首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relation between Zn2+ binding of E. coli alkaline phosphatase and enzymatic activity and anion binding (using 35Cl NMR) has been investigated. The results suggest the existence of two forms of the enzyme with different zinc binding properties. The anion binding associated with the enzyme's function appears to be an amino acid residue and not the Zn2+ ions; furthermore, there is a rapid internal motion at the anion binding site. 35Cl relaxation studies in the presence of Mg2+ ions point to a marked interdependence of Mg2+ and Zn2+ binding.  相似文献   

2.
The addition of Tb3+ to apoalkaline phosphatase at pH 8.0 results in the formation of a metalloprotein with an enhanced Tb3+ fluorescence at 492, 545, and 580 nm. The Tb3+ excitation spectrum is most consistent with a process in which energy is transferred from one or more tyrosyl chromophores to the bound lanthanide. An analysis of the fluorescence data under equilibrium conditions yields one Tb3+ binding site per enzyme dimer with a Kn = 0.16 ± 0.02 μm. The Tb3+-alkaline phosphatase complex is not catalytically active nor does it incorporate covalently bound phosphate, but the specific activity of Zn2+-alkaline phosphatase is significantly enhanced in the presence of Tb3+ indicating that this lanthanide mimics Mg2+ in stabilizing the structure of alkaline phosphatase. The fluorescence of the Tb3+-enzyme is found to be quite sensitive to conformational changes which occur upon addition of Zn2+ or substrates.  相似文献   

3.
Effect of extraneous zinc on calf intestinal alkaline phosphatase   总被引:1,自引:0,他引:1  
The effect of extraneous zinc on calf intestinal alkaline phosphatase was studied for quick reversible binding and slow irreversible binding of zinc ions at various concentrations. Under the conditions of slow binding of zinc to CIP increasing Zn2+ (less than 1.0 mM, nM/nE 1.0 × 106) inhibited enzymatic activity, and further increasing Zn2+ resulted in an increase of activity. For quick reversible binding of Zn2+, the effect on CIP activity changed at lower concentrations of substrate, indicating a complex cooperativity between Zn2+ and pNPP. Both protein intrinsic emission fluorescence and ANS-bound protein fluorescence, as well as circular dichroism spectra have shown that the binding of zinc ions changed the enzyme conformation, which was the reason for the changes in enzyme activity induced by extraneous zinc.  相似文献   

4.
Factors affecting the zinc content of E. coli alkaline phosphatase   总被引:1,自引:0,他引:1  
Through experiments with radioactively labeled EDTA, it has been shown that alkaline phosphatasc from E. coli has a high affinity for binding EDTA, requiring extensive dialysis for removal. This paper reviews the results of zinc analyses of E. coli alkaline phosphatase prepared in the presence and absence of EDTA. The presence of EDTA in most preparations of alkaline phosphatase accounts for previous overestimates of the zine content of the enzyme.With radioactively labeled EDTA, direct evidence for the binding of EDTA to the metal-free alkaline phosphatase is presented. It has been shown that the apoprotein binds two EDTA molecules rather strongly. Addition of four metal ions are necessary for reactivation of this EDTA-contaminated apoenzyme. However, when the EDTA-contaminated apoenzyme is subject for extensive dialysis and EDTA is removed, the addition of two zinc ions restores the enzyme activity completely.  相似文献   

5.
Comparative studies have been performed on the binding properties of zinc ions to human brain calmodulin and S100b protein. Calmodulin is characterized by two sets of Zn2+ binding sites, with KD ranging from 8.10?5M to 3.10?4M. The S100b protein also exhibited two sets of zinc binding sites, with a much higher affinity. KD = 10?7 ? 10?6M. We suggest that S100b protein should no longer be considered only as a “calcium binding protein” but also as a “zinc binding protein”, and that Zn2+ ions are involved in the functions of the S100 proteins.  相似文献   

