首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The endoplasmic reticulum-resident chaperone heat-shock protein 47 (HSP47) plays an essential role in procollagen biosynthesis. The function of HSP47 relies on its specific interaction with correctly folded triple-helical regions comprised of Gly-Xaa-Yaa repeats, and Arg residues at Yaa positions have been shown to be important for this interaction. The amino acid at the Yaa position (Yaa(-3)) in the N-terminal-adjoining triplet containing the critical Arg (defined as Arg(0)) was also suggested to be directly recognized by HSP47 (Koide, T., Asada, S., Takahara, Y., Nishikawa, Y., Nagata, K., and Kitagawa, K. (2006) J. Biol. Chem. 281, 3432-3438). Based on this finding, we examined the relationship between the structure of Yaa(-3) and HSP47 binding using synthetic collagenous peptides. The results obtained indicated that the structure of Yaa(-3) determined the binding affinity for HSP47. Maximal binding was observed when Yaa(-3) was Thr. Moreover, the required relative spatial arrangement of these key residues in the triple helix was analyzed by taking advantage of heterotrimeric collagen-model peptides, each of which contains one Thr(-3) and one Arg(0). The results revealed that HSP47 recognizes the Yaa(-3) and Arg(0) residues only when they are on the same peptide strand. Taken together, the data obtained led us to define the HSP47-binding structural epitope in the collagen triple helix and also define the HSP47-binding motif in the primary structure. A motif search against human protein database predicted candidate clients for this molecular chaperone. The search result indicated that not all collagen family proteins require the chaperoning by HSP47.  相似文献   

2.
The collagen binding chaperone HSP47 interacts with procollagen in the endoplasmic reticulum and plays a crucial role in the biosynthesis of collagen. We recently demonstrated that typical collagen model peptides, (Pro-Pro-Gly)(n), possess sufficient structural information for interaction with HSP47 (Koide, T., Asada, S., and Nagata, K. (1999) J. Biol. Chem. 274, 34523-34526). Here we show that binding of (Gly-Pro-Pro)(n) peptides to HSP47 can be detected using the two-hybrid system in yeast if a trimerizing domain is fused to the C termini of the peptides. Some peptides interacted with HSP47 at a lowered assay temperature at 24 degrees C but not at 30 degrees C, indicating the importance of conformational change of the substrate peptides. To analyze the spectrum of HSP47 substrate sequences, we performed two-hybrid screening of collagen-like peptides in designed random peptide libraries using HSP47 as a bait. In selected peptides, the enrichment ratio calculated for each amino acid residue correlated strongly with the contribution of the residue to triple-helix stability independently determined using synthetic collagen model peptides. Taken together, our results suggest that HSP47 preferentially recognizes collagenous Gly-X-Y repeats in triple-helical conformation. We also demonstrated that screening of combinatorial peptide libraries is a powerful strategy to determine conformational requirements as well as the elucidation of binding motifs in primary structure.  相似文献   

3.
Heat-shock protein 47 (HSP47) is a chaperone that facilitates the proper folding of procollagen. Our previous studies showed that the high-affinity HSP47-binding motif in the collagen triple helix is Xaa-(Thr/Pro)-Gly-Xaa-Arg-Gly. In this study, we further investigated structural requirements for the HSP47-binding motif, using synthetic triple-helical collagen-model peptides with systematic amino acid substitutions at either the Thr/Pro (=Yaa?3) or the Arg (=Yaa0) position. Results obtained from in vitro binding assays indicated that HSP47 detects the side-chain structure of Arg at the Yaa0-position, while the Yaa?3 amino acid serves as the secondary recognition site that affects affinity to HSP47.  相似文献   

