首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prediction of the loading along the leg during snow skiing.   总被引:1,自引:0,他引:1  
The complete force and moment of each cross section of the leg between the ski boot top and the knee during normal skiing were predicted from measurements of the force and moment under the toe and heel of the boot and the flexion of the ankle. The force and moment components predicted at the base of the boot were significantly different from those predicted at sites of potential injury at the boot top and the knee. The maximum torsional and maximum varus-valgus moments predicted at the knee over all subjects tested were 70 Nm and 149 Nm, which are within the estimated range of the ultimate strength of the knee without support from contracted muscles crossing the knee. Regression analyses were used to find the force components at the base of the boot that best predict the bending and torsional moments at the boot top and knee. The torsional moments at the boot top and knee are best predicted by the medial-lateral force at the toe. The varus-valgus moment at the boot top and knee are best predicted by the resultant medial-lateral force component at the base of the boot. The set of best predictors of the anterior-posterior bending moments at the boot top and knee includes the vertical force at the toe, the vertical force at the heel and the component of the total vertical force directed perpendicular to the leg.  相似文献   

2.
The pirouette turn is often initiated in neutral and externally rotated hip positions by dancers. This provides an opportunity to investigate how dancers satisfy the same mechanical objectives at the whole-body level when using different leg kinematics. The purpose of this study was to compare lower extremity control strategies during the turn initiation phase of pirouettes performed with and without hip external rotation. Skilled dancers (n=5) performed pirouette turns with and without hip external rotation. Joint kinetics during turn initiation were determined for both legs using ground reaction forces (GRFs) and segment kinematics. Hip muscle activations were monitored using electromyography. Using probability-based statistical methods, variables were compared across turn conditions as a group and within-dancer. Despite differences in GRFs and impulse generation between turn conditions, at least 90% of each GRF was aligned with the respective leg plane. A majority of the net joint moments at the ankle, knee, and hip acted about an axis perpendicular to the leg plane. However, differences in shank alignment relative to the leg plane affected the distribution of the knee net joint moment when represented with respect to the shank versus the thigh. During the initiation of both turns, most participants used ankle plantar flexor moments, knee extensor moments, flexor and abductor moments at the push leg׳s hip, and extensor and abductor moments at the turn leg׳s hip. Representation of joint kinetics using multiple reference systems assisted in understanding control priorities.  相似文献   

3.
A biomechanical model of a squat exercise performed on a device using a bar that is restricted to a linear motion was developed. Hip and knee moments were evaluated at varying foot positions. The range of motion of the exercise was limited by the knee joint angle beginning at an 80 degrees angle (flexed) to a 179 degrees joint angle (extended). Variations in foot placement were evaluated for differences in torque applied about the transverse axes of the user's knee and hip joints. Because the user's feet were positioned farther forward (anterior), the moment about the knee decreased whereas the moment about the hip increased. Positive moments were those that resulted in forces to flex the knee and hip joints. Positive knee moments were determined in all conditions when the knee was flexed and became negative when the knee was at or near full extension. The model always produced positive moments about the hip. Thus, foot position is a critical factor in hip and knee moments, and therefore in the muscle groups stressed, in a linear motion squat type exercise.  相似文献   

4.
Sprains at the knee are the most frequent of the severe injuries occurring during alpine snow skiing. This paper discusses the development of analytical models describing rotations across the knee joint caused by varus-valgus and internal-external moments applied at the foot during skiing. Identification of an ARMAX model requires simultaneous measurements of the rotations across the knee and the moments at the foot during skiing. As the models only relate the measured input (moment) and output (rotation) data, they also identify components of apparent rotation resulting from imperfect fixation of the rotation measuring instrument on the test subject and resulting from other inputs. The models identified for all subjects are of order four or five for both varus-valgus and internal-external rotation, and they describe modes with oscillatory and exponentially decaying components. Application of the models to prediction of rotation across the knee from the measured moment at the foot is illustrated by example. A new, and virtually mechanically uncoupled, six degrees-of-freedom, strain gauge dynamometer is developed to record the moments at the foot during skiing. The concept of the dynamometer design has general application.  相似文献   