6.
The effect of halide ions (Cl?, Br? and I?) on the fluorescence of quinine sulfate in dilute sulfuric acid solution was studied by fluorescence spectra, ultraviolet‐visible (UV‐visible) absorption spectra and fluorescence decay technique. The results exhibited that halide ions with heavier atomic mass could significantly reduce the fluorescence intensity of quinine sulfate, as a result, the order of fluorescence quenching caused by halide ions is Cl? < Br? < I?. Therefore, halide ions with high concentration could seriously quench the fluorescence of quinine sulfate. The UV‐visible absorption spectra and fluorescence decay technique revealed that the fluorescence quenching of quinine sulfate caused by halide ions was attributed to dynamic quenching, static quenching process, self‐quenching fluorescence effect and electronic transfer.  相似文献   

7.
Comparisons among evolutionarily related enzymes offer opportunities to reveal how structural differences produce different catalytic activities. Two structurally related enzymes, Escherichia coli alkaline phosphatase (AP) and Xanthomonas axonopodis nucleotide pyrophosphatase/phosphodiesterase (NPP), have nearly identical binuclear Zn2+ catalytic centers but show tremendous differential specificity for hydrolysis of phosphate monoesters or phosphate diesters. To determine if there are differences in Zn2+ coordination in the two enzymes that might contribute to catalytic specificity, we analyzed both x-ray absorption spectroscopic and x-ray crystallographic data. We report a 1.29-Å crystal structure of AP with bound phosphate, allowing evaluation of interactions at the AP metal site with high resolution. To make systematic comparisons between AP and NPP, we measured zinc extended x-ray absorption fine structure for AP and NPP in the free-enzyme forms, with AMP and inorganic phosphate ground-state analogs and with vanadate transition-state analogs. These studies yielded average zinc–ligand distances in AP and NPP free-enzyme forms and ground-state analog forms that were identical within error, suggesting little difference in metal ion coordination among these forms. Upon binding of vanadate to both enzymes, small increases in average metal–ligand distances were observed, consistent with an increased coordination number. Slightly longer increases were observed in NPP relative to AP, which could arise from subtle rearrangements of the active site or differences in the geometry of the bound vanadyl species. Overall, the results suggest that the binuclear Zn2+ catalytic site remains very similar between AP and NPP during the course of a reaction cycle.  相似文献   

8.
Pulsed nuclear magnetic resonance studies of the longitudinal (T1) and transverse (T2) quadrupolar relaxation times of 7Li, 23Na, 35Cl ions in the absence and presence of human oxy- and carbon monoxyhaemoglobin have been used to investigate the interaction of the ions and the macromolecule.The relaxation data show that Cl? interacts strongly with the haemoglobin but provide no evidence for binding of Na+ up to concentrations of 0.5 m. In the case of Li+, evidence for interaction is obtained at concentrations of about 0.1 m.The dependence of relaxation rate on frequency was followed over a limited frequency range in an attempt to separate the effects of correlation times and exchange rates of the bonded ions on the relaxation. In the case of Cl?, an upper limit for the mean lifetime divided by the number of sites can be set at about 1 × 10?6 second, and a lower limit at about 1 × 10?8 second.  相似文献   

9.
31P-NMR experiments on intact pig small intestine brush-border membrane vesicles (BBMV) and detergent-solubilized membranes gave direct insights into the organization of the phospholipids (PL) and their interaction with zinc and cadmium ions. Various endogenous PL were identified from well resolved BBM micelle spectra. These experiments revealed a strong interaction of Zn2+ and Cd2+ with the negatively charged phosphatidylinositol and phosphatidylserine. In BBM micelles, a progressive time-dependent PL degradation occurred in the absence of ions and indicated the presence of active phospholipases. The presence of zinc inhibited the degradation process whereas cadmium had the opposite influence. 31P spectra of BBMV were carefully characterized. Neither zinc nor cadmium affected the PL bilayer structural organization. A degradation of PL, monitored by the increase of the inorganic phosphate (P i) signal, also occurred in vesicles but to a lesser extent than in micelles. A 2/3 internal, 1/3 external PL asymmetry was observed in the absence and presence of ions. Offprint requests to: P. Ripoche  相似文献   

