共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
AIM: To assess how completely the diversity of anoxygenic phototrophic bacteria (APB) was sampled in natural environments. METHODS AND RESULTS: All nucleotide sequences of the APB marker gene pufM from cultures and environmental clones were retrieved from the GenBank database. A set of cutoff values (sequence distances 0.06, 0.15 and 0.48 for species, genus, and (sub)phylum levels, respectively) was established using a distance-based grouping program. Analysis of the environmental clones revealed that current efforts on APB isolation and sampling in natural environments are largely inadequate. Analysis of the average distance between each identified genus and an uncultured environmental pufM sequence indicated that the majority of cultured APB genera lack environmental representatives. CONCLUSIONS: The distance-based grouping method is fast and efficient for bulk functional gene sequences analysis. The results clearly show that we are at a relatively early stage in sampling the global richness of APB species. Periodical assessment will undoubtedly facilitate in-depth analysis of potential biogeographical distribution pattern of APB. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first attempt to assess the present understanding of APB diversity in natural environments. The method used is also useful for assessing the diversity of other functional genes. 相似文献
3.
In 1949, Howard Gest and Martin Kamen published two brief papers in Science that changed our perceptions about the metabolic capabilities of photosynthetic bacteria. Their discovery of photoproduction
of hydrogen and the ability of Rhodospirillum rubrum to fix nitrogen led to a greater understanding of both processes.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
4.
In May 1998, during the fifty-first voyage on board the research vessel Professor Vodyanitskii, a comparative study was conducted of the species diversity of green and purple sulfur bacteria in the water column of the chemocline zone at deep-sea stations and on the bottom surface of the Black Sea shallow regions. At three deep-sea stations, the accumulation of photosynthetic bacteria in the chemocline zone at a depth of 85–115 m was revealed on the basis of the distribution of potential values of carbon dioxide light fixation. The location of the site of potential carbon dioxide light fixation suggests that the photosynthesis may be determined by the activity of the brown Chlorobium sp., earlier revealed at these depths. Enrichment cultures of brown sulfur bacteria were obtained from samples taken at the deep-sea stations. By morphology, these bacteria, assigned to Chlorobium sp., appear as nonmotile straight or slightly curved rods 0.3–0.5 × 0.7–1.2 µm in size; sometimes, they form short chains. Ultrathin sections show photosynthetic antenna-like structures, chlorosomes, typical of Chlorobiaceae. The cultures depended on the presence of NaCl (20 g/l) for growth, which corresponds to the mineralization of Black Sea water. The bacteria could grow photoautotrophically, utilizing sulfide, but the Black Sea strains grew much more slowly than the known species of brown sulfur bacteria isolated from saline or freshwater meromictic lakes. The best growth of the strains studied in this work occurred in media containing ethanol (0.5 g) or sodium acetate (1 g/l) and low amounts of sulfide (0.4 mM), which is consistent with the conditions of syntrophic growth with sulfidogens. The data obtained allow us to conclude that the cultures of brown sulfur bacteria are especially adapted to developing at large depths under conditions of electron donor deficiency owing to syntrophic development with sulfate reducers. The species composition of the photosynthetic bacteria developing in the bottom sediments of shallow stations differed substantially from that observed at deep-sea stations. Pure cultures of the green Chlorobium sp. BS 1C and BS 2C (chlorobactin as the carotenoid), purple sulfur bacteria Chromatium sp. BS 1Ch (containing spirilloxanthine series pigments), and Thiocapsa marina BS 2Tc (containing the carotenoid okenone) were obtained from samples of sediments at shallow-water stations. Brown sulfur bacteria were absent in the sediment samples obtained from the Black Sea shallow-water stations 1 and 2.__________Translated from Mikrobiologiya, Vol. 74, No. 2, 2005, pp. 239–247.Original Russian Text Copyright © 2005 by Gorlenko, Mikheev, Rusanov, Pimenov, Ivanov. 相似文献
5.