5.
Research concerning forefoot strike pattern (FFS) versus rearfoot strike pattern (RFS) running has focused on the ground reaction force even though internal joint contact forces are a more direct measure of the loads responsible for injury. The main purpose of this study was to determine the internal loading of the joints for each strike pattern. A secondary purpose was to determine if converted FFS and RFS runners can adequately represent habitual runners with regards to the internal joint loading. Using inverse dynamics to calculate the net joint moments and reaction forces and optimization techniques to estimate muscle forces, we determined the axial compressive loading at the ankle, knee, and hip. Subjects consisted of 15 habitual FFS and 15 habitual RFS competitive runners. Each subject ran at a preferred running velocity with their habitual strike pattern and then converted to the opposite strike pattern. Plantar flexor muscle forces and net ankle joint moments were greater in the FFS running compared to the RFS running during the first half of the stance phase. The average contact forces during this period increased by 41.7% at the ankle and 14.4% at the knee joint during FFS running. Peak ankle joint contact force was 1.5 body weights greater during FFS running (p<0.05). There was no evidence to support a difference between habitual and converted running for joint contact forces. The increased loading at the ankle joint for FFS is an area of concern for individuals considering altering their foot strike pattern.  相似文献   

6.
Mechanical analysis of the landing phase in heel-toe running.   总被引:3,自引:0,他引:3  
Results of mechanical analyses of running may be helpful in the search for the etiology of running injuries. In this study a mechanical analysis was made of the landing phase of three trained heel-toe runners, running at their preferred speed and style. The body was modeled as a system of seven linked rigid segments, and the positions of markers defining these segments were monitored using 200 Hz video analysis. Information about the ground reaction force vector was collected using a force plate. Segment kinematics were combined with ground reaction force data for calculation of the net intersegmental forces and moments. The vertical component of the ground reaction force vector Fz was found to reach a first peak approximately 25 ms after touch-down. This peak occurs because, in the support leg, the vertical acceleration of the knee joint is not reduced relative to that of the ankle joint by rotation of the lower leg, so that the support leg segments collide with the floor. Rotation of the support upper leg, however, reduces the vertical acceleration of the hip joint relative to that of the knee joint, and thereby plays an important role in limiting the vertical forces during the first 40 ms. Between 40 and 100 ms after touch-down, the vertical forces are mainly limited by rotation of the support lower leg. At the instant that Fz reaches its first peak, net moments about ankle, knee and hip joints of the support leg are virtually zero. The net moment about the knee joint changed from -100 Nm (flexion) at touch-down to +200 Nm (extension) 50 ms after touch-down. These changes are too rapid to be explained by variations in the muscle activation levels and were ascribed to spring-like behavior of pre-activated knee flexor and knee extensor muscles. These results imply that the runners investigated had no opportunity to control the rotations of body segments during the first part of the contact phase, other than by selecting a certain geometry of the body and muscular (co-)activation levels prior to touch-down.  相似文献   

7.
Ski boots are designed to transfer high forces from the skier to the ski. For this purpose they are made of stiff materials and constrain the leg of the skier to an unnatural position. To overcome the problem of unnatural knee posture, the ski boots can be adjusted in the frontal plane as well as in the horizontal plane by the canting mechanism and the "v-position", respectively. Canting enables lateral and medial orientation of the shaft with respect to the base of the boot. The "v-position" is a pronounced outward rotation of the boot's base with respect to the ski's long axis. The purpose of this study is to investigate the effect of different foot rotations and ski boot canting settings on knee kinematics during standing and simulated skiing. Knee kinematics was measured by means of motion analysis and with the help of skin-mounted markers on 20 subjects. The ski boots in their standard settings significantly constrained the skier to an unnatural valgus position. Ski boot base rotation had a significant effect on internal external knee rotation, whereas canting had an effect on varus-valgus angles during standing. However, for the simulated skiing position no effects were observed. The study suggests that the constraints of the ski boots result in a clinically relevant valgus misalignment. Canting settings reduced the misalignment but only by about 10%. Increased ski boot canting settings would therefore be desirable. Knee kinematics showed that rotational misalignment could not be linked to any significant increase in injury risk.  相似文献   