10.
The anion-binding characteristics of ferredoxin from Halobacterium of the Dead Sea have been studied by 35Cl? NMR. It is found that the binding constant of Cl? to halophilic ferredoxin is ca. 0.09 at 28 °C and that the binding enthalpy is positive. It is also found that the correlation time for chloride ions bound to halophilic ferredoxin is about 10 ns. The effect on the 35Cl?1 NMR signal of adding competing anions is also studied. Halophilic proteins like ferredoxin which have a high negative charge bind anions with low affinity but the 35Cl? quadrupole relaxation technique can conveniently monitor such weak binding.  相似文献   

11.
C Zimmer  G Luck  H Triebel 《Biopolymers》1974,13(3):425-453
The effects of metal ions of the first-row transition and of alkaline earth metals on the DNA helix conformation have been studied by uv difference spectra, circular dichroism, and sedimentation measurements. At low ionic strength (10?3 M NaClO4) DNA shows a maximum in the difference absorption spectra in the presence of Zn2+, Mn2+, Co2+, Cd2+, and Ni2+ but not with Mg2+ or Ca2+. The amplitude of this maximum is dependent on GC content as revealed by detailed studies of the DNA-Zn2+ complex of eight different DNA's. Pronounced changes also occur in the CD spectra of DNA transition metal complexes. A transition appears up to a total ratio of approximately 1 Zn2+ per DNA phosphate at 10?3 M NaClO4; then no further change was observed up to high concentrations. The characteristic CD changes are strongly dependent on the double-helical structure of DNA and on the GC content of DNA. Differences were also observed in hydrodynamic properties of DNA metal complexes as revealed by the greater increase of the sedimentation coefficient of native DNA in the presence of transition metal ions. Spectrophotometric acid titration experiments and CD measurements at acidic pH clearly indicate the suppression of protonation of GC base-pair regions on the addition of transition metal ions to DNA. Similar effects were not observed with DNA complexes with alkaline earth metal ions such as Mg2+ or Ca2+. The data are interpreted in terms of a preferential interaction of Zn2+ and of other transition metal ions with GC sites by chelation to the N-7 of guanine and to the phosphate residue. The binding of Zn2+ to DNA disappears between 0.5 M and 1 M NaClO4, but complex formation with DNA is observable again in the presence of highly concentrated solutions of NaClO4 (3?7.2 M NaClO4) or at 0.5 to 2 M Mn2+. At relatively high cation concentration Mg2+ is also effective in changing the DNA comformation. These structural alterations probably result from both the shielding of negatively charged phosphate groups and the breakdown of the water structure along the DNA helix. Differential effects in CD are also observed between Mn2+, Zn2+ on one hand and Mg2+ on the other hand under these conditions. The greater sensitivity of the double-helical conformation of DNA to the action of transition metal ions is due to the affinity of the latter to electron donating sites of the bases resulting from the d electronic configuration of the metal ions. An order of the relative phosphate binding ability to base-site binding ability in native DNA is obtained as follows: Mg2+, Ba2+, < Ca2+ < Fe2+, Ni2+, Co2+ < Mn2+, Zn2+ < Cd2+ < Cu2+. The metal-ion induced conformational changes of the DNA are explained by alternation of the winding angle between base pairs as occurs in the transition from B to C conformation. These findings are used for a tentative molecular interpretation of some effects of Zn2+ and Mn2+ in DNA synthesis reported in the literature.  相似文献   

12.
An investigation of phosphoprotein phosphatase activity in rabbit liver membrane using 32P-labeled histone and phosphorylase as substrates has shown that the activity is inhibited by preincubation in a phosphorylating system containing ATP or GTP as well as in the presence of physiological concentrations of inorganic phosphate. Kinetics of inhibition by both ATP and inorganic phosphate are noncompetitive. Phosphatase activity has a broad pH optimum of 7.5–9.0 and is not stimulated by Mg2+, Mn2+, or Zn2+.  相似文献   

