首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytidine 5'-triphosphate synthase catalyses the ATP-dependent formation of CTP from UTP using either ammonia or l-glutamine as the source of nitrogen. When glutamine is the substrate, GTP is required as an allosteric effector to promote catalysis. Limited trypsin-catalysed proteolysis, Edman degradation, and site-directed mutagenesis were used to identify peptide bonds C-terminal to three basic residues (Lys187, Arg429, and Lys432) of Escherichia coli CTP synthase that were highly susceptible to proteolysis. Lys187 is located at the CTP/UTP-binding site within the synthase domain, and cleavage at this site destroyed all synthase activity. Nucleotides protected the enzyme against proteolysis at Lys187 (CTP > ATP > UTP > GTP). The K187A mutant was resistant to proteolysis at this site, could not catalyse CTP formation, and exhibited low glutaminase activity that was enhanced slightly by GTP. K187A was able to form tetramers in the presence of UTP and ATP. Arg429 and Lys432 appear to reside in an exposed loop in the glutamine amide transfer (GAT) domain. Trypsin-catalyzed proteolysis occurred at Arg429 and Lys432 with a ratio of 2.6 : 1, and nucleotides did not protect these sites from cleavage. The R429A and R429A/K432A mutants exhibited reduced rates of trypsin-catalyzed proteolysis in the GAT domain and wild-type ability to catalyse NH3-dependent CTP formation. For these mutants, the values of kcat/Km and kcat for glutamine-dependent CTP formation were reduced approximately 20-fold and approximately 10-fold, respectively, relative to wild-type enzyme; however, the value of Km for glutamine was not significantly altered. Activation of the glutaminase activity of R429A by GTP was reduced 6-fold at saturating concentrations of GTP and the GTP binding affinity was reduced 10-fold. This suggests that Arg429 plays a role in both GTP-dependent activation and GTP binding.  相似文献   

2.
Escherichia coli 6-phosphofructo-1-kinase was inhibited by high concentrations of ATP at alkaline pH. The mechanism of the inhibition was studied with two mutants generated by site-directed mutagenesis; I126A, with a Km for fructose-6-P that was more than two orders of magnitude higher than that of wild type but with minimal changes in kcat and Km for ATP, and R72H, with little change in substrate half-saturation concentrations but with a kcat that was 300-fold lower that of wild type enzyme. ATP and fructose-6-P interacted in a mutually antagonistic manner; that is ATP decreased the apparent affinity for fructose-6-P and vice versa. The half-saturation concentrations for both substrates, most strikingly fructose-6-P, increased with increasing pH while the kcat increased. Studies with I126A suggested that ATP inhibition was not dependent on a dissociable group with a pK in the alkaline range and that the inhibition was not caused by abortive binding of substrate to the wrong substrate site. Inhibition was not the result of differential affinity of ATP for the R and T states of the enzyme. The low kcat mutant, R72H, did not display ATP inhibition. These data indicate that ATP inhibition results from substrate antagonism coupled with a steady state random mechanism wherein the high rate of catalysis does not permit equilibration of substrates.  相似文献   

3.
A conserved sequence motif within the class 1 glutamine amidotransferase (GATase) domain of CTP synthases was identified. The sequence motif in the Lactococcus lactis enzyme is (429)GGTLRLG(435). This motif was present only in CTP synthases and not in other enzymes that harbor the GATase domain. Therefore, it was speculated that this sequence was involved in GTP activation of CTP synthase. Other members of the GATase protein family are not activated allosterically by GTP. Residues Thr-431 and Arg-433 were changed by site directed mutagenesis to the sterically similar residues valine and methionine, respectively. The resulting enzymes, T431V and R433M, had both lost the ability for GTP to activate the uncoupled glutaminase activity and showed reduced GTP activation of the glutamine-dependent CTP synthesis reaction. The T431V enzyme had a similar activation constant, K(A), for GTP, but the activation was only 2-3-fold compared with 35-fold for the wild type enzyme. The R433M enzyme was found to have a 10-15-fold lower K(A) for GTP and a concomitant decrease in V(app). The activation by GTP of this enzyme was about 7-fold. The kinetic parameters for saturation with ATP, UTP, and NH(4)Cl were similar for wild type and mutant enzymes, except that the R433M enzyme only had half the V(app) of the wild type enzyme when NH(4)Cl was the amino donor. The mutant enzymes T431V and R433M apparently had not lost the ability to bind GTP, but the signal transmitted through the enzyme to the active sites upon binding of the allosteric effector was clearly disrupted in the mutant enzymes.  相似文献   