8.
Lower extremity corrective reactions to slip events.   总被引:7,自引:0,他引:7  
A significant number of injuries in the workplace is attributed to slips and falls. Biomechanical responses to actual slip events determine whether the outcome of a slip will be recovery or a fall. The goal of this study was to examine lower extremity joint moments and postural adjustments for experimental evidence of corrective strategies evoked during slipping in an attempt to prevent falling. Sixteen subjects walked onto a possibly oily vinyl tile floor, while ground reaction forces and body motion were recorded at 350 Hz. The onset of corrective reactions by the body in an attempt to recover from slips became evident at about 25% of stance and continued until about 45% into stance, i.e. on average between 190 and 350 ms after heel contact. These reactions included increased flexion moment at the knee and extensor activity at the hip. The ankle, on the other hand, acted as a passive joint (no net moment) during fall trials. Joint kinematics showed increased knee flexion and forward rotation of the shank in an attempt to bring the foot back towards the body. Once again, the ankle kinematics appeared to play a less dominant role (compared to the knee) in recovery attempts. This study indicates that humans generate corrective reactions to slips that are different than previously reported responses to standing perturbations translating the supporting surface.  相似文献   

9.
The role of intersegmental dynamics during rapid limb oscillations   总被引:4,自引:0,他引:4  
The interactive dynamic effects of muscular, inertial and gravitational moments on rapid, multi-segmented limb oscillations were studied. Using three-segment, rigid-body equations of motion, hip, knee and ankle intersegmental dynamics were calculated for the steady-state cycles of the paw-shake response in adult spinal cats. Hindlimb trajectories were filmed to obtain segmental kinematics, and myopotentials of flexors and extensors at each of the three joints were recorded synchronously with the ciné film. The segmental oscillations that emerged during the paw-shake response were a consequence of an interplay between active and passive musculotendinous forces, inertial forces, and gravity. During steady-state oscillations, the amplitudes of joint excursions, peak angular velocities, and peak angular accelerations increased monotonically and significantly in magnitude from the proximal joint (hip) to the most distal joint (ankle). In contrast to these kinematic relationships, the maximal values of net moments at the hip and knee were equal in magnitude, but of significantly lower magnitude than the large net moment at the ankle joint. At both the ankle and the knee, the flexor and extensor muscle moments were equal, but at the hip the magnitude of the peak flexor muscle moment was significantly greater than the extensor muscle moment. Muscle moments at the hip not only acted to counterbalance accelerations of the more distal segments, but also acted to maintain the postural orientation of the hindlimb. Large muscle moments at the knee functioned to counterbalance the large inertial moments generated by the large angular accelerations of the paw. At the ankle, the muscle moments dominated the generation of the paw accelerations. At the ankle and the knee, muscle moments controlled limb dynamics by slowing and reversing joint motions, and the active muscle forces contributing to ankle and knee moments were derived from lengthening of active musculotendinous units. In contrast to the more distal joints, the active muscles crossing the hip predominantly shortened as a result of the interplay among inertial forces and gravitational moments. The muscle function and kinetic data explain key features of the complex interactions that occur between central control mechanisms and multi-segmented, oscillating limb segments during the paw-shake response.  相似文献   