13.
Nuclear magnetic quadrupole relaxation appears to be a general method for studying the binding of anions to proteins. This is shown by the increase in transverse quadrupole relaxation rate of 35Cl- and 81Br- in the presence of horse liver alcohol dehydrogenase, lysozyme, trypsin, alpha-chymotrypsin, human carbonic anhydrase, fructose-1,6-bisphosphate aldolase and human serum albumin. Of the many possible binding sites at the surface of a protein (e.g. positively charged amino acid side-chains) only a few account for the main part of the relaxation enhancement. This is shown by the decrease in 35Cl- and 81Br- relaxation rate on addition of functional ligands. Large, kinetically inert, complex anions like Pt(CN)2-4 and Au(CN)-2 are found to act as strong competitors towards halogen ions for the high-affinity anion binding sites of a number of proteins. Titrations with complex anions following the 35Cl- or 81Br- relaxation rates are found to be helpful in attempts to elucidate binding mechanisms. Especially, the complex anions may be useful probes for the discrimination between general and metallic anion binding sites in proteins and they also permit correlation of information from X-ray investigations of crystals with that from physical measurements in solution. From the change in halide ion quadrupole relaxation rate on addition of strongly binding ligands the quadrupole coupling constants of the high affinity Cl- and Br- binding sites are estimated using certain assumptions. It is found that for several proteins, comprising the metal-free proteins but also alcohol dehydrogenase and Escherichia coli alkaline phosphatase, the 35Cl quadrupole coupling constants have approximately the same values. For some other metallo-proteins like carbonic anhydrase and a zinc - serum-albumin complex considerably greater quadrupole coupling constants were obtained. The estimated quadrupole coupling constants are used as a basis for a discussion of the interactions involved in anion-protein interactions.  相似文献   

14.
For the pork heart, extramitochondrial aspartate aminotransferase (EC 2.6.1.1), the “half-reaction” equilibrium, amino acid + phosphopyridoxal enzyme ? keto acid + phosphopyridoxamine enzyme, is displaced in favor of the phosphopyridoxamine enzyme by the addition of halide ions. The order of effectiveness is I? > Br? > Cl? > F?. A kinetic analysis of this equilibrium with alanine and pyruvate as substrates showed that halide ions (0.01–0.1 m) both increase the rate of the forward reaction and decrease the rate of the reverse reaction. Chloride ions decrease the rate of the reverse reaction by competitively inhibiting the formation of an intermediate enzyme-pyruvate complex. The rate of the forward reaction is proportional to the alanine concentration up to 0.5 m alanine, indicating that the initial combination of alanine with the enzyme is the rate-limiting step in this direction. The activation by anions must therefore involve the initial binding of the substrates to the enzyme. Chloride ions also cause a marked activation of the enzyme in the presence of glutarate by displacing the inhibitory glutarate from the enzyme. These results indicate that some enzyme activations may be due to relieving a preexisting inhibition by ligand substitution reactions. The finding that aspartate aminotransferase has an anion-sensitive “half-reaction” equilibrium, or redox potential, suggests that transaminases may function in both active and passive transport of anions across membranes.  相似文献   

15.
Zinc is one of the trace elements which induce the proliferation and the differentiation of the osteoblast. In the previous study, we found that zinc ions (Zn2+ ion)-releasing titanium implants had excellent bone fixation using a rabbit femurs model. In this study, we isolated the Zn2+ ions (eluted Zn2+ ion; EZ) released from the implant surface, and evaluated the effect of EZ on the osteogenesis of human bone marrow-derived mesenchymal cells (hBMCs). In the result, it was found that the EZ stimulated cell viability, osteoblast marker gene (type I collagen, osteocalcin (OC), alkaline phosphatase (ALP) and bone sialoprotein (BSP)) expressions and calcium deposition in hBMCs.  相似文献   