4.
D M Epstein  R H Abeles 《Biochemistry》1992,31(45):11216-11223
The function of a hydrogen bond network, comprised of the hydroxyl groups of Tyr 171 and Ser 214, in the hydrophobic S2 subsite of alpha-lytic protease, was investigated by mutagenesis and the kinetics of a substrate analog series. To study the catalytic role of the Tyr 171 and Ser 214 hydroxyl groups, Tyr 171 was converted to phenylalanine (Y171F) and Ser 214 to alanine (S214A). The double mutant (Y171F: S214A) also was generated. The single S214A and double Y171F:S214A mutations cause differential effects on catalysis and proenzyme processing. For S214A, kcat/Km is (4.9 x 10(3))-fold lower than that of wild type and proenzyme processing is blocked. For the double mutant (Y171F:S214A), kcat/Km is 82-fold lower than that of wild type and proenzyme processing occurs. In Y171F, kcat/Km is 34-fold lower than that of wild type, and the proenzyme is processed. The data indicate that Ser 214, although conserved among serine proteases and hydrogen bonded to the catalytic triad [Brayer, G. D., Delbaere, L. T. J., & James, M. N. G. (1979) J. Mol. Biol. 131, 743], is not essential for catalytic function in alpha-lytic protease. A substrate series (in which peptide length is varied) established that the mutations (Y171F and Y171F:S214A) do not alter enzyme-substrate interactions in subsites other than S2. The pH dependence of kcat/Km for Y171F and Y171F:S214A has changed less than 0.5 unit from that of wild type; this suggests the catalytic triad is unperturbed. In wild type, hydrophobic interactions at S2 increase kcat/Km by up to (1.2 x 10(3))-fold with no effect on Km.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The RecBCD-K177Q enzyme has a lysine-to-glutamine mutation in the putative ATP-binding sequence of the RecD protein (Korangy, F., and Julin, D.A. (1992) J. Biol. Chem. 267, 1727-1732). We have compared the enzymatic properties of the RecBCD-K177Q enzyme with those of the wild-type RecBCD enzyme from Escherichia coli. The purified RecBCD-K177Q enzyme has ATP-dependent nuclease activity on double-stranded or denatured DNA which is reduced (4-14-fold less) compared with the wild type. The kcat and Km(ATP) for ATP hydrolysis stimulated by double-stranded DNA are both reduced in RecBCD-K177Q, so that kcat/Km(ATP) is relatively unaffected. The mutant enzyme is impaired in its ability to unwind DNA in an assay where single-stranded DNA is trapped by the single-stranded DNA binding protein and subsequently degraded by S1 nuclease. The mutant enzyme also produces fewer acid-soluble DNA nucleotides per ATP hydrolyzed than does the wild type, at low ATP concentrations (less than 20 microM).  相似文献   

6.
Jensen KF  Arent S  Larsen S  Schack L 《The FEBS journal》2005,272(6):1440-1453
The upp gene, encoding uracil phosphoribosyltransferase (UPRTase) from the thermoacidophilic archaeon Sulfolobus solfataricus, was cloned and expressed in Escherichia coli. The enzyme was purified to homogeneity. It behaved as a tetramer in solution and showed optimal activity at pH 5.5 when assayed at 60 degrees C. Enzyme activity was strongly stimulated by GTP and inhibited by CTP. GTP caused an approximately 20-fold increase in the turnover number kcat and raised the Km values for 5-phosphoribosyl-1-diphosphate (PRPP) and uracil by two- and >10-fold, respectively. The inhibition by CTP was complex as it depended on the presence of the reaction product UMP. Neither CTP nor UMP were strong inhibitors of the enzyme, but when present in combination their inhibition was extremely powerful. Ligand binding analyses showed that GTP and PRPP bind cooperatively to the enzyme and that the inhibitors CTP and UMP can be bound simultaneously (KD equal to 2 and 0.5 microm, respectively). The binding of each of the inhibitors was incompatible with binding of PRPP or GTP. The data indicate that UPRTase undergoes a transition from a weakly active or inactive T-state, favored by binding of UMP and CTP, to an active R-state, favored by binding of GTP and PRPP.  相似文献   