4.
Prior to secretion, procollagen molecules are correctly folded to triple helices in the endoplasmic reticulum (ER). HSP47 specifically associates with procollagen in the ER during its folding and/or modification processes and is thought to function as a collagen-specific molecular chaperone (Nagata, K. (1996) Trends Biochem. Sci. 21, 23-26). However, structural requirements for substrate recognition and regulation of the binding have not yet been elucidated. Here, we show that a typical collagen model sequence, (Pro-Pro-Gly)(n), possesses sufficient structural information required for recognition by HSP47. A structure-activity relationship study using synthetic analogs of (Pro-Pro-Gly)(n) has revealed the requirements in both chain length and primary structure for the interaction. The substrate recognition of HSP47 has also been shown to be similar but distinct from that of prolyl 4-hydroxylase, an ER resident enzyme. Further, it has shown that the interaction of HSP47 with the substrate peptides is abolished by prolyl 4-hydroxylation of the second Pro residues in Pro-Pro-Gly triplets and that the fully prolyl 4-hydroxylated peptide, (Pro-Hyp-Gly)(n), does not interact with HSP47. We thus have proposed a model in which HSP47 dissociates from procollagen during the process of prolyl 4-hydroxylation in the ER.  相似文献   

5.
As a crucial molecular chaperone in collagen biosynthesis, Hsp47 interacts with the nascent form as well as the mature triple-helical form of procollagen. The location(s) of Hsp47 binding sites on the collagen molecule are, as yet, unknown. We have examined the substrate specificity of Hsp47 in vitro using well-characterized CNBr peptide fragments of type I and type II collagen along with radiolabeled, recombinant Hsp47. Interaction of these peptides with Hsp47 bound to collagen-coated microtiter wells showed several binding sites for Hsp47 along the length of the alpha1 and alpha2 chains of type I collagen and the alpha1 chain of type II collagen, with the N-terminal regions showing the strongest affinities. The latter observation was also supported by the results of a ligand-blot assay. Except for two peptides in the alpha2(I) chain, peptides that showed substantial binding to Hsp47 did so in their triple-helical and not random-coil form. Unlike earlier studies that used peptide models for collagen, the results obtained here on fragments of type I and type II collagen identify, for the first time, binding of Hsp47 to specific regions of the collagen molecule. They also point to additional structural requirements for Hsp47 binding besides the known preference for third-position Arg residues and the triple-helical conformation.  相似文献   

6.
The unique folding of procollagens in the endoplasmic reticulum is achieved with the assistance of procollagen-specific molecular chaperones. Heat-shock protein 47 (HSP47) is an endoplasmic reticulum-resident chaperone that plays an essential role in normal procollagen folding, although its molecular function has not yet been clarified. Recent advances in studies on the binding specificity of HSP47 have revealed that Arg residues at Yaa positions in collagenous Gly-Xaa-Yaa repeats are critical for its interactions (Koide, T., Takahara, Y., Asada, S., and Nagata, K. (2002) J. Biol. Chem. 277, 6178-6182; Tasab, M., Jenkinson, L., and Bulleid, N. J. (2002) J. Biol. Chem. 277, 35007-35012). In the present study, we further examined the client recognition mechanism of HSP47 by taking advantage of systems employing engineered collagen model peptides. First, in vitro binding studies using conformationally constrained collagen-like peptides revealed that HSP47 only recognized correctly folded triple helices and that the interaction with the corresponding single-chain polypeptides was negligible. Second, a binding study using heterotrimeric model clients for HSP47 demonstrated a minimal requirement for the number of Arg residues in the triple helix. Finally, a cross-linking study using photoreactive collagenous peptides provided information about the spatial orientation of an HSP47 molecule in the chaperone-collagen complex. The obtained results led to the development of a new model of HSP47-collagen complexes that differs completely from the previously proposed "flying capstan model" (Dafforn, T. R., Della, M., and Miller, A. D. (2001) J. Biol. Chem. 276, 49310-49319).  相似文献   

