首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lyotropic series discovered in 1888 by Hofmeister describes the effect of solutes on the structure and physical chemistry of the aqueous phase. Chaotropic members of the lyotropic series destructure the aqueous phase while antichaotropic solutes act to enhance the structuredness of the aqueous phase. This alteration of the aqueous phase affects the physical structure or physicochemical state of any other phase exposed to the aqueous phase, such as the plasma membrane of any cell. Solute lyotropy is therefore, via its ability to alter the physicochemical state of the plasma membrane, able to modify the processes of yeast cell deactivation (i.e. the processes leading to loss of ability to replicate and to eventual cell death) in the presence of toxic solutes such as ethanol. In this study the effect of a variety of salts and non-ionic solutes upon cell deactivation in the presence of 16% w/v ethanol is explained in terms of the lyotropic series. Chaotropic salts protect against ethanol-induced deactivation and antichaotropic salts enhance the rate of this process. It is proposed that the mechanism by which chaotropic solutes exert their protective effect involves a reduction in the activity coefficient of the ethanol, thereby reducing the concentration of ethanol within the plasma membrane.  相似文献   

2.
Saccharomyces cerevisiae was able to produce 20% (v/v) of ethanol in 45 h in a fully aerated fed-batch process recently developed in our laboratory. A notable feature of this process was a production phase uncoupled to growth, the extent of which was critical for high-level ethanol production. As the level of production was found to be highly variable, we investigated on this high variability by means of a detailed physiological analysis of yeast cells in two fed-batch fermentations showing the most extreme behaviour. We found a massive leakage of intracellular metabolites into the growth medium which correlated with the drop of cell viability. The loss of viability was also found to be proportional to the reduction of plasma membrane phospholipids. Finally, the fed-batch processes with the longest uncoupling phase were characterized by induction of storage carbohydrates at the onset of this phase, whereas this metabolic event was not seen in processes with a short uncoupling phase. Taken together, our results suggested that reproducible high-level bioethanol production in aerated fed-batch processes may be linked to the ability of yeast cells to impede ethanol toxicity by triggering a metabolic remodelling reminiscent to that of cells entering a quiescent GO/G1 state.  相似文献   

3.
The mechanism of cryoprotection of proteins by solutes   总被引:27,自引:1,他引:26  
We have tested the capacity of 28 different compounds to protect lactate dehydrogenase from damage during freeze-thawing. These solutes come from very dissimilar chemical classes including sugars, polyols, amino acids, methylamines, and lyotropic salts. All the compounds tested, except NaCl, protected the enzyme, to varying degrees, from inactivation. The only characteristic that these compounds have in common, as a group, is that they have all been shown to be preferentially excluded from contact with the surface of proteins in aqueous solution. It has been demonstrated previously (via thermodynamic arguments) that this interaction of solutes with proteins leads to the stabilization of proteins in nonfrozen, aqueous systems. Conversely, those solutes, e.g., urea and guanidine HCl, that bind to proteins destabilize proteins in solution, and we have found that they also enhanced the inactivation of lactate dehydrogenase during freeze-thawing. Based on the results of our freeze-thawing experiments and a review of the theory of protein stabilization in nonfrozen, aqueous solution we propose that the cryoprotection afforded to isolated proteins by solutes can be accounted for by the fact that these solutes are preferentially excluded from contact with the protein's surface.  相似文献   

4.
Disruption of the plasma membrane is a primary cause of freezing injury. In this review, the mechanisms of injury resulting from freeze-induced cell dehydration are presented, including destabilization of the plasma membrane resulting from (a) freeze/thaw-induced osmotic excursions and (b) lyotropic phase transitions in the plasma membrane lipids. Cold acclimation dramatically alters the behavior of the plasma membrane during a freeze/thaw cycle—increasing the tolerance to osmotic excursions and decreasing the propensity for dehydration-induced lamellar to hexagonal-II phase transitions. Evidence for a casual relationship between the increased cryostability of the plasma membrane and alterations in the lipid composition is reviewed.  相似文献   

