations. We used three primers of ISSR to analyze within and among populations genetic variation from eight widely separated populations of S. thurberi in Sonora, Mexico. Sixty-six out of 99 of the ISSR bands (P = 66.7%) were polymorphic. Total heterozygosity for all populations sampled revealed high genetic diversity (Hsp = 0.207, HBT = 0.224). The AMOVA showed that most of the genetic variation was within populations (80.5%). At the species level, estimates of population differentiation, θ = 0.175 and θB = 0.194, indicated moderate gene flow among populations. The absence of a significant correlation between genetic and geographic distances indicated little isolation by geographic distance. The large genetic variation and diversity found in S. thurberi is consistent with its open reproductive system and the high mobility of bats, a major pollinator. However, small changes in number or kind of pollinators and seed dispersal agents, in the directionality of migratory routes, and/or in the timing of flowering and fruiting among populations, can critically affect gene flow dynamics.  相似文献   

10.
Bacterial cells small enough to pass through 0.4-μm-pore-size filters made up 5 to 9% of the indigenous bacterial population in 0- to 20-cm-depth samples of Abiqua silty clay loam. Within the same soil samples, cells of a similar dimension were stained with fluorescent antibodies specific to each of four antigenically distinct indigenous serogroups of Rhizobium leguminosarum bv. trifolii and made up 22 to 34% of the soil population of the four serogroups. Despite the extensive contribution of small cells to these soil populations, no evidence of their being capable of either growth or nodulation was obtained. The density of soil bacteria which could be cultured ranged between 0.5 and 8.5% of the >0.4-μm direct count regardless of media, season of sampling, or soil depth. In the same soil samples, the viable nodulating populations of biovar trifolii determined by the plant infection soil dilution technique ranged between 1 and 10% of the >0.4-μm direct-immunofluorescence count of biovar trifolii. The <0.4-μm cell populations of both total soil bacteria and biovar trifolii changed abruptly between the 10- to 15-cm and 15- to 20-cm soil depth increments, increasing from 5 to 20% and from 20 to 50%, respectively, of their direct-count totals. The increase in density of the small-cell population corresponded to a significant increase in soil bulk density (1.07 to 1.21 g cm−3). The percent contribution of the <0.4-μm direct count to individual serogroup totals increased with soil depth by approximately 2-fold (39 to 87%) for serogroups 17 and 21 and by 12-fold (6 to 75%) for serogroups 6 and 36.  相似文献   

11.
Shipworms (wood-boring bivalves of the family Teredinidae) harbor in their gills intracellular bacterial symbionts thought to produce enzymes that enable the host to consume cellulose as its primary carbon source. Recently, it was demonstrated that multiple genetically distinct symbiont populations coexist within one shipworm species, Lyrodus pedicellatus. Here we explore the extent to which symbiont communities vary among individuals of this species by quantitatively examining the diversity, abundance, and pattern of occurrence of symbiont ribotypes (unique 16S rRNA sequence types) among specimens drawn from a single laboratory-reared population. A total of 18 ribotypes were identified in two clone libraries generated from gill tissue of (i) a single specimen and (ii) four pooled specimens. Phylogenetic analysis assigned all of the ribotypes to a unique clade within the γ subgroup of proteobacteria which contained at least five well-supported internal clades (phylotypes). By competitive quantitative PCR and constant denaturant capillary electrophoresis, we estimated the number and abundance of symbiont phylotypes in gill samples of 13 individual shipworm specimens. Phylotype composition varied greatly; however, in all specimens the numerically dominant symbiont belonged to one of two nearly mutually exclusive phylotypes, each of which was detected with similar frequencies among specimens. A third phylotype, containing the culturable symbiont Teredinibacter turnerae, was identified in nearly all specimens, and two additional phylotypes were observed more sporadically. Such extensive variation in ribotype and phylotype composition among host specimens adds to a growing body of evidence that microbial endosymbiont populations may be both complex and dynamic and suggests that such genetic variation should be evaluated with regard to physiological and ecological differentiation.  相似文献   

12.
Polymerase mu (Polμ) is an error-prone, DNA-directed DNA polymerase that participates in non-homologous end-joining (NHEJ) repair. In vivo, Polμ deficiency results in impaired Vκ-Jκ recombination and altered somatic hypermutation and centroblast development. In Polμ−/− mice, hematopoietic development was defective in several peripheral and bone marrow (BM) cell populations, with about a 40% decrease in BM cell number that affected several hematopoietic lineages. Hematopoietic progenitors were reduced both in number and in expansion potential. The observed phenotype correlates with a reduced efficiency in DNA double-strand break (DSB) repair in hematopoietic tissue. Whole-body γ-irradiation revealed that Polμ also plays a role in DSB repair in non-hematopoietic tissues. Our results show that Polμ function is required for physiological hematopoietic development with an important role in maintaining early progenitor cell homeostasis and genetic stability in hematopoietic and non-hematopoietic tissues.  相似文献   