7.
HSP47 is a molecular chaperone that plays an unknown role during the assembly and transport of procollagen. Our previous studies showed that, unlike most chaperones, HSP47 interacts with a correctly folded substrate. We suggested that HSP47 either stabilizes the correctly folded collagen helix from heat denaturation or prevents lateral aggregation prior to its transport from the endoplasmic reticulum. In this study we have addressed the role of triple helix stability in the binding of HSP47 to procollagen by expressing procollagen molecules with differing thermal stabilities and analyzing their ability to interact with HSP47 within the endoplasmic reticulum. Our results show that HSP47 interacts with thermostable procollagen molecules, suggesting that helix stabilization is not the primary function of HSP47 and that the interaction of HSP47 with procollagen depends upon the presence of a minimum of one Gly-X-Arg triplet within the triple helical domain. Interestingly, procollagen chains containing high proportions of stabilizing triplets formed triple helices and interacted with HSP47 even in the absence of proline hydroxylation, demonstrating that recognition does not depend upon this modification. Our results support the view that HSP47 functions early in the secretory pathway by preventing the lateral aggregation of procollagen chains.  相似文献   

8.
Collagens play important roles in development and homeostasis in most higher organisms. In order to function, collagens require the specific chaperone HSP47 for proper folding and secretion. HSP47 is known to bind to the collagen triple helix, but the exact positions and numbers of binding sites are not clear. Here, we employed a collagen II peptide library to characterize high-affinity binding sites for HSP47. We show that many previously predicted binding sites have very low affinities due to the presence of a negatively charged amino acid in the binding motif. In contrast, large hydrophobic amino acids such as phenylalanine at certain positions in the collagen sequence increase binding strength. For further characterization, we determined two crystal structures of HSP47 bound to peptides containing phenylalanine or leucine. These structures deviate significantly from previously published ones in which different collagen sequences were used. They reveal local conformational rearrangements of HSP47 at the binding site to accommodate the large hydrophobic side chain from the middle strand of the collagen triple helix and, most surprisingly, possess an altered binding stoichiometry in the form of a 1:1 complex. This altered stoichiometry is explained by steric collisions with the second HSP47 molecule present in all structures determined thus far caused by the newly introduced large hydrophobic residue placed on the trailing strand. This exemplifies the importance of considering all three sites of homotrimeric collagen as independent interaction surfaces and may provide insight into the formation of higher oligomeric complexes at promiscuous collagen-binding sites.  相似文献   

9.
Dermatopontin (DPT), a small extracellular matrix protein that stimulates collagen fibrillogenesis, contains sulfotyrosine residues but neither its level of sulfation nor its binding sites on fibrillar collagens are known. Here, we discovered that DPT is present in a relatively high mass concentration (~ 0.02%) in porcine corneal stroma, from which we purified five DPT charge variants (A-E) containing up to six sulfations. The major variant (C), containing four sulfotyrosine residues, was used to locate binding sites for DPT on triple-helical collagens II and III using the Collagen Toolkits. DPT-binding loci included the triple helix crosslinking sites and collagenase cleavage site. We find that strong DPT-binding sites on triple-helical collagen comprise an arginine-rich, positively-charged sequence that also contains hydrophobic residues. This collagen-binding signature of DPT is similar to that of the chaperone HSP47. Thus, we propose that DPT assumes the role of HSP47 as a collagen chaperone during and after the secretion. Peptide II-44, harbouring the conserved collagenase cleavage site, shows the strongest DPT-binding of the Collagen Toolkit II peptides. Substituting any of the three arginine residues (R) with alanine in the sequence GLAGQRGIVGLOGQRGER of II-44 resulted in almost complete loss of DPT binding. Since osteogenesis imperfecta, spondyloepiphyseal dysplasia, and spondyloepimetaphyseal dysplasia congenita are associated with missense mutations that substitute the corresponding arginine residues in collagens alpha-1(I) and alpha-1(II), we suggest that disrupted DPT binding to fibrillar collagens may contribute to these connective tissue disorders. In conclusion, the present work provides a cornerstone for further elucidation of the role of DPT.  相似文献   