5.
Xu Han  Yang Liu 《Cryobiology》2010,61(1):52-14731
Characterization of the thermodynamic properties of multi-solute aqueous solutions is of critical importance for biological and biochemical research. For example, the phase diagrams of aqueous systems, containing salts, saccharides, and plasma membrane permeating solutes, are indispensible in the field of cryobiology and pharmacology. However, only a few ternary phase diagrams are currently available for these systems. In this study, an auto-sampler differential scanning calorimeter (DSC) was used to determine the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system. To improve the accuracy of melting point measurement, a “mass-redemption” method was also applied for the DSC technique. Base on the analyses of these experimental data, a comparison was made between the two practical approaches to generate phase diagrams of multi-solute solutions from those of single-solute solutions: the summation of cubic polynomial melting point equations versus the use of osmotic virial equations with cross coefficients. The calculated values of the model standard deviations suggested that both methods are satisfactory for characterizing this quaternary system.  相似文献   

6.
Sphingosine increases the permeability of model and cell membranes   总被引:1,自引:0,他引:1       下载免费PDF全文
Sphingosine, at 5-15 mol % total lipids, remarkably increases the permeability to aqueous solutes of liposomal and erythrocyte ghost membranes. The increased permeability cannot be interpreted in terms of leakage occurring at the early stages of a putative membrane solubilization by sphingosine, nor is it due to a sphingosine-induced generation of nonlamellar structures, or flip-flop lipid movement. Instead, sphingosine stabilizes (rigidifies) gel domains in membranes, raising their melting temperatures and increasing the transition cooperativity. Structural defects originating during the lateral phase separation of the "more rigid" and "less rigid" domains are likely sites for the leakage of aqueous solutes to the extravesicular medium. The presence of coexisting domains in the plasma membrane makes it a target for sphingosine permeabilization. The sphingosine-induced increase in rigidity and breakdown of the plasma membrane permeability barrier could be responsible for some of the physiological effects of sphingosine.  相似文献   

7.
The effect of a number of tetramethylammonium salts on the equilibria and kinetics of the disorder to order transition in the polysaccharide κ-carrageenan have been investigated. Data from the temperature dependence of optical rotation show that anion stabilization of the ordered form follows the lyotropic series I? > Br? > NO > Cl? > F?. Stopped-flow polarimetry was used to study the kinetics of conformational ordering following a rapid increase in salt concentration. The transition to the new equilibrium position was shown to be biphasic for all of the tetramethylammonium salts studied. The rate equation for the fast phase and the temperature dependence of the observed forward rate constant accord with a cooperative dimerization process. Activation parameters for helix nucleation, ΔH* and ΔS*, vary with both salt concentration and (at constant ionic strength) the anion type, increasing through the lyotropic series from I? to F?. The slow phase shows second-order kinetics, and is interpreted as further stabilization of the ordered form either through limited aggregation or annealing. The rate constant for the slow phase also follows the lyotropic series. Thus we have shown that both the growth and nucleation processes are anion dependent.  相似文献   

8.
According to "fluid-mosaic model," plasma membrane is a bilayer constituted by phospholipids which regulates the various cellular activities governed by many proteins and enzymes. Any chemical, biochemical, or physical factor has to interact with the bilayer in order to regulate the cellular metabolism where various physicochemical properties of membrane, i.e., polarization, fluidity, electrostatic potential, and phase state may get affected. In this study, we have observed the in vivo effects of a pro-carcinogen 1,2-dimethylhydrazine dihydrochloride (DMH) and the two non steroidal anti-inflammatory drugs (NSAIDs); sulindac and celecoxib on various properties of the plasma membrane of colonocytes, i.e., electric potential, fluidity, anisotropy, microviscosity, lateral diffusion, and phase state in the experimentally induced colorectal cancer. A number of fluorescence probes were utilized like membrane fluidity and anisotropy by 1,6-diphenyl-1,3,5-hexatriene, membrane microviscosity by Pyrene, membrane electric potential by merocyanine 540, lateral diffusion by N-NBD-PE, and phase state by Laurdan. It is observed that membrane phospholipids are less densely packed and therefore, the membrane is more fluid in case of carcinogenesis produced by DMH than control. But NSAIDs are effective in reverting back the membrane toward normal state when co-administered with DMH. The membrane becomes less fluid, composed of low electric potential phospholipids whose lateral diffusion is being prohibited and the membrane stays mostly in relative gel phase. It may be stated that sulindac and celecoxib, the two NSAIDs may exert their anti-neoplastic role in colorectal cancer via modifying the physicochemical properties of the membranes.  相似文献   