10.
Two-dimensional analyses of sprint kinetics are commonly undertaken but often ignore the metatarsalphalangeal (MTP) joint and model the foot as a single segment. Due to the linked-segment nature of inverse dynamics analyses, the aim of this study was to investigate the effect of ignoring the MTP joint on the calculated joint kinetics at the other stance leg joints during sprinting. High-speed video and force platform data were collected from four to five trials for each of three international athletes. Resultant joint moments, powers, and net work at the stance leg joints during the first stance phase after block clearance were calculated using three different foot models. By ignoring the MTP joint, peak extensor moments at the ankle, knee, and hip were on average 35% higher (p < .05 for each athlete), 40% lower (p < .05), and 9% higher (p > .05), respectively, than those calculated with the MTP joint included. Peak ankle and knee joint powers and net work at all joints were also significantly (p < .05) different. By ignoring a genuine MTP joint plantar flexor moment, artificially high peak ankle joint moments are calculated, and these also affect the calculated joint kinetics at the knee.  相似文献   

11.
The contributions of this paper are twofold. One is the design and performance evaluation of new equipment to determine the rotational flexibility of the human knee in vivo. Since determining knee flexibility requires the application of external loads and the measurement of knee rotations, the new equipment consists of a load application stand and a triaxial goniometer. The triaxial goniometer noninvasively mounts to the leg and directly measures the relative three degrees-of-freedom rotations of the knee sequentially and independently. The goniometer incorporates several unique design features which enhance measurement accuracy. The load stand applies pure varus/valgus and external/internal axial moments either individually or in combination through the use of motors controlled by the test subject. Unique to this design are features which enable the application of moments to the knee which minimise shear forces. Other unique design features permit the stand to control hip and knee flexion angles, muscle contraction, and axial loading. To assess the accuracy with which rotations are measured during experiments, three tests were conducted with the equipment. One test evaluated the inherent accuracy of the goniometer, a second test assessed the potential for goniometer slippage during loading, and a third explored the effect of goniometer mounting on the repeatability of results. A special verification apparatus facilitated evaluation of goniometer inherent accuracy. A second contribution of the paper is an investigation of the effect of foot constraints (i.e. boundary conditions) on flexibility results. To make this investigation, three subjects were tested with the knee at 15 degrees of flexion. Results revealed large differences in flexibility between constraining the foot in both external/internal and varus/valgus rotations and permitting the foot to rotate freely in the direction not being loaded. Further, constraint moments as high as 23 Nm were also recorded. These results emphasise that in order to obtain accurate flexibility results for isolated loads, the foot must be unconstrained by the loading apparatus.  相似文献   

12.
The effects of walking speed and age on the peak external moments generated about the joints of the trailing limb during stance just prior to stepping over an obstacle and on the kinematics of the trailing limb when crossing the obstacle were investigated in 10 healthy young adults (YA) and 10 healthy older adults (OA). The peak hip and knee adduction moments in OA were 21-43% greater than those in YA (p相似文献   

13.
The aim of the present study was to analyze the net joint moment distribution, joint forces and kinematics during cycling to exhaustion. Right pedal forces and lower limb kinematics of ten cyclists were measured throughout a fatigue cycling test at 100% of POMAX. The absolute net joint moments, resultant force and kinematics were calculated for the hip, knee and ankle joint through inverse dynamics. The contribution of each joint to the total net joint moments was computed. Decreased pedaling cadence was observed followed by a decreased ankle moment contribution to the total joint moments in the end of the test. The total absolute joint moment, and the hip and knee moments has also increased with fatigue. Resultant force was increased, while kinematics has changed in the end of the test for hip, knee and ankle joints. Reduced ankle contribution to the total absolute joint moment combined with higher ankle force and changes in kinematics has indicated a different mechanical function for this joint. Kinetics and kinematics changes observed at hip and knee joint was expected due to their function as power sources. Kinematics changes would be explained as an attempt to overcome decreased contractile properties of muscles during fatigue.  相似文献   