10.
Remodeling of collagen by matrix metalloproteinases (MMPs) is crucial to tissue homeostasis and repair. MMP-13 is a collagenase with a substrate preference for collagen II over collagens I and III. It recognizes a specific, well-known site in the tropocollagen molecule where its binding locally perturbs the triple helix, allowing the catalytic domain of the active enzyme to cleave the collagen α chains sequentially, at Gly775–Leu776 in collagen II. However, the specific residues upon which collagen recognition depends within and surrounding this locus have not been systematically mapped. Using our triple-helical peptide Collagen Toolkit libraries in solid-phase binding assays, we found that MMP-13 shows little affinity for Collagen Toolkit III, but binds selectively to two triple-helical peptides of Toolkit II. We have identified the residues required for the adhesion of both proMMP-13 and MMP-13 to one of these, Toolkit peptide II-44, which contains the canonical collagenase cleavage site. MMP-13 was unable to bind to a linear peptide of the same sequence as II-44. We also discovered a second binding site near the N terminus of collagen II (starting at helix residue 127) in Toolkit peptide II-8. The pattern of binding of the free hemopexin domain of MMP-13 was similar to that of the full-length enzyme, but the free catalytic subunit bound none of our peptides. The susceptibility of Toolkit peptides to proteolysis in solution was independent of the very specific recognition of immobilized peptides by MMP-13; the enzyme proved able to cleave a range of dissolved collagen peptides.  相似文献   

11.
Clostridium histolyticum type I collagenase (ColG) has a segmental structure, S1+S2+S3a+S3b. S3a and S3b bound to insoluble collagen, but S2 did not, thus indicating that S3 forms a collagen-binding domain (CBD). Because S3a+S3b showed the most efficient binding to substrate, cooperative binding by both domains was suggested for the enzyme. Monomeric (S3b) and tandem (S3a+S3b) CBDs bound to atelocollagen, which contains only the collagenous region. However, they did not bind to telopeptides immobilized on Sepharose beads. These results suggested that the binding site(s) for the CBD is(are) present in the collagenous region. The CBD bound to immobilized collagenous peptides, (Pro-Hyp-Gly)(n) and (Pro-Pro-Gly)(n), only when n is large enough to allow the peptides to have a triple-helical conformation. They did not bind to various peptides with similar amino acid sequences or to gelatin, which lacks a triple-helical conformation. The CBD did not bind to immobilized Glc-Gal disaccharide, which is attached to the side chains of hydroxylysine residues in the collagenous region. These observations suggested that the CBD specifically recognizes the triple-helical conformation made by three polypeptide chains in the collagenous region.  相似文献   

12.
Mapping of SPARC/BM-40/osteonectin-binding sites on fibrillar collagens   总被引:10,自引:0,他引:10  
The 33-kDa matrix protein SPARC (BM-40, osteonectin) binds several collagen types with moderate affinity. The collagen-binding site resides in helix alphaA of the extracellular calcium-binding domain of SPARC and is partially masked by helix alphaC. Previously, we found that the removal of helix alphaC caused a 10-fold increase in the affinity of SPARC for collagen, and we identified amino acids crucial for binding by site-directed mutagenesis. In this study, we used rotary shadowing, CNBr peptides, and synthetic peptides to map binding sites of SPARC onto collagens I, II, and III. Rotary shadowing and electron microscopy of SPARC-collagen complexes identified a major binding site approximately 180 nm from the C terminus of collagen. SPARC binding was also detected with lower frequency near the matrix metalloproteinase cleavage site. These data fit well with our analysis of SPARC binding to CNBr peptides, denaturation of which abolished binding, indicating triple-helical conformation of collagen to be essential. SPARC binding was substantially decreased in two of seven alpha2(I) mutant procollagen I samples and after N-acetylation of Lys/Hyl side chains in wild-type collagen. Synthetic peptides of collagen III were used to locate the binding sites, and we found SPARC binding activity in a synthetic triple-helical peptide containing the sequence GPOGPSGPRGQOGVMGFOGPKGNDGAO (where O indicates 4-hydroxyproline), with affinity for SPARC comparable with that of procollagen III. This sequence is conserved among alpha chains of collagens I, II, III, and V. In vitro collagen fibrillogenesis was delayed in the presence of SPARC, suggesting that SPARC might modulate collagen fibril assembly in vivo.  相似文献   