9.
The effects of combined cold, acid and ethanol on the membrane physical state and on the survival of Oenococcus oeni were investigated. Membrane fluidity was monitored on intact whole O. oeni cells subjected to single and combined cold, acid and ethanol shocks by using fluorescence anisotropy with 1,6-diphenyl-1,3,5-hexatriene (DPH) as a probe. Results showed that cold shocks (14 and 8 degrees C) strongly rigidified plasma membrane but did not affect cell survival. In contrast, ethanol shocks (10-14% v/v) induced instantaneous membrane fluidisation followed by rigidification and resulted in low viability. Acid shocks (pH 4.0 and pH 3.0) exerted a rigidifying effect on membrane without affecting cell viability. Whatever the shock orders, combined cold (14 degrees C) and ethanol (14% v/v) shocks resulted in strong membrane rigidification. Interestingly, O. oeni survived combined cold and ethanol shocks more efficiently than single ethanol shock. Membrane rigidification was induced by ethanol-and-acid (10% v/v - pH 3.5) shock and correlated with total cell death. In contrast, O. oeni recovered its viability when subjected to cold (8 degrees C)-then-ethanol-and-acid shock which strongly rigidified the membrane. Our results suggested a positive short-term effect of combined cold, acid and ethanol shocks on membrane fluidity and viability of O. oeni.  相似文献   

10.
The effects of salts on helix formation of linear (outer) chains of branched alpha-glucane, muscle glycogen, was judged upon by the state of polyiodine chromophore of the iodine reaction surrounded by a polysaccharide asymmetric helix and recorded by the circular dichroism method. It was demonstrated that apart from the known changes in the absorption of the iodine-glycogen complex the salts induce changes in the ellipticity by affecting the helix formation of the linear chains of the polysaccharide. The nature of these effects depends on the type and concentration of the salt used. Monovalent metal salts produce a more favourable effect on helix formation than the divalent metal salts. Among divalent metal salts transient metal salts produce a weaker effect. The action of neutral salts on helix formation is of dual nature: helix formation and helix destruction. The helix formation is largely impaired by high concentrations of LiCl (greater than 6 M) or CaCl2 (greater than 2M). It was shown that a certain role in the mechanism of neutral salt action on helix formation belongs both to electrostatic and lyotropic effects. The latter determine the effects of salts on helix formation at concentrations above the monomolar one, when the specific effect of a salt is especially well-pronounced. The salts which enhance the orderliness of H2O structure produce a favourable effect on helix formation of the linear polysaccharide chains and, consequently, on the iodine reaction. In terms of molar efficiency of their action on the iodine reaction the salts correspond to the Hofmeister lyotropic sequence.  相似文献   

11.
Extensive scientific efforts are directed towards finding new and improved platinum anticancer agents. A promising approach is the encapsulation of cisplatin in sterically stabilized, long circulating, PEGylated 100 nm liposomes. This liposomal cisplatin (STEALTH cisplatin, formerly known as SPI-77) shows excellent stability in plasma and has a longer circulation time, greater efficacy and lower toxicity than much free cisplatin. However, so far, the physicochemical characterization of STEALTH cisplatin has been limited to size distribution, drug-to-lipid ratio and stability. Information on the physical state of the drug in the liposome aqueous phases and the drug's interaction with the liposome membrane has been lacking. This study was aimed at filling this gap. We report a multinuclear NMR study in which several techniques have been used to assess the physical nature of cisplatin in liposomal formulations and if and to what extent the drug affects the liposome phospholipids. Since NMR detects only the soluble cisplatin in the liposomes and not the insoluble drug, combining NMR and atomic absorption data enables one to determine how much of the encapsulated drug is soluble in the intraliposomal aqueous phase. Our results indicate that almost all of the cisplatin remains intact during the loading process, and that the entire liposomal drug is present in a soluble form in the internal aqueous phase of the liposomes.  相似文献   

12.
The effects of combined cold, acid and ethanol on the membrane physical state and on the survival of Oenococcus oeni were investigated. Membrane fluidity was monitored on intact whole O. oeni cells subjected to single and combined cold, acid and ethanol shocks by using fluorescence anisotropy with 1,6-diphenyl-1,3,5-hexatriene (DPH) as a probe. Results showed that cold shocks (14 and 8 °C) strongly rigidified plasma membrane but did not affect cell survival. In contrast, ethanol shocks (10-14% v/v) induced instantaneous membrane fluidisation followed by rigidification and resulted in low viability. Acid shocks (pH 4.0 and pH 3.0) exerted a rigidifying effect on membrane without affecting cell viability. Whatever the shock orders, combined cold (14 °C) and ethanol (14% v/v) shocks resulted in strong membrane rigidification. Interestingly, O. oeni survived combined cold and ethanol shocks more efficiently than single ethanol shock. Membrane rigidification was induced by ethanol-and-acid (10% v/v - pH 3.5) shock and correlated with total cell death. In contrast, O. oeni recovered its viability when subjected to cold (8 °C)-then-ethanol-and-acid shock which strongly rigidified the membrane. Our results suggested a positive short-term effect of combined cold, acid and ethanol shocks on membrane fluidity and viability of O. oeni.  相似文献   

