首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The superoxide (O2-)-forming NADPH oxidase of resting macrophages can be activated in a cell-free system by certain anionic amphiphiles, such as sodium dodecyl sulfate (SDS). O2- production requires the cooperation of membrane-associated and cytosolic components. The membrane component can be solubilized by octyl glucoside yielding a highly active oxidase preparation. High performance gel filtration of the solubilized oxidase on Superose 12 in the presence of 40 mM octyl glucoside leads to the total loss of enzymatic activity. This can be restored in previously inactive eluate fractions by "reconstitution" with N-ethylmaleimide or heat (60 degrees C)-inactivated total solubilized membrane. Oxidase activity, that becomes evident upon reconstitution, is eluted from Superose 12 with molecules in the Mr range of 300,000-71,000. The material with reconstitutive capacity is completely dissociated from the oxidase, eluting with molecules in the Mr range of 71,000-11,000. The Superose 12 elution profile of the material responsible for reconstitution coincides with that of membrane-derived phospholipid. Also, the reconstitutive capacity of total solubilized membrane and that of the Mr 71,000-11,000 region of the Superose eluate are recovered in a chloroform extract prepared by the method of Bligh and Dyer. It is concluded that loss of oxidase activity by gel filtration at a high octyl glucoside concentration is the consequence of delipidation. NADPH oxidase activity, revealed by reconstitution of Superose 12 fractions with exogenous phospholipid, correlates closely with the elution profile of cytochrome b559. Reconstitution of activity of delipidated oxidase can also be achieved with natural non-macrophage phospholipids and with synthetic phospholipids. Reconstitution of NADPH oxidase activity by lipids is governed by the following rules: (a) phospholipids are effective; lysophospholipids and neutral lipids are not; (b) phospholipids with polar heads represented by choline, ethanolamine, and serine, as well as cardiolipin, are effective; phosphatidylinositol is much less active; (c) phospholipids with unsaturated fatty acid residues are capable of reconstitution while saturated acyl residues do not confer activity; this specificity appears not to be related to the transition temperature of the phospholipids.  相似文献   

2.
Sodium dodecyl sulfate (SDS) was shown to elicit NADPH-dependent superoxide (O2-) production by a cell-free system derived from sonically disrupted resting guinea pig macrophages (Bromberg, Y., and Pick, E. (1985) J. Biol. Chem. 260, 13539-13545). O2- production was absolutely dependent on the cooperation between a membrane-associated component, sedimenting with the 48,000 X g pellet and a cytosolic factor, nonsedimentable at 265,000 X g. The present report describes the solubilization and characterization of the membrane-associated component of the SDS-activable O2(-)-forming NADPH oxidase (operationally termed pi). Treatment of the 48,000 X g pellet with 30 mM octyl glucoside resulted in complete transfer of pi to the soluble fraction. The solubilized pellet produced an average of 0.92 mumol of O2-/mg of protein/min upon reduction of octyl glucoside content below the critical micellar concentration and in the presence of cytosol, 100 microM SDS, and 0.2 mM NADPH. The activity of solubilized pellet-cytosol combinations was also expressed as NADPH-dependent, azide-resistant oxygen consumption and hydrogen peroxide production. pi was inactivated by the sulfhydryl reagent p-chloromercuribenzoate. Solubilized pellet contained spectroscopically detectable cytochrome b559 (225.6 +/- 15.0 pmol/mg mg protein). Both pi and cytochrome b559 were bound by Cibacron Blue Sepharose and could be eluted by a gradient of octyl glucoside (0-30 mM) in the presence of 1 M KCl. On high performance gel filtration on Superose 12, both pi and cytochrome b559 eluted in the excluded volume; when 25 mM octyl glucoside was present in the elution buffer, pi was partially dissociated from cytochrome b559. Sequential purification of pi on Blue Sepharose followed by gel filtration on Superose 12 in the presence of 25 mM octyl glucoside lead to complete resolution of pi from cytochrome b559 (pi was found in the Mr = 28,000 - 11,000 range while the bulk of cytochrome b559 eluted in the Mr = 113,000 - 71,000 range). We propose that pi is distinct from cytochrome b559 and represents a membrane-associated component in an amphiphile-activated electron transport chain from NADPH to oxygen.  相似文献   