14.
Muscle-tendon moment arm magnitudes are essential variables for accurately calculating muscle forces from joint moments. Their measurement requires specialist knowledge and expensive resources. Research has shown that the patellar tendon moment arm length is related to leg anthropometry in children. Here, we asked whether the Achilles tendon moment arm (MA(AT)) can be accurately predicted in pre-pubescent children from surface anthropometry. Age, standing height, mass, foot length, inter-malleolar ankle width, antero-posterior ankle depth, tibial length, lower leg circumference, and distances from the calcaneus to the distal head of the 1st metatarsal and medial malleolus were determined in 49 pre-pubescent children. MA(AT) was calculated at three different ankle positions (neutral, 10° plantarflexion, and 10° dorsiflexion) by differentiating tendon excursion, measured via ultrasonography, with respect to ankle angle change using seven different differentiation techniques. Backwards stepwise regression analyses were performed to identify predictors of MA(AT.) When all variables were included, the regression analysis accounted for a maximum of 49% of MA(AT) variance at the neutral ankle angle when a third-order polynomial was used to differentiate tendon excursion with respect to ankle angle. For this condition, foot length and the distance between calcaneus and 1st metatarsal were the only significant predictors, accounting for 47% of the variance (p<0.05). The absolute error associated with this regression model was 3.8±4.4 mm, which would result in significant error (mean=14.5%) when estimating muscle forces from joint moments. We conclude that MA(AT) cannot be accurately predicted from anthropometric measures in children.  相似文献   

15.
This study examined the influence of a mechanical perturbation of the ankle joint on obstacle avoidance pattern. A decoupled control between the distal joint and the combined (hip-knee) proximal joints was observed according to the task requirement. In this context, a greater mechanical friction at the ankle should be compensated at this joint (local compensation) or alternatively, by regulating more combined proximal joints (knee and/or hip). The leading limb inter-segmental coordination was evaluated in both no constraint and constraint conditions in calculating ranges of motion (ROM), moments of force and powers (from heel-off to obstacle) at the ankle, knee and hip joints. Electromyographic activities were also analyzed. With the constraint, the dorsiflexor moment and the tibialis anterior activity remained unchanged while both ROM and power bursts (absorbed and generated) decreased. The hip and knee ROM remain invariant. At heel-off the absorption by hip extensors decreased and the forthcoming generation by knee flexors increased in the constraint condition. To quantify the inter-joint coordination, principal component analysis was used and indicated a high level of inter-joint coupling (synergy) that decreased with the constraint (i.e. less inter-joint coupling). At the ankle joint, the results suggest that the central command was the same in both conditions thus, not be adapted. At both the hip and knee joints, a combined joints modulation occurred to overcome additional friction.  相似文献   

16.
Increased boot shaft stiffness may have a noticeable impact on the range of motion of the ankle joint. Therefore, the ability of the ankle joint to generate power for propulsion might be impaired. This might result in compensatory changes at the knee and hip joint. Besides, adaptability of the subtalar joint to uneven surface might be reduced, which could in turn affect stability. The aim of the study was therefore to investigate the influence of boot shaft stiffness on biomechanical gait parameters.Fifteen healthy young adults walked over coarse gravel wearing two different hiking boots that differed by 50% in passive shaft stiffness. Leg kinematics, kinetics and electromyography were measured. Gait velocity and indicators for stability were not different when walking with the hard and soft boot shaft over the gravel surface. However, the hard boot shaft decreased the ankle range of motion as well as the eccentric energy absorbed at the ankle joint. As a consequence, compensatory changes at the knee joint were observed. Co-contraction was increased, and greater eccentric energy was absorbed. Therefore, the efficiency of gait with hard boots might be decreased and joint loading at the knee might be increased, which might cause early fatigue of knee muscles during walking or hiking. The results of this study suggest that stiffness and blocking of joint motion at the ankle should not be equated with safety. A trade-off between lateral stiffness and free natural motion of the ankle joint complex might be preferable.  相似文献   