13.
实验显示,一种氨基酸混合液(含异亮氨酸、甲硫氨酸和苯丙氨酸,添加浓度分别为1.0、0.5和2.0g/L)能显著提高自絮凝酵母——粟酒裂殖酵母和酿酒酵母融合株SPSC的耐酒精能力。实验将菌体分别培养于添加(试验组)和未添加(对照组)该氨基酸混合液的条件下,然后收集菌体进行酒精(20%,V/V)冲击试验(30℃,9h),结果,试验组的菌体尚有一半以上的存活细胞,而对照组的菌体全部死亡。通过对试验组和对照组的菌体细胞膜蛋白质氨基酸组成分析发现,试验组的菌体耐酒精能力提高与所添加氨基酸组入菌体的细胞膜密切相关。以DPH为荧光探针的细胞膜流动性测定分析进一步揭示,氨基酸组入菌体的细胞膜后,细胞膜能有效抵抗高浓度酒精冲击诱发的膜流动性的提高,从而维持膜的稳定。因此,实验首次揭示膜蛋白氨基酸组成可通过改变膜流动性而影响酵母菌的耐酒精能力。  相似文献   

14.
The transport of the antineoplastic drug doxorubicin (Adriamycin) in human red blood cells was investigated by measuring the net efflux from loaded cells. Previous data indicated that doxorubicin transport was a Fickian diffusion transport process of the electrically neutral molecule through the lipid domain of the cell membrane (Dalmark, 1981 [In press]). However, doxorubicin transport showed saturation kinetics and a concentration-dependent temperature dependence with nonlinear Arrhenius plots. The two phenomena were related to the doxorubicin partition coefficient between 1-octanol and a water phase. This relationship indicated that the two phenomena were caused by changes in the physiochemical properties of doxorubicin in the aqueous phase and were not caused by interaction of doxorubicin with cell membrane components. The physicochemical properties of doxorubicin varied with concentration and temperature because of the ability of doxorubicin to form polymers by self-association in aqueous solution like other planar aromatic molecules through pi-electron orbital interaction. The hypothesis is proposed that doxorubicin transport across cell membranes takes place by simple Fickian diffusion.  相似文献   

15.
The physicochemical conditions of the environment in which life arose are discussed, along with the appearance of protocells, their membranous envelope and the subsequent appearance of plasma membranes. The hypothesis that the first cells originated in reservoirs where potassium and magnesium salts (necessary for protein synthesis and thus for the formation of a cellular membrane) dominated, is substantiated. This was followed by adaptation of these cells to an external ocean-like environment, where sodium salts were prevalent. This stage of evolution required a plasma membrane capable of providing ion asymmetry between the cell’s cytoplasm and the external environment. At this stage of evolution in the predecessors of animals, the process of removal of sodium ions and accumulation of potassium ions began functioning in the plasma membrane. The problem of multicellular organisms was solved differently by animals and plants: animals developed a system of the extracellular fluids that provided stable physicochemical conditions on the external surface of the plasma membrane. Sodium ions were the stimulus for the formation of the polar cell, where sodium channels are situated on one side of the plasma membrane, and sodium pumps on the other, allowing the development of the absorption, excretion and breathing functions. The formation of fluids of the internal environment enabled the development of homeostasis and facilitated the biological progress of the animal kingdom.  相似文献   