3.
Cytochrome b558 of pig blood neutrophils was purified from the membranes of resting cells to examine its ability to reconstitute superoxide (O2-)-forming NADPH oxidase activity in a cell-free assay system containing cytosol and fatty acid. The membrane-associated cytochrome b558 was solubilized with a detergent, n-heptyl beta-thioglucoside, and purified by DEAE-Sepharose, heparin-Sepharose, and Mono Q column chromatography. The final preparation of cytochrome containing 11.5 nmol of protoheme/mg of protein gave bands of the large and small subunits on immunoblotted gel. The cell-free system with the purified cytochrome alone as a membrane component showed little O2(-)-generating activity in the absence of exogenous FAD. However, the system showed high O2(-)-generating activity of 31.8 mol/s/mol of cytochrome b558 (52.5% of the original O2(-)-generating activity of the solubilized membranes) in the presence of a nitro blue tetrazolium (NBT) reductase fraction that was separated from the cytochrome b fraction by heparin-Sepharose chromatography. Heat treatment of the NBT reductase fraction resulted in loss of the O2(-)-generating activity in the reconstituted system. The O2(-)-forming activity of the reconstituted system was markedly decreased by removal of FAD from the NBT reductase fraction and was restored by readdition of FAD to the FAD-depleted reductase. The reconstituted system containing purified cytochrome b558 plus the NBT reductase showed approximately 100 times higher O2(-)-generating activity than a system containing rabbit liver NADPH-cytochrome P-450 reductase instead. These results suggest that both the FAD-dependent NBT reductase and cytochrome b558 are required as membrane redox components for O2(-)-forming NADPH oxidase activity. The present data are discussed in comparison with previously reported results on reconstituted systems containing added free FAD.  相似文献   

4.
Diphenylene iodonium (Ph2I), a lipophilic reagent, is an efficient inhibitor of the production of O2- by the activated NADPH oxidase of bovine neutrophils. In a cell-free system of NADPH oxidase activation consisting of neutrophil membranes and cytosol from resting cells, supplemented with guanosine 5'-[gamma-thio]triphosphate, MgCl2 and arachidonic acid, or in membranes isolated from neutrophils activated by 4 beta-phorbol 12-myristate 13-acetate, addition of a reducing agent, e.g. NADPH or sodium dithionite, markedly enhanced inhibition of the NADPH oxidase by Ph2I. The membrane fraction was found to contain the Ph2I-sensitive component(s). In the presence of a concentration of Ph2I sufficient to fully inhibit O2- production (around 10 nmol/mg membrane protein), addition of catalytic amounts of the redox mediator dichloroindophenol (Cl2Ind) resulted in a by-pass of the electron flow to cytochrome c, the rate of which was about half of that determined in non-inhibited oxidase. A marked increase in the efficiency of this by-pass was achieved by addition of sodium deoxycholate. The Cl2-Ind-mediated cytochrome c reduction was negligible in membranes isolated from resting neutrophils. At a higher concentration of Ph2I (100 nmol/mg membrane protein), the Cl2Ind-mediated cytochrome c reductase activity was only half inhibited, which indicated that, in the NADPH oxidase complex, there are at least two Ph2I sensitive components, differing by their sensitivity to the inhibitor. At low concentrations of Ph2I (less than 10 nmol/mg protein), the spectrum of reduced cytochrome b558 in isolated neutrophil membranes was modified, suggesting that the component sensitive to low concentrations of Ph2I is the heme binding component of cytochrome b558. Higher concentrations of Ph2I were found to inhibit the isolated NADPH dehydrogenase component of the oxidase complex. A number of membrane and cytosolic proteins were labeled by [125I]Ph2I. However, the radiolabeling of a membrane-bound 24-kDa protein, which might be the small subunit of cytochrome b558, responded more specifically to the conditions of activation and reduction which are required for inhibition of O2- production by Ph2I. The O2(-)-generating form of xanthine oxidase was also inhibited by Ph2I. Inhibition of xanthine oxidase, a non-heme iron flavoprotein, by Ph2I had a number of features in common with that of the neutrophil NADPH oxidase, namely the requirement of reducing conditions for inhibition of O2- production by Ph2I and the induction of a by-pass of electron flow to cytochrome c by Cl2Ind in the inhibited enzyme, suggesting some similarity in the molecular organization of the two enzymes.  相似文献   