17.
The net force and moment of a joint have been widely used to understand joint disease in the foot. Meanwhile, it does not reflect the physiological forces on muscles and contact surfaces. The objective of the study is to estimate active moments by muscles, passive moments by connective tissues and joint contact forces in the foot joints during walking. Joint kinematics and external forces of ten healthy subjects (all males, 24.7 ± 1.2 years) were acquired during walking. The data were entered into the five-segment musculoskeletal foot model to calculate muscle forces and joint contact forces of the foot joints using an inverse dynamics-based optimization. Joint reaction forces and active, passive and net moments of each joint were calculated from muscle and ligament forces. The maximum joint reaction forces were 8.72, 4.31, 2.65, and 3.41 body weight (BW) for the ankle, Chopart’s, Lisfranc and metatarsophalangeal joints, respectively. Active and passive moments along with net moments were also obtained. The maximum net moments were 8.6, 8.4, 5.4 and 0.8%BW∙HT, respectively. While the trend of net moment was very similar between the four joints, the magnitudes and directions of the active and passive moments varied between joints. The active and passive moments during walking could reveal the roles of muscles and ligaments in each of the foot joints, which was not obvious in the net moment. This method may help narrow down the source of joint problems if applied to clinical studies.  相似文献   

18.
The primary method to model ankle motion during inverse dynamic calculations of the lower limb is through the use of skin-mounted markers, with the foot modeled as a rigid segment. Motion of the foot is often tracked via the use of a marker cluster triad on either the dorsum, or heel, of the foot/shoe. The purpose of this investigation was to evaluate differences in calculated lower extremity dynamics during the stance phase of gait between these two tracking techniques. In an analysis of 7 subjects, it was found that sagittal ankle angles and sagittal ankle, hip and knee moments were strongly correlated between the two conditions, however, there was a significant difference in peak ankle plantar flexion and dorsiflexion angles. Frontal ankle angles were only moderately correlated and there was a significant difference in peak ankle eversion and inversion, resulting in moderate correlations in frontal plane moments and a significant difference in peak hip adductor moments. We demonstrate that the technique used to track the foot is an important consideration in interpreting lower extremity dynamics for clinical and research purposes.  相似文献   

19.
Farm youth often carry loads that are proportionally large and/or heavy, and field measurements have determined that these tasks are equivalent to industrial jobs with high injury risks. The purpose of this study was to determine the effects of age, load amount, and load symmetry on lower extremity joint moments during carrying tasks. Three age groups (8-10 years, 12-14 years, adults), three load amounts (0%, 10%, 20% BW), and three load symmetry levels (unilateral large bucket, unilateral small bucket, bilateral small buckets) were tested. Inverse dynamics was used to determine maximum ankle, knee, and hip joint moments. Ankle dorsiflexion, ankle inversion, ankle eversion, knee adduction, and hip extension moments were significantly higher in 8-10 and 12-14 year olds. Ankle plantar flexion, ankle inversion, knee extension, and hip extension moments were significantly increased at 10% and 20% BW loads. Knee and hip adduction moments were significantly increased at 10% and 20% BW loads when carrying a unilateral large bucket. Of particular concern are increased ankle inversion and eversion moments for children, along with increased knee and hip adduction moments for heavy, asymmetrical carrying tasks. Carrying loads bilaterally instead of unilaterally avoided increases in knee and hip adduction moments with increased load amount.  相似文献   

20.
The standard method used to calculate the ankle joint power contains deficiencies when applied to dynamic elastic response prosthetic feet. The standard model, using rotational power and inverse dynamics, assumes a fixed joint center and cannot account for energy storage, dissipation, and return. This study compared the standard method with new analysis models. First, assumptions of inverse dynamics were avoided by directly measuring ankle forces and moments. Second, the ankle center of rotation was corrected by including translational power terms. Analysis with below-knee amputees revealed that the conventional method overestimates ankle forces and moments as well as prosthesis energy storage and return. Results for efficiency of energy return were varied. Large differences between models indicate the standard method may have serious inadequacies in the analysis of certain prosthetic feet. This research is the first application of the new models to prosthetic feet, and suggests the need for additional research in gait analysis with energy-storing prostheses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号