13.
Kinetic Parameters of Denitrification in a River Continuum   总被引:4,自引:0,他引:4       下载免费PDF全文
Kinetic parameters for nitrate reduction in intact sediment cores were investigated by using the acetylene blockage method at five sites along the Swale-Ouse river system in northeastern England, including a highly polluted tributary, R. Wiske. The denitrification rate in sediment containing added nitrate exhibited a Michaelis-Menten-type curve. The concentration of nitrate for half-maximal activity (Kmap) by denitrifying bacteria increased on passing downstream from 13.1 to 90.4 μM in the main river, but it was highest (640 μM) in the Wiske. The apparent maximal rate (Vmaxap) ranged between 35.8 and 324 μmol of N m−2 h−1 in the Swale-Ouse (increasing upstream to downstream), but it was highest in the Wiske (1,194 μmol N m−2 h−1). A study of nitrous oxide (N2O) production at the same time showed that rates ranged from below the detection limit (0.05 μmol of N2O-N m−2 h−1) at the headwater site to 27 μmol of N2O-N m−2 h−1 at the downstream site. In the Wiske the rate was up to 570 μmol of N2O-N m−2 h−1, accounting for up to 80% of total N gas production.  相似文献   

14.
Leptosphaeria maculans is the most ubiquitous fungal pathogen of Brassica crops and causes the devastating stem canker disease of oilseed rape worldwide. We used minisatellite markers to determine the genetic structure of L. maculans in four field populations from France. Isolates were collected at three different spatial scales (leaf, 2-m2 field plot, and field) enabling the evaluation of spatial distribution of the mating type alleles and of genetic variability within and among field populations. Within each field population, no gametic disequilibrium between the minisatellite loci was detected and the mating type alleles were present at equal frequencies. Both sexual and asexual reproduction occur in the field, but the genetic structure of these populations is consistent with annual cycles of randomly mating sexual reproduction. All L. maculans field populations had a high level of gene diversity (H = 0.68 to 0.75) and genotypic diversity. Within each field population, the number of genotypes often was very close to the number of isolates. Analysis of molecular variance indicated that >99.5% of the total genetic variability was distributed at a small spatial scale, i.e., within 2-m2 field plots. Population differentiation among the four field populations was low (GST < 0.02), suggesting a high degree of gene exchange between these populations. The high gene flow evidenced here in French populations of L. maculans suggests a rapid countrywide diffusion of novel virulence alleles whenever novel resistance sources are used.  相似文献   

15.
DNA damage activates nuclear Abl tyrosine kinase to stimulate intrinsic apoptosis in cancer cell lines and mouse embryonic stem cells. To examine the in vivo function of nuclear Abl in apoptosis, we generated Abl-μNLS (μ, mutated in nuclear localization signals) mice. We show here that cisplatin-induced apoptosis is defective in the renal proximal tubule cells (RPTC) from the Ablμ/μ mice. When injected with cisplatin, we found similar levels of platinum in the Abl+/+ and the Ablμ/μ kidneys, as well as similar initial inductions of p53 and PUMAα expression. However, the accumulation of p53 and PUMAα could not be sustained in the Ablμ/μ kidneys, leading to reductions in renal apoptosis and tubule damage. Co-treatment of cisplatin with the Abl kinase inhibitor, imatinib, reduced the accumulation of p53 and PUMAα in the Abl+/+ but not in the Ablμ/μ kidneys. The residual apoptosis in the Ablμ/μ mice was not further reduced in the Ablμ/μ; p53−/− double-mutant mice, suggesting that nuclear Abl and p53 are epistatic to each other in this apoptosis response. Although apoptosis and tubule damage were reduced, cisplatin-induced increases in phospho-Stat-1 and blood urea nitrogen were similar between the Abl+/+ and the Ablμ/μ kidneys, indicating that RPTC apoptosis is not the only factor in cisplatin-induced nephrotoxicity. These results provide in vivo evidence for the pro-apoptotic function of Abl, and show that its nuclear localization and tyrosine kinase activity are both required for the sustained expression of p53 and PUMAα in cisplatin-induced renal apoptosis.  相似文献   