5.
Cytochrome b558 is the only membrane component of the phagocyte O2(-)-producing NADPH oxidase. The O2- production by the oxidase reconstituted in vitro with the crude membrane fraction is enhanced several-fold by addition of FAD, whereas that with the partially purified cytochrome is completely dependent on exogenous FAD, suggesting that FAD acts through the membrane component, cytochrome b558. The alignments of the amino acid sequence of the large subunit of the cytochrome (gp91-phox) with those of previously characterized flavoproteins reveal that the middle and C-terminal portions of gp91-phox are likely to be FAD- and NADPH-binding domains, respectively. Cytochrome b558, thus, appears to be a flavoprotein with an NADPH-binding site, of the NADPH oxidase.  相似文献   

6.
The superoxide (O2-) forming NADPH oxidase complex of resting phagocytes can be activated in a cell-free system by certain anionic amphiphiles, such as sodium dodecyl sulfate (SDS). For O2- production to occur, the participation of both membrane-associated and cytosol-derived components is required. The purpose of this investigation was to isolate and characterize the membrane component of NADPH oxidase. For this purpose, guinea pig macrophage membranes were extracted with 1 M NaCl, solubilized by 40 mM octyl glucoside, and subjected to a purification sequence consisting of absorption with DEAE-Sepharose, affinity chromatography on heparin-agarose, and chromatography on hydroxylapatite. At each purification step, fractions were assayed for their ability to support SDS-elicited, cytosol-dependent O2- production, following incorporation in liposomes of phosphatidylcholine. We found that membrane oxidase activity copurified strictly with cytochrome b559. Peak hydroxylapatite fractions exhibited specific O2(-)-forming activity in the range of 81-115 mumol of O2-/mg protein/min and a specific cytochrome b559 content of 7-14 nmol of cytochrome b559/mg protein. SDS-polyacrylamide gel electrophoresis analysis of the peak oxidase activity fractions, derived by hydroxylapatite chromatography, revealed essentially two bands that were identified as the beta (54-60 kDa) and alpha (21/22 kDa) subunits of guinea pig cytochrome b559. The relation of the two polypeptides to cytochrome b559 was established by correlation with a spectral signal characteristic of cytochrome b559, immunoblotting with antibodies against defined human cytochrome b559 beta and alpha chain peptides, cross-linking studies, and deglycosylation experiments. Hydroxylapatite-purified membrane oxidase preparations did not contain FAD and were free of cytochrome c reductase activity. Purified membrane oxidase preparations were also capable of cooperating with purified cytosolic components in SDS-elicited cell-free O2- production. We conclude that the membrane-associated component of the O2- generating NADPH oxidase is identical to cytochrome b559.  相似文献   