7.
To probe differential control of substrate specificities for 4-nitrophenyl-alpha-l-arabinofuranoside (4NPA) and 4-nitrophenyl-beta-d-xylopyranoside (4NPX), residues of the glycone binding pocket of GH43 beta-d-xylosidase/alpha-l-arabinofuranosidase from Selenomonas ruminantium were individually mutated to alanine. Although their individual substrate specificities (kcat/Km)(4NPX) and (kcat/Km)(4NPA) are lowered 330 to 280,000 fold, D14A, D127A, W73A, E186A, and H248A mutations maintain similar relative substrate specificities as wild-type enzyme. Relative substrate specificities (kcat/Km)(4NPX)/(kcat/Km)(4NPA) are lowered by R290A, F31A, and F508A mutations to 0.134, 0.407, and 4.51, respectively, from the wild type value of 12.3 with losses in (kcat/Km)(4NPX) and (kcat/Km)(4NPA) of 18 to 163000 fold. R290 and F31 reside above and below the C4 OH group of 4NPX and the C5 OH group of 4NPA, where they can serve as anchors for the two glycone moieties when their ring systems are distorted to transition-state geometries by raising the position of C1. Thus, whereas R290 and F31 provide catalytic power for hydrolysis of both substrates, the native residues are more important for 4NPX than 4NPA as the xylopyranose ring must undergo greater distortion than the arabinofuranose ring. F508 borders C4 and C5 of the two glycone moieties and can serve as a hydrophobic platform having more favorable interactions with xylose than arabinofuranose.  相似文献   

8.
RNA 3'-terminal phosphate cyclase has been purified about 6000-fold to near homogeneity from HeLa cells. The purified protein is a single polypeptide with an Mr of 38,000-40,000 and a Stokes radius of 2.66 nm. The cyclase shows a pH optimum of 8.0-9.0. In the presence of Mg2+ and ATP this enzyme catalyzes the conversion of a 3'-phosphate group into the cyclic 2',3'-phosphodiester at the 3' end of RNA, through formation of a covalent cyclase-AMP intermediate. GTP, CTP and UTP (but not dATP or ADP) can also function as cofactors in the cyclization reaction, although less efficiently (apparent Km values for ATP and GTP are 6 microM and 200 microM, respectively). Consistent with this, the enzyme can be covalently labelled with the four [alpha-32P]NTPs.  相似文献   

9.
Studies on the effects of substrates on RNA polymerase I [EC 2.7.7.6] in vitro showed that nucleolar RNA synthesis was inhibited by an excess of substrate nucleoside triphosphates in the presence of Mg2+. GTP and UTP were more inhibitory than CTP and ATP. These compounds specfically inhibited nucleolar RNA synthesis and a concentration of GTP that strongly inhibited nucleolar RNA synthesis did not inhibit RNA synthesis by partially purified RNA polymerase I. The inhibition of nucleolar RNA synthesis disappeared at pH 9.0 without any change in the apparent Km for GTP or the Vmax of RNA synthesis.  相似文献   

10.
11.
Properties of mutationally altered RNA polymerases II of Drosophila   总被引:9,自引:0,他引:9  
We tested and compared several in vitro properties of wild type and mutant RNA polymerases II from Drosophila melanogaster, using several different mutants of a single X-linked genetic locus, RpIIC4 (Greenleaf, A. L., Weeks, J. R., Voelker, R. A., Ohnishi, S., and Dickson, B. (1980) Cell 21, 785-792); the mutants tested included the original amanitin-resistant mutant, C4, which is nonconditional, plus the temperature-sensitive mutants A9, C20, E28, and 1Fb40. Using a tritium-labeled amanitin derivative, we demonstrated that C4 polymerase has a reduced binding affinity for amanitin. The C4 polymerase was as stable to thermal denaturation as the wild type enzyme, and the two enzymes had similar specific activities, ionic strength and Mn2+ requirements, and apparent Km values for UTP and GTP when assayed in the presence of Mn2+. However, with Mg2+ as the divalent cation, C4 polymerase was less active than wild type and had 2-fold higher apparent Km values for UTP and GTP. Three of the temperature-sensitive mutants, A9, C20, and E28, were derived from the amanitin-resistant mutant C4; the polymerase II activities from these mutants displayed resistance to alpha-amanitin in vitro identical with that of the C4 enzyme. C20, E28, and 1Fb40 polymerases were markedly less stable to thermal denaturation in vitro than wild type polymerase. The results presented indicate that the mutations at the RNA polymerase locus (RpIIC4-) directly alter the structure of the enzyme, providing conclusive evidence that the locus is a structural gene for a polymerase II subunit.  相似文献   