Chlorosomes are specialized compartments that constitute the main light harvesting system of green sulfur bacteria (GSB) and some filamentous anoxygenic phototrophs (FAP). Chlorosome biogenesis promises to be a complex process requiring the generation of a unilayer membrane and the targeting of bacteriochlorophyll, carotenoids, quinones, and proteins to the chlorosome. The biogenesis of chlorosomes as well as their presence in two distinct bacterial groups, GSB and FAP, remains enigmatic. The photosynthetic machinery and overall metabolic characteristics of these two bacterial groups are very different, and horizontal gene transfer has been proposed to explain chlorosome distribution. Chlorosomes have been considered to be unique structures that require a specific assembly machinery. We propose that no special machinery is required for chlorosome assembly. Instead, it is suggested that chlorosomes are a special form of lipid body. We present a model for chlorosome biogenesis that combines aspects of lipid body biogenesis with established chlorosome characteristics and may help explain the presence of chlorosomes in two metabolically diverse organism groups. 相似文献
6.
7.
8.
Rhizobia having photosynthetic systems form nitrogen-fixing nodules on the stem and/or root of some species of the legumes
Aeschynomene and Lotononis. This review is focused on the recent knowledge about the physiology, genetics and role of the photosystem in these bacteria.
Photosynthetic electron transport seems to involve reaction centers, soluble cytochrome c2 and cytochrome bc1. Anaerobically, the electron transport system becomes over-reduced. The photosynthesis genes have been partially characterized;
their organization is classical but their regulation is unusual as it is activated by far-red light via a bacteriophytochrome.
This original mechanism of regulation seems well adapted to promote photosynthesis during stem symbiosis. Photosynthesis plays
a major role in the efficiency of stem nodulation. It is also observed that infrared light stimulates nitrogen fixation in
nodules containing photosynthetic bacteroids, suggesting that photosynthesis may additionally provides energy for nitrogen
fixation, allowing for more efficient plant growth. Other aspects of these bacteria are discussed, in particular their taxonomic
position and nodulation ability, the role of carotenoids and the potential for application of photosynthetic rhizobia in rice
culture.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
9.
共代谢条件下光合细菌对2-氯苯酚的生物降解 总被引:1,自引:0,他引:1
光合细菌PSB-1D不能利用2-氯苯酚(2-CP)作为唯一的碳源和能源.选用苹果酸、丙酸钠、乙酸钠、柠檬酸钠、苯酚、葡萄糖和可溶性淀粉等7种不同碳源作为光合细菌PSB-1D降解2-CP的共代谢基质,考察了在黑暗好氧培养条件下,不同共代谢基质对PSB-1D生长及降解2-CP效果的影响.结果表明:葡萄糖能够很好地促进PSB-1D的大量繁殖,提高降解效果,缩短降解周期,为最佳共代谢基质.对葡萄糖的投加浓度进行了优化,当葡萄糖的投加浓度为3 g·L-1时,菌株PSB-1D培养168 h后的菌体生长浓度△D560为1.749,2-CP的半衰期为3.9 d,降解速率常数为0.00864 h-1.采用SDS-PAGE对微生物全细胞蛋白质进行分析发现,在共代谢过程中当菌株PSB-1D利用葡萄糖作为底物提供能源和碳源时,可诱导产生2-CP特异性降解酶. 相似文献
10.
C. L. M. Steenbergen 《Hydrobiologia》1982,95(1):59-64
The role of photosynthetic sulphur bacteria as primary producers in monomictic Lake Vechten (The Netherlands) is described. Lake Vechten has a surface area of 4.7 ha, a maximum depth of 11.9 m and a mean depth of 6 m.Bacterial populations, appearing at the boundary layer of the oxidative and reductive zone from early June till late October, were composed of cyanobacteria, Chromatiaceae and green and brown coloured Chlorobiaceae. Predominating genera were Synechococcus, Chloronema, Chromatium and Thiopedia. The photosynthetic sulphur bacteria accounted for a primary production rate of 13.6–106.1 mg C.m–2 day–1, which corresponded to 3.9–17.5% of total daily productivity in the pelagial zone. The percentage of photosynthetic bacterial production of total annual planktonic primary production calculated for the entire pelagial zone, taking into account compensation for decreasing volume of lower strata, was 3.6% (i.e. 127 against a total production of 3 510 kg C.lake–1yr–1). 相似文献
11.