16.
A combination of fluorescence in situ hybridization, microprofiles, denaturing gradient gel electrophoresis of PCR-amplified 16S ribosomal DNA fragments, and 16S rRNA gene cloning analysis was applied to investigate successional development of sulfate-reducing bacteria (SRB) community structure and in situ sulfide production activity within a biofilm growing under microaerophilic conditions (dissolved oxygen concentration in the bulk liquid was in the range of 0 to 100 μM) and in the presence of nitrate. Microelectrode measurements showed that oxygen penetrated 200 μm from the surface during all stages of biofilm development. The first sulfide production of 0.32 μmol of H2S m−2 s−1 was detected below ca. 500 μm in the 3rd week and then gradually increased to 0.70 μmol H2S m−2 s−1 in the 8th week. The most active sulfide production zone moved upward to the oxic-anoxic interface and intensified with time. This result coincided with an increase in SRB populations in the surface layer of the biofilm. The numbers of the probe SRB385- and 660-hybridized SRB populations significantly increased to 7.9 × 109 cells cm−3 and 3.6 × 109 cells cm−3, respectively, in the surface 400 μm during an 8-week cultivation, while those populations were relatively unchanged in the deeper part of the biofilm, probably due to substrate transport limitation. Based on 16S rRNA gene cloning analysis data, clone sequences that related to Desulfomicrobium hypogeium (99% sequence similarity) and Desulfobulbus elongatus (95% sequence similarity) were most frequently found. Different molecular analyses confirmed that Desulfobulbus, Desulfovibrio, and Desulfomicrobium were found to be the numerically important members of SRB in this wastewater biofilm.  相似文献   

17.
The abundant microbial population in a 3,043-m-deep Greenland glacier ice core was dominated by ultrasmall cells (<0.1 μm3) that may represent intrinsically small organisms or starved, minute forms of normal-sized microbes. In order to examine their diversity and obtain isolates, we enriched for ultrasmall psychrophiles by filtering melted ice through filters with different pore sizes, inoculating anaerobic low-nutrient liquid media, and performing successive rounds of filtrations and recultivations at 5°C. Melted ice filtrates, cultures, and isolates were analyzed by scanning electron microscopy, flow cytometry, cultivation, and molecular methods. The results confirmed that numerous cells passed through 0.4-μm, 0.2-μm, and even 0.1-μm filters. Interestingly, filtration increased cell culturability from the melted ice, yielding many isolates related to high-G+C gram-positive bacteria. Comparisons between parallel filtered and nonfiltered cultures showed that (i) the proportion of 0.2-μm-filterable cells was higher in the filtered cultures after short incubations but this difference diminished after several months, (ii) more isolates were obtained from filtered (1,290 isolates) than from nonfiltered (447 isolates) cultures, and (iii) the filtration and liquid medium cultivation increased isolate diversity (Proteobacteria; Cytophaga-Flavobacteria-Bacteroides; high-G+C gram-positive; and spore-forming, low-G+C gram-positive bacteria). Many isolates maintained their small cell sizes after recultivation and were phylogenetically novel or related to other ultramicrobacteria. Our filtration-cultivation procedure, combined with long incubations, enriched for novel ultrasmall-cell isolates, which is useful for studies of their metabolic properties and mechanisms for long-term survival under extreme conditions.  相似文献   

18.
Simultaneous production of sulfide and methane by anaerobic sewer biofilms has recently been observed, suggesting that sulfate-reducing bacteria (SRB) and methanogenic archaea (MA), microorganisms known to compete for the same substrates, can coexist in this environment. This study investigated the community structures and activities of SRB and MA in anaerobic sewer biofilms (average thickness of 800 μm) using a combination of microelectrode measurements, molecular techniques, and mathematical modeling. It was seen that sulfide was mainly produced in the outer layer of the biofilm, between the depths of 0 and 300 μm, which is in good agreement with the distribution of SRB population as revealed by cryosection-fluorescence in situ hybridization (FISH). SRB had a higher relative abundance of 20% on the surface layer, which decreased gradually to below 3% at a depth of 400 μm. In contrast, MA mainly inhabited the inner layer of the biofilm. Their relative abundances increased from 10% to 75% at depths of 200 μm and 700 μm, respectively, from the biofilm surface layer. High-throughput pyrosequencing of 16S rRNA amplicons showed that SRB in the biofilm were mainly affiliated with five genera, Desulfobulbus, Desulfomicrobium, Desulfovibrio, Desulfatiferula, and Desulforegula, while about 90% of the MA population belonged to the genus Methanosaeta. The spatial organizations of SRB and MA revealed by pyrosequencing were consistent with the FISH results. A biofilm model was constructed to simulate the SRB and MA distributions in the anaerobic sewer biofilm. The good fit between model predictions and the experimental data indicate that the coexistence and spatial structure of SRB and MA in the biofilm resulted from the microbial types and their metabolic transformations and interactions with substrates.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号