7.
Bacterial type III secretion system drives the translocation of virulence factors into the cystosol of host target cells. In phagocytes and in Epstein-Barr virus immortalized B lymphocytes, NADPH oxidase generates O(-2) through an electron transfer chain the activity of which depends on the assembly of three, p67(phox), p47(phox) and p40(phox) cytosolic activating factors with Rac 1/2 and a membrane redox component, cytochrome b(558). In p67(phox) deficient chronic granulomatous disease (CGD) patients, p67-phox is missing and NADPH oxidase activity is abolished. ExoS is a virulence factor of Pseudomonas aeruginosa which is secreted via the type III secretion system: it was fused with p67(phox). Pseudomonas aeruginosa synthesized and translocated the hybrid ExoS-p67(phox) fusion protein into the cytosol of B lymphocytes via the type III secretion system. Purified ExoS-p67(phox) hybrid protein was as efficient as normal recombinant p67(phox) in cell-free reconstitution of NADPH oxidase activity. Therefore, ExoS-p67(phox) was transferred via the type III secretion system of Pseudomonas aeruginosa into the cytosol of B lymphocytes from a p67(phox)-deficient CGD patient and functionally reconstituted NADPH oxidase activity. In the complementation process, ExoS acted as a molecular courier for protein delivery: the reconstitution of an active NADPH oxidase complex suggests type III secretion system to be a new approach for cellular therapy.  相似文献   

8.
Pig blood neutrophils were briefly activated by various fatty acids and then fractionated into membrane vesicles with different NADPH oxidase activities. Treatment of these membranes with a detergent, octyl glucoside, resulted in a high yield of solubilized oxidase, which was subjected to isoelectric focusing on gels (pI 4.0-8.0). 1) A distinct band staining with NADPH-nitroblue tetrazolium focused at pI 5.0. The enzyme (pI 5.0) showed high specificity for NADPH and similar characteristics to the oxidase involved in the respiratory burst. 2) The enzyme was extracted from gel slices and analyzed. When measured promptly after its extraction, its NADPH oxidase activity was high, but there was apparent superoxide dismutase-insensitive cytochrome c reduction, probably due to direct electron transfer to the heme protein. However, it could produce superoxide anion (O2-) under some micelle conditions. 3) Therefore, the formation of the enzyme-substrate complex of yeast cytochrome c peroxidase was employed for the detection of H2O2. A fresh extract of stimulated cells catalyzed equimolar NADPH oxidation and H2O2 production of 306 and 300 nmol min-1 (mg protein)-1, respectively. The Km value of the enzyme for NADPH was 30 +/- 13 (S.D.) microM. The recovery of the extract (pI 5.0) was 19% of the total activity. 4) The enzyme extract contained 1.1-1.9 nmol of FAD/mg of protein, giving a turnover number of 300-600 min-1 in terms of O2- generation/FAD. No heme protein was found in the enzyme. The enzyme was mainly of 67-kDa molecular mass.  相似文献   

9.
Phagocytic leukocytes contain an activatable NADPH:O2 oxidoreductase. Components of this enzyme system include cytochrome b558, and three soluble oxidase components (SOC I, SOC II, and SOC III) found in the cytosol of resting cells. Previously, we found that SOC II copurifies with, and is probably identical to, a 47-kDa substrate of protein kinase C. In the present study we investigated the change in location of several of these oxidase components after activation of intact neutrophils with phorbol myristate acetate (PMA) and separation of subcellular fraction on sucrose density gradients. On Western blots with fractions of resting cells, the alpha subunit of cytochrome b558 was detected with a monoclonal antibody as a doublet of Mr 22,000 and 24,000 in the specific granules and as a single band of Mr 24,000 in the plasma membrane. PMA induced an increase of cytochrome b558 in the plasma membrane, including the Mr 22,000 band. PMA also induced translocation of the 47-kDa protein from the cytosol to the membrane fraction, as revealed by in vitro phosphorylation experiments. When NADPH oxidase activity was determined in a cell-free system in the presence of sodium dodecyl sulfate and GTP with plasma membranes from resting cells, cytosol from PMA-treated cells was deficient compared with cytosol from resting cells. This deficiency could be partially restored by the addition of SOC I. Concomitantly, SOC I activity appeared in the plasma membranes of PMA-treated cells. These studies support the hypothesis that PMA stimulation of neutrophils results in assembly of oxidase components from the cytosol and the specific granules in the plasma membrane with subsequent expression of NADPH oxidase activity.  相似文献   