Howard Gest 《Photosynthesis research》1994,40(2):129-146
Perspective can be defined as the relationships or relative importance of facts or matters from any special point of view. Thus, my Personal perspective reflects the threads I followed in a 50-year journey of research in the complex tapestry of bioenergetics and various aspects of microbial metabolism. An early interest in biochemical and microbial evolution led to the fertile hunting grounds of anoxygenic photosynthetic bacteria. Viewed as a physiological class, these organisms show remarkable metabolic versatility in that certain individual species are capable of using all the known major types of energy conversion (photosynthetic, respiratory, and fermentative) to support growth. Since such anoxyphototrophs are readily amenable to molecular genetic/biological manipulation, it can be expected that they will eventually provide important clues for unraveling the evolutionary relationships of the several kinds of energy conversion. I gradually came to believe that understanding the evolution of phototrophs would require detailed knowledge not only of how light is converted to chemical energy, but also of a) pathways of monomer production from extracellular sources of carbon and nitrogen and b) mechanisms cells use for integrating ATP regeneration with the energy-requiring biosyntheses of biological macromolecules. Serendipic observation of photoproduction of H2 from organic compounds by Rhodospirillum rubrum in 1949 led to discovery of N2 fixation by anoxyphototrophs, and this capacity was later exploited for the isolation of hitherto unknown species of photosynthetic prokaryotes, including the heliobacteria. Recent studies on the reaction centers of the heliobacteria suggest the possibility that these bacteria are descendents of early phototrophs that gave rise to oxygenic photosynthetic organisms.Abbreviations AMP adenosine monophosphate - ADP adenosine diphosphate - ATP adenosine triphosphate - ATPase adenosine triphosphatase - Bchl bacteriochlorophyll - DMSO dimethyl sulfoxide - NADH reduced nicotinamide adenine dinucleotide - nif– genes for dinitrogen fixation - Nif– bacterial mutants incapable of dinitrogen fixation - O/R oxidation/reduction - Pi inorganic orthophosphate - R. capsulatus Rhodobacter capsulatus - R. sphaeroides Rhodobacter sphaeroides - Rps. Rhodopseudomonas - TMAO trimethyl amine-N-oxideWritten at the invitation of Govindjee. 相似文献
12.
Summary Organic components leaked fromSorghum bicolor seedlings (‘root exudates’) were examined by recovering14C labelled compounds from root solutions of seedlings inoculated withAzospirillum brasilense, Azotobacter vinelandii orKlebsiella pneumoniae nif-. Up to 3.5% of the total14C recovered from shoots, roots, and nutrient solutions was found in the root solutions. Inoculation with Azospirillum and
Azotobacter increased the amounts of14C and decreased the amounts of carbohydrates in the root solutions. When sucrose was added as a carbon source for the bacteria,
the increase of14C in the solutions did not occur. Quantities of14C found in the root solutions were proportional to amounts of mineral nitrogen supplied to the plants. Bacterial growth also
was proportional to nitrogen levels. When sorghum plants were grown in soil and labelled with14CO2, about 15% of the total14C recovered within 48 hours exposure was found in soil leachates. 相似文献
13.