12.
Several residues lining the ATP-binding site of Methanobacterium thermoautotrophicum nicotinamide mononucleotide adenylyltransferase (NMNATase) were mutated in an effort to better characterize their roles in substrate binding and catalysis. Residues selected were Arg-11 and Arg-136, both of which had previously been implicated as substrate binding residues, as well as His-16 and His-19, part of the HXGH active site motif and postulated to be of importance in catalysis. Kinetic studies revealed that both Arg-11 and Arg-136 contributed to the binding of the substrate, ATP. When these amino acids were replaced by lysines, the apparent Km values of the respective mutants for ATP decreased by factors of 1.3 and 2.9 and by factors of 1.9 and 8.8 when the same residues were changed to alanines. All four Arg mutants displayed unaltered Km values for NMN. The apparent kcat values of the R11K and R136K mutants were the same as those of WT NMNATase but the apparent kcat values of the alanine mutants had decreased. Crystal structures of the Arg mutants revealed NAD+ and SO42- molecules trapped at their active sites. The binding interactions of NAD+ were unchanged but the binding of SO42- was altered in these mutants compared with wild type. The alanine mutants at positions His-16 and His-19 retained approximately 6 and 1.3%, respectively, of WT NMNATase activity indicating that His-19 is a key catalytic group. Surprisingly, this H19A mutant displayed a novel and distinct mode of NAD+ binding when co-crystallized in the presence of NAD+ and SO42-.  相似文献   

13.
Protein kinase CK2 is a heteromeric enzyme with catalytic (alpha) and regulatory (beta) subunits which form an alpha2beta2 holoenzyme and utilizes both ATP and GTP as nucleotide substrate. Site-directed mutagenesis of CK2alpha subunit was used to study this capacity to use GTP. Deletion of asparagine 118 (alpha(deltaN118)) or the mutant alphaN118E gives a 5-6-fold increase in apparent Km for GTP with little effect on the affinity for ATP. Mutants alphaN118A and alphaD120N did not alter significantly the Km for either nucleotide. CK2alphaN118 has an apparent Ki for inosine 5' triphosphate 5-fold higher than wild-type and is very heat labile. These studies complement recent crystallographic data indicating a role for CK2alpha asparagine 118 in binding the guanine base.  相似文献   

14.
Phosphatidic acid phosphatase (EC 3.1.3.4) was purified 30-fold by ammonium sulfate fractionation and hydroxyapatite chromatography from the soluble fraction of rat liver. ADP was found to stimulate the enzyme activity with half-maximal stimulation at 0.2 mM. Similar effects were seen when ADP was replaced by GDP or CDP. In contrast, ATP inhibited the enzyme; half-maximal inhibition observed at 0.2 mM. Again, the degree of inhibition did not differ when GTP or CTP replaced ATP. Thus, the structure of the base part of the nucleotide was not critical for mediating these effects. The positions of the phosphate groups in the nucleotide structure were however found to be of importance for the enzyme activity. Variations in the structure of the phosphate ester bound at the 5'-position had a pronounced effect on phosphatidic acid phosphatase activity. The effect of nucleotides depended on pH, and the inhibition by ATP was more pronounced at pH levels lower than 7.0, whereas the stimulatory effect of ADP was virtually the same from pH 6.0 to pH 8.0. The enzyme showed substrate saturation kinetics with respect to phosphatidic acid, with an apparent Km of 0.7 mM. Km increased in the presence of ATP, whereas both apparent Vmax and Km increased in the presence of ADP, suggesting different mechanisms for the action of the two types of nucleotides. The results indicated that physiological levels of nucleotides with a diphosphate or a triphosphate ester bound at the 5'-position of the ribose moiety influenced the activity of phosphatidic acid phosphatase. The possibility is discussed that these effects might be of importance for the regulation of triacylglycerol biosynthesis.  相似文献   