16.
The concentration dependence of the pressure- and temperature-induced cloud point transition (Pc and Tc, respectively) of aqueous solutions of an elastin-like polypeptide with a repeating pentapeptide Val-Pro-Gly-Ile-Gly sequence (MGLDGSMG(VPGIG)40VPLE) was investigated by using apparent light scattering, differential scanning calorimetry, and circular dichroism methods. In addition, the effects of salts and surfactants on these properties were investigated. The Pc and Tc of the present peptide in aqueous solution were strongly concentration dependent. The calorimetric measurements showed that the enthalpy of transitions was 300-400 kJ/mol, i.e., 7-10 kJ/mol per VPGIG pentamer. The Tc of the (VPGIG)40 solution was highly affected by the addition of inert salts or SDS. The effects of salts were consistent with those observed in the lyotropic series or Hoffmeister series. The CD spectrum at low peptide concentrations indicated that the present peptide forms type II beta-turn-like structure(s) at higher temperatures, but the temperature dependence of random coil diminishment (195 nm) and beta-turn formation (210 nm) were not exactly coincident. A hypothetical mechanism of the (VPGIG)40 phase transition that could account for these observations was postulated. Observations suggest that the temperature-responsive properties of the elastin model peptides occur via a mechanism involving conformational change-association-aggregation and that the first two are strongly interactive.  相似文献   

17.
Wool is a complex material, composed of cuticle and epicuticle cells, surrounded by a cell membrane complex. Wool fibers absorb moisture from air, and, once immersed in water, they take up considerable amounts of liquid. The water absorbency parameter can be determined from weight gain, according to a standard method, and used to quantify this phenomenon. In this paper we report a study on the water absorbency (or retention) of untreated wool fibers in the presence of aqueous 1 M salt solutions at 29 degrees C and a relative humidity of either 33% or 56%. The effect of anions was determined by selecting a wide range of different sodium salts, while the effect of cations was checked through some chlorides and nitrates. Our results show a significant specific ion and ion pair "Hofmeister" effects, that change the amount of water absorbed by the fibers. To understand this phenomenon, the water absorbency parameter (A(w)) is compared to different physicochemical parameters such as the lyotropic number, free energy of hydration of ions, molar surface tension increment, polarizability, refractive index increment, and molar refractivity. The data indicate that this Hofmeister phenomenon is controlled by dispersion forces that depend on the polarizability of ionic species, their adsorption frequencies, the solvent, and the substrate. These dispersion forces dominate the behavior in concentrated solutions. They are in accord with new developing theories of solutions and molecular interactions in colloidal systems that account for Hofmeister effects.  相似文献   

18.
Abstract Yeast cells of Candida albicans were treated with the polyene antibiotic filipin which specifically binds with sterol and induces morphological lesions in membranes. The plasma membrane in the exponential phase revealed numerous filipin-induced deformations. In contrast, most areas of the plasma membrane in the stationary phase resisted filipin-induced deformation, even though the cell wall did not prevent the entrance of filipin. These facts suggest that the organisation or physicochemical properties of the plasma membrane in the stationary phase is different from that in the exponential phase.  相似文献   

19.
We obtained plasma membranes from cultured human skin fibroblasts. The preparation was enriched 10-fold with about 40 percent yield. There was minimal contamination with other cell membranes. Various observations indicated vesicular conformation of a portion of the plasma membranes, notably by electron microscopy and from the effect of osmotic pressure on the distribution of solutes between mass and medium at equilibrium. Other studies indicated that these fibroblast plasma membrane vesicles retained mediated transport processes for a variety of substrates. The evidence included: stereospecific and temperature-dependent uptake of glucose; dependence of L-alanine uptake on sodium ion and an inward-directed transmembrane Na+ gradient; stimulation of L-alanine uptake, with overshoot, by enhancement of the interior-negative transmembrane potential; concentration dependent uptake of methotrexate with apparent competitive inhibition by folinic acid; stimulation of L-lysine uptake by trans-L-arginine. These findings indicate that human fibroblast plasma membrane vesicles could be used to study membrane transport processes and, perhaps, expression of mutant genes that cause inborn errors of transport.  相似文献   

20.
Low water availability is the most ubiquitous cause of stress for terrestrial plants, animals and microorganisms, and has a major impact on ecosystem function and agricultural productivity. Studies of water stress have largely focused on conditions that affect cell turgor, i.e. induce osmotic stress. We show that chaotropic solutes that do not affect turgor reduce water activity, perturb macromolecule-water interactions and thereby destabilize cellular macromolecules, inhibit growth, and are powerful mediators of water stress in a typical soil bacterium, Pseudomonas putida. Chaotropic solute-induced water stress resulted mostly in the upregulation of proteins involved in stabilization of biological macromolecules and membrane structure. Many environmental pollutants and agricultural products are chaotropic chemicals and thus constitute a previously unrecognised but common form of biological stress in water bodies and soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号