13.
Little is known about the structural consequences of the more than 20 breaks in the (Gly-X-Y)(n) repeating sequence found in the long triple helix domain of basement membrane type IV collagen. NMR triple resonance studies of doubly labeled residues within a set of collagen model peptides provide distance and dihedral angle restraints that allow determination of model structures of both a standard triple helix and of a triple helix with a break in solution. Although the standard triple helix cannot continue when Gly is not every third residue, the NMR data support rod-like molecules that have standard triple-helical structures on both sides of a well defined and highly localized perturbation. The GAAVM break region may be described as a "pseudo triple helix," because it preserves the standard one-residue stagger of the triple helix but introduces hydrophobic interactions at the position normally occupied by the much smaller and hydrogen-bonded Gly residue of the repeating (Gly-X-Y)(n) sequence. This structure provides a rationale for the consensus presence of hydrophobic residues in breaks of similar length and defines a novel variant of a triple helix that could be involved in recognition.  相似文献   

14.
The N-terminal extension peptide of type III procollagen, isolated from foetal-calf skin, contains 130 amino acid residues. To determine its amino acid sequence, the peptide was reduced and carboxymethylated or aminoethylated and fragmented with trypsin, Staphylococcus aureus V8 proteinase and bacterial collagenase. Pyroglutamate aminopeptidase was used to deblock the N-terminal collagenase fragment to enable amino acid sequencing. The type III collagen extension peptide is homologous to that of the alpha 1 chain of type I procollagen with respect to a three-domain structure. The N-terminal 79 amino acids, which contain ten of the 12 cysteine residues, form a compact globular domain. The next 39 amino acids are in a collagenase triplet sequence (Gly- Xaa - Yaa )n with a high hydroxyproline content. Finally, another short non-collagenous domain of 12 amino acids ends at the cleavage site for procollagen aminopeptidase, which cleaves a proline-glutamine bond. In contrast with type I procollagen, the type III procollagen extension peptides contain interchain disulphide bridges located at the C-terminus of the triple-helical domain.  相似文献   

15.
Protein tyrosine phosphatase 1B (PTP1B) displays a preference for peptides containing acidic as well as aromatic/aliphatic residues immediately NH(2)-terminal to phosphotyrosine. The structure of PTP1B bound with DADEpYL-NH(2) (EGFR(988)(-)(993)) offers a structural explanation for PTP1B's preference for acidic residues [Jia, Z., Barford, D., Flint, A. J., and Tonks, N. K. (1995) Science 268, 1754-1758]. We report here the crystal structures of PTP1B in complex with Ac-ELEFpYMDYE-NH(2) (PTP1B.Con) and Ac-DAD(Bpa)pYLIPQQG (PTP1B.Bpa) determined to 1.8 and 1.9 A resolution, respectively. A structural analysis of PTP1B.Con and PTP1B.Bpa shows how aromatic/aliphatic residues at the -1 and -3 positions of peptide substrates are accommodated by PTP1B. A comparison of the structures of PTP1B.Con and PTP1B.Bpa with that of PTP1B.EGFR(988)(-)(993) reveals the structural basis for the plasticity of PTP1B substrate recognition. PTP1B is able to bind phosphopeptides by utilizing common interactions involving the aromatic ring and phosphate moiety of phosphotyrosine itself, two conserved hydrogen bonds between the Asp48 carboxylate side chain and the main chain nitrogens of the pTyr and residue 1, and a third between the main chain nitrogen of Arg47 and the main chain carbonyl of residue -2. The ability of PTP1B to accommodate both acidic and hydrophobic residues immediately NH(2)-terminal to pTyr appears to be conferred upon PTP1B by a single residue, Arg47. Depending on the nature of the NH(2)-terminal amino acids, the side chain of Arg47 can adopt one of two different conformations, generating two sets of distinct peptide binding surfaces. When an acidic residue is positioned at position -1, a preference for a second acidic residue is also observed at position -2. However, when a large hydrophobic group occupies position -1, Arg47 adopts a new conformation so that it can participate in hydrophobic interactions with both positions -1 and -3.  相似文献   

