首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
  总被引:2,自引:0,他引:2  
Predicting suitable habitat and the potential distribution of invasive species is a high priority for resource managers and systems ecologists. Most models are designed to identify habitat characteristics that define the ecological niche of a species with little consideration to individual species' traits. We tested five commonly used modelling methods on two invasive plant species, the habitat generalist Bromus tectorum and habitat specialist Tamarix chinensis , to compare model performances, evaluate predictability, and relate results to distribution traits associated with each species. Most of the tested models performed similarly for each species; however, the generalist species proved to be more difficult to predict than the specialist species. The highest area under the receiver-operating characteristic curve values with independent validation data sets of B. tectorum and T. chinensis was 0.503 and 0.885, respectively. Similarly, a confusion matrix for B. tectorum had the highest overall accuracy of 55%, while the overall accuracy for T. chinensis was 85%. Models for the generalist species had varying performances, poor evaluations, and inconsistent results. This may be a result of a generalist's capability to persist in a wide range of environmental conditions that are not easily defined by the data, independent variables or model design. Models for the specialist species had consistently strong performances, high evaluations, and similar results among different model applications. This is likely a consequence of the specialist's requirement for explicit environmental resources and ecological barriers that are easily defined by predictive models. Although defining new invaders as generalist or specialist species can be challenging, model performances and evaluations may provide valuable information on a species' potential invasiveness.  相似文献   

3.
    
Non‐native species can have severe impacts on ecosystems. Therefore, predictions of potentially suitable areas that are at risk of the establishment of non‐native populations are desirable. In recent years, species distribution models (SDMs) have been widely applied for this purpose. However, the appropriate selection of species records, whether from the native area alone or also from the introduced range, is still a matter of debate. We combined analyses of native and non‐native realized climate niches to understand differences between models based on all locations, as well as on locations from the native range only. Our approach was applied to four estrildid finch species that have been introduced to many regions around the world. Our results showed that SDMs based on location data from native areas alone may underestimate the potential distribution of a given species. The climatic niches of species in their native ranges differed from those of their non‐native ranges. Niche comparisons resulted in low overlap values, indicating considerable niche shifts, at least in the realized niches of these species. All four species have high potential to spread over many tropical and subtropical areas. However, transferring these results to temperate areas has a high degree of uncertainty, and we urge caution when assessing the potential spread of tropical species that have been introduced to higher latitudes.  相似文献   

4.
  总被引:2,自引:0,他引:2  
Aim Niche‐based distribution models are often used to predict the spread of invasive species. These models assume niche conservation during invasion, but invasive species can have different requirements from populations in their native range for many reasons, including niche evolution. I used distribution modelling to investigate niche conservatism for the Asian tiger mosquito (Aedes albopictus Skuse) during its invasion of three continents. I also used this approach to predict areas at risk of invasion from propagules originating from invasive populations. Location Models were created for Southeast Asia, North and South America, and Europe. Methods I used maximum entropy (Maxent ) to create distribution models using occurrence data and 18 environmental datasets. One native model was created for Southeast Asia; this model was projected onto North America, South America and Europe. Three models were created independently for the non‐native ranges and projected onto the native range. Niche overlap between native and non‐native predictions was evaluated by comparing probability surfaces between models using real data and random models generated using a permutation approach. Results The native model failed to predict an entire region of occurrences in South America, approximately 20% of occurrences in North America and nearly all Italian occurrences of A. albopictus. Non‐native models poorly predict the native range, but predict additional areas at risk for invasion globally. Niche overlap metrics indicate that non‐native distributions are more similar to the native niche than a random prediction, but they are not equivalent. Multivariate analyses support modelled differences in niche characteristics among continents, and reveal important variables explaining these differences. Main conclusions The niche of A. albopictus has shifted on invaded continents relative to its native range (Southeast Asia). Statistical comparisons reveal that the niche for introduced distributions is not equivalent to the native niche. Furthermore, reciprocal models highlight the importance of controlling bi‐directional dispersal between native and non‐native distributions.  相似文献   

5.
    