15.
Family 3 beta-glucosidases from Aspergillus niger with substitutions for Trp-49 result in the accumulation of very small amounts of transglucosidic adducts, compared to the large amounts that accumulate with wild type enzyme. On the other hand, the amounts of the hydrolytic products that form is decreased by only small amounts. Kinetic studies showed that the main reason for the decreased accumulation of transglucosidic intermediates is a large decrease in binding capacity for Glc at site +1 and an increase in binding ability at site-1. The hydrolytic catalytic constants (kcat(h)) of the substituted enzymes were 3 to 4-fold smaller than those of wild type enzymes, while the Km(h) values were less than 2-fold smaller. The catalytic constants of the transglucosidic reactions (kcat(t) values) were essentially unchanged, but the Km(t) values of the substituted enzymes were about 25-fold larger than those of wild type enzymes. These changes mean that the efficiencies of hydrolytic reactions (kcat(h)/Km(h)) of beta-glucosidases created through substitutions for Trp-49 are less than 2-fold smaller than those of wild type beta-glucosidase, but the efficiencies of the transglucosidic reactions (kcat(t)/Km(t)) of the substituted enzymes are 25 to 30-fold smaller. This results in a significantly decreased formation of transglucosidic intermediates. In addition, the high hydrolytic efficiencies of the substituted enzymes, cause even the very small amounts of transglucosidic intermediates that form to be rapidly hydrolyzed. The overall effect is a very small accumulation of intermediates.  相似文献   

16.
The nucleoside 5'-triphosphate (NTP) substrate specificities for Ca-stimulated ATPase and ATP-dependent Ca2+ uptake activities have been examined in cardiac sarcolemma (SL) and sarcoplasmic (SR) membrane vesicles. The results indicate that SL membrane vesicles exhibit a much narrower range of NTP substrate specificities than SR membranes. In SR membrane vesicles, the Ca-stimulated Mg-dependent hydrolysis of ATP and dATP occurred at nearly equivalent rates, whereas the rates of hydrolysis of GTP, ITP, CTP, and UTP ranged from 16-33% of that for ATP. All of the above nucleotides also supported Ca2+ transport into SR vesicles; dATP was somewhat more effective than ATP while GTP, ITP, CTP, and UTP ranged from 28-30% of the activity for ATP. In the presence of oxalate, the initial rate of Ca accumulation with dATP was 4-fold higher than for ATP, whereas the activity for GTP, ITP, CTP, and UTP ranged from 35-45% of that for ATP. For the SL membranes, Ca-activated dATP hydrolysis occurred at 60% of the rate for ATP; GTP, ITP, CTP, and UTP were hydrolyzed by the SL preparations at only 7-9% of the rate for ATP. NTP-dependent Ca2+ uptake in SL membranes was supported only by ATP and dATP, with dATP 60% as effective as ATP. GTP, ITP, CTP, and UTP did not support the transport of Ca2+ by SL vesicles. The results indicate that the SL and SR membranes contain distinctly different ATP-dependent Ca2+ transport systems.  相似文献   

17.
Acetate kinase was purified 102-fold to a specific activity of 656 mumol of ADP formed/min/mg of protein from acetate-grown Methanosarcina thermophila. The enzyme was not intrinsically membrane bound. The native enzyme (Mr 94,000) was an alpha 2 homodimer with a subunit Mr of 53,000. The activity was optimum between pH 7.0 and 7.4. A pI of 4.7 was determined. The enzyme was stable to O2 and stable to heating at 70 degrees C for 15 min but was rapidly inactivated at higher temperatures. The apparent Km for acetate was 22 mM and for ATP was 2.8 mM. The enzyme phosphorylated propionate at 60% of the rate with acetate but was unable to use formate. TTP, ITP, UTP, GTP, and CTP replaced ATP as the phosphoryl donor to acetate. The enzyme required one of several divalent cations for activity; the maximum rate was obtained with Mn2+. Western blots of cell extract proteins showed that acetate grown cells synthesized higher quantities of the acetate kinase than did methanol grown cells.  相似文献   