16.
M. Godeh  J. Udvardy  G. L. Farkas 《Planta》1981,152(5):408-414
Ascorbic acid (AA) increased the phosphatase activity (pH 6.8) in 10,000 g supernatants from Anacystis nidulans. The enzyme activated by AA was deactivated by dehydroascorbic acid (DHAA). The modulation by AA/DHAA of phosphatase activity in Anacystis appears to be specific; a number of other redox compounds, known to modulate other enzymes, had no effect on the Anacystis phosphatase. A purified phosphatase preparation from Anacystis was also deactivated by DHAA. In contrast, the purified enzyme was not activated by AA, suggesting that a factor mediating the effect of AA was lost during purification. Another factor was found to protect the purified phosphatase against deactivation by DHAA. The enzyme was characterized as a phosphatase with a broad substrate specificity, an apparent molecular weight of 19,000, and a pH optimum of 6.0–7.0. Dialysis of the enzyme preparation against EDTA abolished the phosphatase activity which could be restored by Zn2+ ions and partially restored by Co2+ ions. Crude extracts also contained a latent enzyme, the phosphatase activity of which could be detected in the presence of Co2+ ions only. Zn2+ ions did not activate this enzymatically inactive protein. The Co2+-dependent phosphatase had an apparent mol. wt. of 40,000, a broad substrate specificity, and an alkaline pH-optimum. Infection of Anacystis cultures by cyanophage AS-1 resulted in a decrease in phosphatase activity. The enzyme present in 10,000 g supernatants from infected cells could not be modulated by the AA/DHAA system.Abbreviations AA ascorbic acid - DEAE diethylamino ethyl - DHAA dehydroascorbic acid - EDTA ethylene-diaminetetra-acetate - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG oxidized glutathione - HMP hexose monophosphate - P i inorganic phosphorus - pNPP p-nitrophenylphosphate - pNP p-nitrophenol - Tris Tris(hydroxymethyl)-aminomethane  相似文献   

17.
The reversible, noncovalent binding of inorganic phosphate to Escherichia coli alkaline phosphatase at pH 8 has been examined by equilibrium dialysis at two temperatures and two ionic strengths. Binding occurs with a stoichiometry of two phosphate ions per dimeric enzyme molecule and a single dissociation constant that is not very sensitive to temperature or ionic strength. These results contradict published evidence for anti-cooperative binding of inorganic phosphate to alkaline phosphatase. Reasons are presented for believing that the apparent anti-cooperativity reported by other workers is artifactual.  相似文献   

18.
19.
Interaction between l-arabinose and the zinc group metal-ion salts has been studied in aqueous solution and solid complexes of the type M(l-arabinose)X2·nH2O, where M = Zn(II), Cd(II), and Hg(II) ions, X = Cl or Br, and n = 0–2 have been isolated and characterized. On comparison with the structurally known Ca(l-arabinose) Cl2·4H2O and the corresponding magnesium compounds, it is concluded that the Zn(II) and Cd(II) ions are six-coordinated, binding to two arabinose moieties via 03, 04 of the first and 01, 05 of the second sugar molecule as well as to two H2O molecules. The Hg(II) ion binds only to two sugar molecules in a similar fashion to zinc and cadmium ions, resulting in a four coordination around the mercury ion. The strong intermolecular hydrogen bonding network of the free arabinose is rearranged to that of the sugar OH...H2O...halide system upon metalation. The β-anomer sugar conformation is predominant in the free sugar, while the α-anomer conformation is preferred by the alkaline earth and Zn(II), Cd(II), and Hg(II) cations.  相似文献   

20.
N,N′-bis[3-[3-(2,2′-dipicolyl)methylaminopropyl]-methylaminopropyl]naphthalene-1,4,5,8-tetracarboxylic acid diimide, 1, and its complex with zinc ions, 2, were investigated against telomeric sequences, [TAGGG(TTAGGG)3] and [AGGG(TTAGGG)3], which reveal different G-quadruplex structures depending on the conditions. Spectrophotometric, SPR, and CD techniques revealed that both ligands showed large binding constants to hybrid-type G-quadruplexes formed in the presence of K+ ions. Moreover, 2 revealed higher affinity to investigated oligonucleotides suggesting that complex of naphthalene diimide derivative with Zn2+, comparing to 1, provided additional electrostatic or coordination interactions between positively charged zinc ions and condensed negative charged phosphate anions from G4 DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号