We conduct a phylogeographic study of the Crested Drongo (Dicrurus forficatus forficatus), a broadly distributed bird species on Madagascar. We first determined the demographic and spatial pattern inferred from mitochondrial and nuclear data, and then compared these results with predictions from a present to 0.120‐Myr‐old reconstruction of the spatial dynamics of the range of D. f. forficatus on Madagascar, enabling putative areas of stability (lineage persistence) to be detected. Weak genetic structure along an east–west pattern and comparatively low genetic diversity were recovered, with strong evidence of population expansion found at all ten loci sampled. The palaeoclimatic distribution models over the past 0.120 Myr suggest the presence of extensive areas of suitable climate in the east and west for the species since its colonization of Madagascar, a result in strong concordance with the spatial and genetic signal derived from our multilocus data set. © 2013 The Linnean Society of London  相似文献   

6.
    
To provide an assessment of climate change impacts on a set of wild pollinators restricted to one of the regions with the greatest diversity of bees in the world. Also, we aimed to test whether functional groups responded differently to climate projections.  相似文献   

7.
    
粗毛牛膝菊在中国的入侵与生态位漂移有关在外来物种入侵和扩散过程中,生态位的漂移可能起到了重要作用。粗毛牛膝菊(Galinsoga quadriradiata) 在中国已造成了较为严重的入侵,占据了许多与其原产地不同的气候区。为此,本研究力图揭示粗毛牛膝菊入侵过程中的气候生态位漂移,分析其在该物种入 侵中国过程中可能发挥的作用。本研究结合粗毛牛膝菊原 产地和入侵地的分布点与气候数据, 采用Maxent模型预测了其在中国潜在的分布,并采用主成分分析的方法评估 了在入侵中国过程中粗毛牛膝菊气候生态位的漂移。模型结果显示,该物种原产地种群和入侵地种群之间只 有32.7%的生态位重叠,两个种群的生态位相似性较低(Schoener's D = 0.093, P < 0.005),这暗示了在其入侵过程中发生了生态位漂移。相比于其原产地种群,其在中国的入侵种群气候生态位的整体范围和中心都明 显地漂移向了温度更低、降水更少的区域;中国南方大部分区域属于粗毛牛膝菊的稳定适生区,而位于入侵 前沿的北方地区则存在局域适应和潜在拓殖区域。这些研究结果说明,粗毛牛膝菊在中国的入侵种群仍处于准平衡阶段,未来有可能继续向新的适生区扩散入侵,其生态位的变化有力地解释了为什么该物种在中国的入侵性强、危害范围大。  相似文献   

8.
    
1. Myrmica rubra (European fire ant) has invaded northern latitude coastal areas in North America. This macroscale distribution suggests that M. rubra is moisture‐ and temperature‐limited, but the distribution of the invaded range may reflect the legacy of original introduction locations preserved by limited dispersal. 2. This study examined a two‐decade population change in M. rubra (1994–2015) and the microscale abiotic (moisture and temperature), biotic (plants), anthropogenic (pesticide) and physiological (thermal tolerance) limits on the invasion at the Tifft Nature Preserve in Buffalo, NY (U.S.A.). Changes in the abundance of native ants and other invertebrates were also examined. 3. Despite localised declines with pesticide treatments, overall M. rubra forager abundance increased 27% between 1994 and 2015. Abundance increased the most in the warmest areas (native ants were unaffected by temperature), but M. rubra colony locations were strongly linked to higher soil moisture and lower soil temperature. Myrmica rubra ants also exhibited relatively low thermal tolerances consistent with high‐latitude and high‐elevation ants. 4. Where local M. rubra populations increased the most, native ant species decreased, and where local M. rubra populations declined, native ant species increased. Some arthropod species had lower abundance with M. rubra presence, but the impacts were less striking. 5. Myrmica rubra population growth was promoted at the microhabitat scale where relatively higher temperatures prompted foraging, and relatively lower temperatures and high moisture supported nesting. These results suggest that macroscale M. rubra invaded‐range distributions in northern climates near coastal areas are replicated at the microscale where the ant prefers cooler, moister microsites.  相似文献   