18.
Kinetic constants for the interaction of NADH and NADPH with native rat dihydropteridine reductase (DHPR) and an Escherichia coli expressed mutant (D-37-I) have been determined. Comparison of kcat and Km values measured employing quinonoid 6,7-dimethyldihydropteridine (q-PtH2) as substrate indicate that the native enzyme has a considerable preference for NADH with an optimum kcat/Km of 12 microM-1 s-1 compared with a figure of 0.25 microM-1 s-1 for NADPH. Although the mutant enzyme still displays an apparent preference for NADH (kcat/Km = 1.2 microM-1 s-1) compared with NADPH (kcat/Km = 0.6 microM-1 s-1), kinetic analysis indicates that NADH and NADPH have comparable stickiness in the D-37-I mutant. The dihydropteridine site is less affected, since the Km for q-PtH2 and K(is) for aminopterin are unchanged and the 14-26-fold synergy seen for aminopterin binding to E.NAD(P)H versus free E is decreased by less than 2-fold in the D-37-I mutant. No significant changes in log kcat and log kcat/Km versus pH profiles for NADH and NADPH were seen for the D-37-I mutant enzyme. However, the mutant enzyme is less stable to proteolytic degradation, to elevated temperature, and to increasing concentrations of urea and salt than the wild type. NADPH provides maximal protection against inactivation in all cases for both the native and D-37-I mutant enzymes. Examination of the rat DHPR sequence shows a typical dinucleotide binding fold with Asp-37 located precisely in the position predicted for the acidic residue that participates in hydrogen bond formation with the 2'-hydroxyl moiety of all known NAD-dependent dehydrogenases. This assignment is consistent with x-ray crystallographic results that localize the aspartate 37 carboxyl within ideal hydrogen bonding distance of the 2'- and 3'-hydroxyl moieties of adenosine ribose in the binary E.NADH complex.  相似文献   

19.
H+ transport into synaptosomal membrane vesicles of the rat brain was stimulated by ATP and to a lesser extent by GTP, but not by ITP, CTP, UTP, ADP, AMP or beta, gamma-methylene ATP. ATP at concentrations up to 200 mM concentration-dependently stimulated the rate of H+ transport with a Km value of 0.6 mM, but at higher concentrations of this nucleotide the rate decreased. Other nucleotides such as CTP, UTP, GTP and AMP, or products of ATP hydrolysis i.e. ADP and Pi also reduced the ATP-stimulated H+ transport. The inhibition by GTP and ADP was not affected by the ATP concentration. These findings suggest that plasma membranes of nerve endings transport H+ from inside to outside of the cells utilizing energy from ATP hydrolysis, and that this transport is regulated by the intracellular concentration of nucleotides and Pi on sites other than those involved in substrate binding.  相似文献   

20.
1. The purification of ATPase (EC 3.6.1.3) from human placental mitochondria is described. The yield based on mitochondrial enzyme activity was about 70% and the purification was 380-fold. 2. The rate of Mg-ATP hydrolysis was 85 mumole per min per mg of protein under optimum conditions. 3. Nucleoside triphosphates were hydrolyzed by the purified enzyme at decreasing rates in the following order: GTP greater than ITP greater than ATP greater than epsilon-ATP greater than UTP greater than CTP in Tris-HCl buffer (pH 8.0), and in the order: ATP greater than GTP greater than or equal to ITP greater than epsilon-ATP greater than UTP greater than CTP in Tris-bicarbonate buffer at pH 8.0. 4. The values of kinetic parameters are reported. The ATPase reaction deviated from typical Michaelis-Menten kinetics in Tris-HCl buffer but not in Tris-bicarbonate. Eadie-Hofstee plots for Mg-ATP hydrolysis were biphasic in Tris-HCl (Km = 0.2 mM, 0.09 mM) and monophastic in Tris-becarbonate medium (Km = 0.16 mM). 5. In the presence of Mg-ITP or Mg-GTP as substrates no curvature of the reciprocal plots was observed. 6. The results presented reflect the fact that multiple conformations of the enzyme molecule do exist and are probably involved in its regulatory functions. 7. The existence of two kinetically distinct classes of catalytic sites and of an anion-binding site on the placental ATPase is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号