16.
Peptides have been an integral part of the collagen triple-helix structure story, and have continued to serve as useful models for biophysical studies and for establishing biologically important sequence-structure-function relationships. High resolution structures of triple-helical peptides have confirmed the basic Ramachandran triple-helix model and provided new insights into the hydration, hydrogen bonding, and sequence dependent helical parameters in collagen. The dependence of collagen triple-helix stability on the residues in its (Gly-X-Y)(n) repeating sequence has been investigated by measuring melting temperatures of host-guest peptides and an on-line collagen stability calculator is now available. Although the presence of Gly as every third residue is essential for an undistorted structure, interruptions in the repeating (Gly-X-Y)(n) amino acid sequence pattern are found in the triple-helical domains of all nonfibrillar collagens, and are likely to play a role in collagen binding and degradation. Peptide models indicate that small interruptions can be incorporated into a rod-like triple-helix with a highly localized effect, which perturbs hydrogen bonds and places the standard triple-helices on both ends out of register. In contrast to natural interruptions, missense mutations which replace one Gly in a triple-helix domain by a larger residue have pathological consequences, and studies on peptides containing such Gly substitutions clarify their effect on conformation, stability, and folding. Recent studies suggest peptides may also be useful in defining the basic principles of collagen self-association to the supramolecular structures found in tissues.  相似文献   

17.
SH3 domains mediate intracellular protein-protein interactions through the recognition of proline-rich sequence motifs on cellular proteins. Structural analysis of the Src SH3 domain (Src SH3) complexed with proline-rich peptide ligands revealed three binding sites involved in this interaction: two hydrophobic interactions (between aliphatic proline dipeptides in the SH3 ligand and highly conserved aromatic residues on the surface of the SH3 domain), and one salt bridge (between Asp-99 of Src and an Arg three residues upstream of the conserved Pro-X-X-Pro motif in the ligand). We examined the importance of the arginine binding site of SH3 domains by comparing the binding properties of wild-type Src SH3 and Abl SH3 with those of a Src SH3 mutant containing a mutated arginine binding site (D99N) and Abl SH3 mutant constructs engineered to contain an arginine binding site (T98D and T98D/F91Y). We found that the D99N mutation diminished binding to most Src SH3-binding proteins in whole cell extracts; however, there was only a moderate reduction in binding to a small subset of Src SH3-binding proteins (including the Src substrate p68). p68 was shown to contain two Arg-containing Asp-99-dependent binding sites and one Asp-99-independent binding site which lacks an Arg. Moreover, substitution of Asp for Thr-98 in Abl SH3 changed the binding specificity of this domain and conferred the ability to recognize Arg-containing ligands. These results indicate that Asp-99 is important for Src SH3 binding specificity and that Asp-99-dependent binding interactions play a dominant role in Src SH3 recognition of cellular binding proteins, and they suggest the existence of two Src SH3 binding mechanisms, one requiring Asp-99 and the other independent of this residue.  相似文献   