Pigment analysis was performed by means of normal phase HPLC on a number of bacteriochlorophyll a and b containing species of purple bacteria that contain a core antenna only. At least 99% of the bacteriochlorophyll in Rhodobacter sphaeroides R26, Rhodopseudomonas viridis and Thiocapsa pfennigii was esterified with phytol (BChl a
p and BChl b
p, respectively). Rhodospirillum rubrum contained only BChl a esterified with geranyl-geraniol (BChl a
GG). Rhodospirillum sodomense and Rhodopseudomonas marina contained, in addition to BChl a
p, small amounts of BChl a
GG, and presumably also of BChl a esterified with dihydro and tetrahydro geranyl-geraniol (2,10,14-phytatrienol and probably 2,14-phytadienol). In all species bacteriopheophytin (BPhe) esterified with phytol was present. The BChl/BPhe ratio indicated that in these species a constant number of 25 ± 3 antenna BChls is present per reaction centre. This number supports a model in which the core antenna consists of 12 - heterodimers surrounding the reaction centre. Determination of the in vivo extinction coefficient of BChl in the core-reaction centre complex yielded a value of ca. 140 mM–1 cm–1 for BChl a containing species and of 130 mM–1 cm–1 for Rhodopseudomonas viridis.Abbreviations BChl
bacteriochlorophyll
- BPhe
bacteriopheophytin
- GG
geranyl-geraniol
- LHI and LHII
core and peripheral antenna complexes
- P
phytol
- RC
reaction centre
Dedicated to the memory of Professor D.I. Arnon. 相似文献
14.
Bacterial growth under oxygen‐limited (microaerobic) conditions is often accompanied by phenomena of great interest for fundamental research and industrial application. The microaerobic lifestyle of anoxygenic photosynthetic bacteria like Rhodospirillum rubrum harbors such a phenomenon, as it allows the formation of photosynthetic membranes and related interesting products without light. However, due to the technical difficulties in process control of microaerobic cultivations and the limited sensitivity of available oxygen sensors, the analysis of microaerobic growth and physiology is still underrepresented in current research. The main focus of the present study was to establish an experimental set‐up for the systematic study of physiological processes, associated with the growth of R. rubrum under microaerobic conditions in the dark. For this purpose, we introduce a robust and reliable microaerobic process control strategy, which applies the culture redox potential (CRP) for assessing different degrees of oxygen limitation in bioreactor cultivations. To describe the microaerobic growth behavior of R. rubrum cultures for each of these defined CRP reduction steps, basic growth parameters were experimentally determined. Flux variability analysis provided an insight into the metabolic activity of the TCA cycle and implied its connection to the respiratory capacity of the cells. In this context, our results suggest that microaerobic growth of R. rubrum can be described as an oxygen‐activated cooperative mechanism. The present study thus contributes to the investigation of metabolic and regulatory events responsible for the redox‐sensitive formation of photosynthetic membranes in facultative photosynthetic bacteria. Furthermore, the introduced microaerobic cultivation setup should be generally applicable for any microbial system of interest which can be cultivated in common stirred‐tank bioreactors. Biotechnol. Bioeng. 2013; 110: 573–585. © 2012 Wiley Periodicals, Inc. 相似文献
15.
The pigment and auxotrophic mutants of Rhodobacter sphaeroides Y6 were obtained by treatment with ethyl methanesulfonate (EMS) followed by lithium chloride (LiCl). Treatment with 0.081
MEMS and subsequent treatment with 0.071 M LiCl resulted in 12% higher frequency og than that by 0.081 mol/L EMS alone, and
the same frequency of pigment mutations than application of 0.081 M EMS alone; the frequency of auxotrophic mutations increased
2.5-fold when treatment with lithium chloride was applied. A blue shift by 10 nm was recorded in the absorption spectrum of
carotenoids form YM5-3 green mutant; considerable accumulation of neurosporine was revealed by HPLC and mass spectrometry.
The method is efficient for isolating the mutants of photosynthetic bacteria.
Published in Russian in Mikrobiologiya, 2006, Vol. 75, No. 6, pp. 758–764.
The text was submitted by the authors in English. 相似文献
16.