10.
The superoxide-generating enzyme of human neutrophils, NADPH oxidase, is converted from an inactive to an active form upon stimulation of the neutrophil. This activation process was examined using a recently developed cell-free system in which dormant oxidase is activated by arachidonic acid in the presence of a soluble factor from the neutrophil (Curnutte, J. T. (1985) J. Clin. Invest. 75, 1740-1743). NADPH oxidase from unstimulated human neutrophils was detected only in the membrane fraction. The soluble activation factor was localized entirely to the cytosolic fraction and exhibited two peaks of activity when partially purified under nondenaturing conditions: a major peak with a molecular mass of approximately 250 kDa and a variable minor peak with a mass of approximately 40 kDa. Both forms activated NADPH oxidase in a similar manner and did not exhibit synergy when combined. The cytosolic factor is not protein kinase C (or another kinase) as both peaks of factor activity could be resolved from the protein kinase C peak and neither required calcium or ATP to activate the oxidase. Activation of NADPH oxidase did require the simultaneous presence of the membrane fraction, the cytosolic factor, arachidonic acid, and magnesium. Following activation, however, only the membrane fraction was then required for O2- production. Cytosolic factor levels were normal in five patients with either X-linked or autosomal recessive cytochrome b-negative chronic granulomatous disease. In contrast, the membrane fractions from each failed to generate O2-, indicating that the defects in these two genetic forms of chronic granulomatous disease reside either in the oxidase itself or in a membrane component required for activation.  相似文献   

11.
It is known that in respiratory burst oxidase preparations engaged in O2- production, cytochrome b558, a characteristic oxidase component, is partly reduced. This result has been interpreted in terms of a mechanism in which cytochrome b558 functions as an electron-carrying component of the respiratory burst oxidase, its level of reduction reflecting a steady-state partitioning of the cytochrome between reduced and oxidized forms as it ferries electrons from NADPH to oxygen. Kinetic arguments based on this interpretation have supported the proposal that the cytochrome is reduced at a rate sufficient to account for the rate of O2- production by activated neutrophils. We have confirmed the partial reduction of cytochrome b558 in neutrophil cytoplasts and in oxidase preparations exposed to NADPH, but have found that the reduction of the cytochrome bears no apparent relation to the activity of the oxidase, and can occur when NADPH is added to neutrophil membrane preparations that are unable to manufacture O2-. We therefore conclude that the NADPH-dependent reduction of cytochrome b558 seen in these preparations is unlikely to be a reflection of a catalysis-related steady state and that inferences drawn from such observations regarding the kinetic competence of the cytochrome may need to be reconsidered.  相似文献   

12.
Activation of the phagocyte NADPH oxidase requires participation of membrane-bound cytochrome b558 and cytosol proteins of 47 kDa (p47) and 67 kDa (p67). We examined the sequence of participation of p47 and p67 in activation of the oxidase using an arachidonate-activated cell-free superoxidase (O2-) generating assay requiring phagocyte membrane and cytosol. Neutrophil cytosol from patients with certain forms of autosomal recessive chronic granulomatous disease (CGD) lack either p47 or p67. Initial incubation of membrane and arachidonate with CGD cytosol deficient in either p47 or p67 fails to generate superoxide in the cell-free assay until addition of complementary cytosol. CGD cytosol was incubated with arachidonate and membrane for 5-15 min and the lag time of O2- generation was measured after addition of complementary CGD cytosol. The lag time is shortened when p47, but not p67, is present in the initial incubation. We have previously shown that the peptide, RGVHFIF, corresponding to a cytoplasmic carboxyl-terminal domain of the large subunit of cytochrome b558, inhibits activation of NADPH oxidase in the cell-free assay, but does not affect the enzyme activity of fully assembled oxidase. Experiments with sequential addition of complementary CGD cytosols were performed as above, except that RGVHFIF was added after the initial incubation. The peptide failed to inhibit when added after initial incubation if p47 was present during that incubation. In contrast, the peptide markedly inhibited oxidase activity if p47 was absent during the initial incubation. These results suggest that p47, but not p67, is a participant with membrane and/or other cytosol components in early arachidonate-dependent reactions. In the absence of p67, these reactions culminate in the irreversible formation of a metastable activation intermediate that is insensitive to inhibition by RGVHFIF. After addition of p67, this activation intermediate subsequently reacts to form the active NADPH oxidase.  相似文献   