18.
The M.EcoRV DNA methyltransferase recognizes GATATC sites. It is related to EcoDam, which methylates GATC sites. The DNA binding domain of M.EcoRV is similar to that of EcoDam suggesting a similar mechanism of DNA recognition. We show that amino acid residue Lys11 of M.EcoRV is involved in recognition of Gua1 and Arg128 contacts the Gua in base pair 6. These residues correspond to Lys9 and Arg124 in EcoDam, which recognize the Gua residues in both strands of the Dam recognition sequence, indicating that M.EcoRV and EcoDam make similar contacts to outermost base pairs of their recognition sequences and M.EcoRV recognizes its target site as an expanded GATC site. In contrast to EcoDam, M.EcoRV considerably bends the DNA (59+/-4 degrees) suggesting indirect readout of the AT-rich inner sequence. Recognition of an expanded target site by DNA bending is a new principle for changing DNA recognition specificity of proteins during molecular evolution. R128A is inefficient in DNA bending and binding, whereas K11A bends DNA with relaxed sequence specificity. These results suggest a temporal order of the formation of protein-DNA contacts in which the Gua6-Arg128 contact forms early followed by DNA bending and, finally, the formation of the Lys11-Gua1 contact.  相似文献   

19.
Abstract

S100A4 is a multiple-function protein highly expressed in tumor or stem cells. We found S100A4 was a novel protein partner for heat shock protein 47 (HSP47) in deer antlerogenic periosteum cells (AP cells), indicating that S100A4 could bind with HSP47. S100A4 had both calcium-dependent and calcium-independent patterns (labeled as SCd and SCi, respectively) to execute different biological activities. Homology models of HSP47, SCd and SCi were constructed. HSP47:collagen model, HSP47:collagen I-V, HSP47:SCd and HSP47:SCi complexes were built using ZDOCK software. Together with free SCd and SCi, 200?ns molecular dynamic (MD) simulations were performed to analyze binding free energies and SCi/SCd conformational changes. The energetic results showed that SCi had the strongest affinity to HSP47, and followed by collagens. SCd had little interaction with HSP47. Decomposition energy results showed that collagen model interacted with HSP47 mainly though neutral amino acids. When SCi bound with HSP47, the majority of mediated amino acids were charged. These results indicated that SCi could compete with collagen on the binding site of HSP47. Root mean square fluctuation (RMSF) values and cross-correlation matrices of principal component analysis (PCA) were calculated to evaluate the SCi/SCd structural variation during MD simulation. Both HSP47 and Ca2+ could stabilize the conformation of SCi/SCd. The loops interacting with Ca2+s and linking the two EF-hand motifs were impacted particularly. The relative moving directions of α-helices in EF-hands were distinct by the binding effect of HSP47 and Ca2+. We found that SCi may regulate the differentiation of AP cells by disturbing the interaction between HSP47 and collagen.

Communicated by Ramaswamy H. Sarma  相似文献   

20.
The triple helix is a specialized protein motif, found in all collagens as well as in noncollagenous proteins involved in host defense. Peptides will adopt a triple-helical conformation if the sequence contains its characteristic features of Gly as every third residue and a high content of Pro and Hyp residues. Such model peptides have proved amenable to structural studies by x-ray crystallography and NMR spectroscopy, suitable for thermodynamic and kinetic analysis, and a valuable tool in characterizing the binding activities of the collagen triple helix. A systematic approach to understanding the amino acid sequence dependence of the collagen triple helix has been initiated, based on a set of host-guest peptides of the form, (Gly-Pro-Hyp)(3)-Gly-X-Y-(Gly-Pro-Hyp)(4). Comparison of their thermal stabilities has led to a propensity scale for the X and Y positions, and the additivity of contributions of individual residues is now under investigation. The local and global stability of the collagen triple helix is normally modulated by the residues in the X and Y positions, with every third position occupied by Gly in fibril-forming collagens. However, in collagen diseases, such as osteogenesis imperfecta, a single Gly may be substituted by another residue. Host-guest studies where the Gly is replaced by various amino acids suggest that the identity of the residue in the Gly position affects the degree of destabilization and the clinical severity of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号