Role of HiPIP as electron donor to the RC-bound cytochrome in photosynthetic purple bacteria 总被引:2,自引:0,他引:2
Menin L. Gaillard J. Parot P. Schoepp B. Nitschke W. Verméglio A. 《Photosynthesis research》1998,55(2-3):343-348
High-Potential Iron-Sulfur Proteins (HiPIP) are small electron carriers, present only in species of photosynthetic purple bacteria having a RC-bound cytochrome. Their participation in the photo-induced cyclic electron transfer was recently established for Rubrivivax gelatinosus, Rhodocyclus tenuis and Rhodoferax fermentans (Schoepp et al. 1995; Hochkoeppler et al. 1996a, Menin et al. 1997b). To better understand the physiological role of HiPIP, we extended our study to other selected photosynthetic bacteria. The nature of the electron carrier in the photosynthetic pathway was investigated by recording light-induced absorption changes in intact cells. In addition, EPR measurements were made in whole cells and in membrane fragments in solution or dried immobilized, then illuminated at room temperature. Our results show that HiPIP plays an important role in the reduction of the photo-oxidized RC-bound cytochrome in the following species: Ectothiorhodospira vacuolata, Chromatium vinosum, Chromatium purpuratum and Rhodopila globiformis. In Rhodopseudomonas marina, the HiPIP is not photo-oxidizible in whole cells and in dried membranes, suggesting that this electron carrier is not involved in the photosynthetic pathway. In Ectothiorhodospira halophila, the photo-oxidized RC-bound cytochrome is reduced by a high midpoint potential cytochrome c, in agreement with midpoint potential values of the two iso-HiPIPs (+ 50 mV and + 120 mV) which are too low to be consistent with their participation in the photosynthetic cyclic electron transfer. 相似文献
17.
Marrs BL 《Photosynthesis research》2002,73(1-3):55-58
The development of genetics as a tool for the study of photosynthesis is recounted, beginning in the period when no genetic
exchange mechanism was known for any photosynthetic microorganism, and ending with the sequencing of the key genes for photosynthesis.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
18.
Verméglio A 《Photosynthesis research》2002,73(1-3):83-86
This paper gives a historical and personal account of the author's work in Rod Clayton's laboratory, when he observed the
first evidence of the two-electron gate in bacterial reaction center. Colin Wraight had independently discovered this phenomenon
at the same time. The high similarity between the acceptor side of Photosystem II (PS II) and of bacterial reaction centers
was one of the first proofs for a profound homology between these two photosystems.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
19.
《Bioscience, biotechnology, and biochemistry》2013,77(3):650-655
In order to reduce the protein content of wastewater, photosynthetic bacteria producing proteinases were screened from wastewater of various sources and stocked in culture. An isolated strain, KDDS1, was identified as Rubrivivax gelatinosus, a purple nonsulfur bacterium that secretes proteinase under micro-aerobic conditions under light at 35°C. Molecular weight of the purified enzyme was estimated to be 32.5 kDa. The enzyme showed the highest activity at 45°C and pH 9.6, and the activity was completely inhibited by phenylmethyl sulfonyl fluoride (PMSF), but not by EDTA. The amino-terminal 24 amino acid sequence of the enzyme showed about 50% identity to those of serine proteinases from Pseudoalteromonas piscicida strain O-7 and Burkholderia pseudomallei. Thus, the enzyme from Rvi. gelatinosus KDDS1 was thought to be a serine-type proteinase. This was the first serine proteinase characterized from photosynthetic bacteria. 相似文献
20.
Hisashi Nagadomi Tomohiro Kitamura Masanori Watanabe Ken Sasaki 《Biotechnology letters》2000,22(17):1369-1374
Simultaneous aerobic treatment of COD, phosphate, nitrate and H2S in a synthetic sewage wastewater was carried out using porous ceramic immobilized photosynthetic bacteria, Rhodobacter sphaeroidesS, Rb. sphaeroidesNR-3 and Rhodopseudomonas palustris. In the batch treatment, effective simultaneous removal of COD (89%), phosphate (77%), nitrate (99%) and H2S (99.8%) was observed after 48 h. In semi-continuous treatments with dilution rates of 0.17 to 0.75 day–1under aerobic conditions, simultaneous removal of these four components was also observed after about one month. 相似文献