13.
The assignment of cytochrome b-558 as a component of the O2- (H2O2) -generating enzyme in guinea-pig alveolar macrophages was investigated. Guinea pig alveolar macrophages contained 76 pmol cytochrome b-558/mg protein, a value very similar to that of neutrophils. The rate of myristic acid-stimulated O2- generation by alveolar macrophages, calculated per cytochrome b-558, was only one-fourth that of neutrophils. An analysis of Percoll density gradient centrifugation profiles showed that the H2O2-generating activity of myristic acid-activated alveolar macrophages was concentrated in a single peak which was consistently associated with 5'-nucleotidase activity, a plasma membrane marker enzyme. A little H2O2-generating activity was seen with unactivated alveolar macrophages. Furthermore, the cytochrome b-558 of both myristic acid-activated and unactivated alveolar macrophages was also predominantly associated with 5'-nucleotidase activity and was found in trace amounts in a peak containing lysozyme activity, a marker of lysosome granules. Only about 6% of the cytochrome b-558 in plasma membranes from myristic acid-activated guinea-pig alveolar macrophages was anaerobically reduced by 0.5 mM NADPH, while under the same conditions about 30% of the heme protein of myristic acid-activated neutrophils was reduced. These results suggest two conclusions: firstly, that in both activated and unactivated alveolar macrophages, cytochrome b-558 is located in the plasma membrane, and the translocation of cytochrome b-558 does not occur during the activation of NADPH oxidase; and secondly, that a smaller part of cytochrome b-558 is associated with the activated NADPH oxidase of guinea pig alveolar macrophages compared with neutrophils.  相似文献   

14.
To examine the role of divalent cations in the generation of superoxide anion (O2-) by the NADPH oxidase system of phagocytic cells, membrane-rich fractions were prepared from human neutrophils and monocytes. O2- generation by the fractions in sucrose was enhanced by addition of Ca2+ or Mg2+. EDTA inhibited most of the O2- generation; Ca2+ or Mg2+ reversed the inhibition. Zn2+, Mn2+, or Cu2+ completely inhibited O2- production. Neutrophil membrane fraction solubilized with Triton X-100, then passed through a chelating column, lost 80% of its oxidase activity; the loss could be reversed by addition of Ca2+ or Mg2+. Addition of 0.3 mM Ca2+ or Mg2+ protected against thermal instability of the enzyme. Kinetic analysis of the neutrophil oxidase activity as a function of NADPH and Ca2+ or Mg2+ concentrations showed that cation did not interact with NADPH in solution or affect the binding of NADPH to the oxidase; rather, cation bound directly to the oxidase, or to some associated regulatory component, to activate the enzyme. For the neutrophil oxidase, the Km for NADPH was 51 +/- 6 (S.D.) microM. Hyperbolic saturation was observed with Ca2+ and Mg2+, and the Kd values were 1.9 +/- 0.3 and 2.9 +/- 0.3 microM, respectively, suggesting that the oxidase, or some associated component, has a relatively high-affinity binding site for Ca2+ and Mg2+.  相似文献   

15.
Chronic granulomatous disease (CGD) is due to a functional defect of the O2- generating NADPH oxidase of phagocytes. Epstein-Barr-virus-immortalized B lymphocytes express all the constituents of oxidase with activity 100 times less than that of neutrophils. As in neutrophils, oxidase activity of Epstein-Barr-virus-immortalized B lymphocytes was shown to be defective in the different forms of CGD; these cells were used as a model for the complementation studies of two p67-phox-deficient CGD patients. Reconstitution of oxidase activity was performed in vitro by using a heterologous cell-free assay consisting of membrane-suspended or solubilized and purified cytochrome b558 that was associated with cytosol or with the isolated cytosolic-activating factors (p67-phox, p47-phox, p40-phox) from healthy or CGD patients. In p67-phox-deficient CGD patients, two cytosolic factors are deficient or missing: p67-phox and p40-phox. Not more than 20% of oxidase activity was recovered by complementing the cytosol of p67-phox-deficient patients with recombinant p67-phox. On the contrary, a complete restoration of oxidase activity was observed when, instead of cytosol, the cytosolic factors were added in the cell-free assay after isolation in combination with cytochrome b558 purified from neutrophil membrane. Moreover, the simultaneous addition of recombinant p67-phox and recombinant p40-phox reversed the previous complementation in a p40-phox dose-dependent process. These results suggest that in the reconstitution of oxidase activity, p67-phox is the limiting factor; the efficiency of complementation depends on the membrane tissue and the cytosolic environment. In vitro, the transition from the resting to the activated state of oxidase, which results from assembling, requires the dissociation of p40-phox from p67-phox for efficient oxidase activity. In the process, p40-phox could function as a negative regulatory factor and stabilize the resting state.  相似文献   

16.
Paclet MH  Coleman AW  Vergnaud S  Morel F 《Biochemistry》2000,39(31):9302-9310
NADPH oxidase activity depends on the assembly of the cytosolic activating factors, p67-phox, p47-phox, p40-phox, and Rac with cytochrome b(558). The transition from an inactive to an active oxidase complex induces the transfer of electrons from NADPH to oxygen through cytochrome b(558). The assembly of oxidase complex was studied in vitro after reconstitution in a heterologous cell-free assay by using true noncontact mode atomic force microscopy. Cytochrome b(558) was purified from neutrophils and Epstein-Barr virus-immortalized B lymphocytes and incorporated into liposomes. The effect of protein glycosylation on liposome size and oxidase activity was investigated. The liposomes containing the native hemoprotein purified from neutrophils had a diameter of 146 nm, whereas after deglycosylation, the diameter was reduced to 68 nm, although oxidase activity was similar in both cases. Native cytochrome b(558) was used after purification in reconstitution experiments to investigate the topography of NADPH oxidase once it was assembled. For the first time, atomic force microscopy illustrated conformational changes of cytochrome b(558) during the transition from the inactive to the active state of oxidase; height measurements allow the determination of a size of 4 nm for the assembled complex. In the processes that were studied, p67-phox displayed a critical function; it was shown to be involved in both assembly and activation of oxidase complex while p47-phox proceeded as a positive effector and increased the affinity of p67-phox with cytochrome b(558), and p40-phox stabilizes the resting state. The results suggest that although an oligomeric structure of oxidase machinery has not been demonstrated, allosteric regulation mechanisms may be proposed.  相似文献   

17.
A subcellular particulate fraction containing the NADPH-dependent O2.--generating oxidase from stimulated human neutrophils was prepared. This fraction was depleted of certain enzyme markers of primary and secondary granules and was devoid of measurable myeloperoxidase, both enzymatically and spectrally. When prepared from neutrophils which had been previously stimulated with phorbal myristate acetate, this fraction contained cyanide-insensitive, pyridine nucleotide-dependent O2.--generating activity with a specific activity of 260 nmol min-1 mg-1. O2.--generating activity is completely ablated by p-chloromercuribenzoate exposure. Preparations from normal unstimulated neutrophils or stimulated neutrophils from a male patient with chronic granulomatous disease had negligible amounts of this O2.--generating enzymatic activity. The dominant chromophore in this preparation was a b-type cytochrome, the spectral and functional characteristics of which are further described herein. Pyridine nucleotide-dependent reduction of the intrinsic cytochrome b closely parallels O2.- generation in this preparation. Specifically, reduction occurs in preparations from phorbal myristate acetate-stimulated neutrophils and is absent in unstimulated or stimulated p-chloromercuribenzoate-inactivated preparations.  相似文献   

18.
Human normal and transformed (Caco-2) colon tissues as well as guinea pig gastric mucosal cells express Nox1, which is a homolog of the phagocyte NADPH oxidase subunit, gp91(phox) of membrane-bound cytochrome b(558). It was reported that Nox1-transfection to NIH 3T3 cells could provide O(2)(-)-generating ability, independently of regulatory cytosolic factors (Rac2, p67(phox), and p47(phox)) that are obligatory in the phagocyte oxidase system. Here, we detected and sequenced a p67(phox) homolog in Caco-2 almost identical to the neutrophil sequence, except for three nucleotide substitutions, two of which changed lysines 181 and 328 to arginines. Investigation of its ability to support O(2)(-)-generation in cell-free reconstitution experiments combining with neutrophil cytochrome b(558) showed O(2)(-)-generation, provided that recombinant p47(phox) was added. This result demonstrates that the intrinsic p67(phox) homolog of Caco-2 was able to function as a phagocyte p67(phox) for cytochrome b(558). The requirement of p47(phox) addition suggested that this component was absent in Caco-2 cells. Caco-2 membranes, used as a source of Nox1 in place of cytochrome b(558), did not show significant O(2)(-)-generation, which was mainly explained by their very little Nox1 expression.  相似文献   

19.
NADPH oxidase activity in a membrane fraction prepared from phorbol 12-myristate 13-acetate (PMA)-stimulated guinea pig polymorphonuclear leukocytes (PMNL) was inhibited by positively charged myristylamine. The inhibitory effect of myristylamine was significantly suppressed by simultaneous addition of a negatively charged fatty acid, such as myristic acid. However, the suppression by myristylamine was not sufficiently restored when myristic acid was added later. On the other hand, pretreatment of PMA-stimulated PMNL with glutaraldehyde, a protein crosslinking reagent, stabilized NADPH oxidase activity against inhibition by myristylamine, but not against that by p-chloromercuribenzenesulfonic acid. In a cell-free system of reconstituted plasma membrane and cytosolic fractions prepared from unstimulated PMNL, arachidonic acid-stimulated NADPH oxidase activity was also inhibited by myristylamine. During the activation of NADPH oxidase by PMA in intact PMNL and by arachidonic acid in the cell-free system, cytosolic activation factor(s) translocated to plasma membranes. The bound cytosolic activation factor(s) was released from the membranes by myristylamine, accompanied by a loss of NADPH oxidase activity. It is plausible from these results that the inhibitory effect of alkylamine on NADPH oxidase is due to induction of the decoupling and/or dissociation of the cytosolic activation component(s) from the activated NADPH oxidase complex by increments of positive charges in the membranes, and that the glutaraldehyde treatment prevents the dissociation of component(s).  相似文献   

20.
The spin state of the heme in superoxide (O(2)(.)(-))-producing cytochrome b(558) purified from pig neutrophils was examined by means of room-temperature magnetic circular dichroism (MCD) under physiological conditions. Cytochrome b(558) with varying amounts of low-spin and high-spin heme was prepared by either pH adjustment or heat treatment, and the O(2)(.)(-)-forming activity in a cell-free system was found to correlate with the low-spin heme content. The possibility that the O(2)(.)(-)-forming activity results from a transient high-spin ferric heme form that is induced during activation by anionic amphophils has also been investigated. EPR spectra of cytochrome b(558) activated by either arachidonic acid or myristic acid, showed that a transient high-spin ferric species accounting for approximately 50% of the heme appeared in the presence of arachidonic acid, but not in the presence of myristic acid. Hence the appearance of a transient high-spin ferric heme species on activation with an amphophil does not afford a common activation mechanism in the NADPH oxidase system. The EPR results for cytochrome b(558) activated with arachidonic acid showed that the transient high-spin ferric heme can bind cyanide. However, the high-spin ferric heme does not contribute to the O(2)(.)(-) production of cytochrome b(558) in cell-free assays in the presence of cyanide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号