9.
Abstract  The red imported fire ant, Solenopsis invicta , a damaging invasive pest, was discovered in February 2001 in Brisbane, Australia at two sites, Fisherman Islands and suburban Richlands-Wacol. Using four microsatellite loci and the protein marker Gp-9 , we compared the two infestations with each other, and with potential source populations in North and South America to better understand the history of their introduction to Brisbane. Based on an analysis of molecular variance, as well as a maximum likelihood tree of colonies from the two Australian sites, we found that the two sites were genetically distinct and were almost certainly introduced separately. All of the colonies at Fisherman Islands were monogynous, headed by a single queen, while the Richlands-Wacol site had a mixture of single-queen monogynous and multiple-queen polygynous colonies. However, the monogynous and polygynous colonies at the Richlands-Wacol site were not genetically distinct from each other, and probably constitute a single, mixed introduction. Based on allele frequencies at the microsatellite loci, and Gp-9 , both Australian infestations were more similar to North American populations than to South American, though the Fisherman Islands infestation was intermediate, making it difficult to assign. Thus, there has been one introduction from either a North or South American monogynous population at Fisherman Islands, and one introduction from a mixed monogynous/polygynous North American population at Richlands-Wacol. These findings have implications for the control of the current infestations, as well as for the quarantine regulations necessary to prevent additional introductions to Australia.  相似文献   

10.
红火蚁在中国的分布区预测   总被引:53,自引:7,他引:53  
利用CLIMEX和GARP生态位模型2种方法对红火蚁在中国大陆的潜在分布区进行了分析预测。结果表明该虫在中国东南部的广大地区均可能适生或造成危害,其自然扩散的北界可能达到山东、天津、河北南部和山西南部。  相似文献   

11.
    
Ecological Niche Models (ENMs) are often used to project species distributions within alien ranges and in future climatic scenarios. However, ENMs depend on species-environment equilibrium, which may be absent for actively expanding species. We present a novel framework to estimate whether species have reached environmental equilibrium in their native and alien ranges. The method is based on the estimation of niche breadth with the accumulation of species occurrences. An asymptote will indicate exhaustive knowledge of the realised niches. We demonstrate the CNA framework for 26 species of mammals, amphibians, and birds. Possible outcomes of the framework include: (1) There is enough data to quantify the native and alien realised niches, allowing us to calculate niche expansion between the native and alien ranges, also indicating that ENMs can be reliably projected to new environmental conditions. (2) The data in the native range is not adequate but an asymptote is reached in the alien realised niche, indicating low confidence in our ability to evaluate niche expansion in the alien range but high confidence in model projections to new environmental conditions within the alien range. (3) There is enough data to quantify the native realised niche, but not enough knowledge about the alien realised niche, hindering the reliability of projections beyond sampled conditions. (4) Both the native and alien ranges do not reach an asymptote, and thus few robust conclusions about the species’ niche or future projections can be made. Our framework can be used to detect species’ environmental equilibrium in both the native and alien ranges, to quantify changes in the realised niche during the invasion processes, and to estimate the likely accuracy of model projections to new environmental conditions.  相似文献   

12.
    
Forecasting the impacts of climate change on species distribution has several implications for conservation. Plinia edulis is a rare and threatened tree species from Brazilian Atlantic Rainforest. In this study, we assessed the impact of global climate change on the distribution of P. edulis. Additionally, we evaluated the efficacy of the Brazilian protected network to conserve this species. Ecological niche models were built using the maximum entropy method based on occurrence records and environmental predictors. Models predicted a reduction of climatically suitable areas for P. edulis in all evaluated scenarios in the coming years. Furthermore, we observed that Brazilian protected areas (PAs) are ineffective to conserve this species. Given the fact that P. edulis is a promising tree species rarely found within Brazilian PAs and threatened by global climate change, we strongly recommend the cultivation of this multipurpose species in agroforestry systems, landscaping and homegardens in order to promote its conservation through sustainable use.  相似文献   

13.
    
  1. Sipha (Rungsia) maydis, Sipha (Rungsia) elegans, Sipha (Sipha) glyceriae and especially Sipha (Sipha) flava are considered to be virus vectors and serious pests of crops and pasture grasses. Ecological niche modelling, a useful tool for assessing potential geographical distributions of species, was used to predict the risk of invasion of these four species of the Siphini (Hemiptera, Aphididae) on a global scale.
  2. The maximum entropy model based on associations between unique occurrence localities and a set of environmental variables was used. Obtained models of potentially suitable habitats, based only on climatic variables, suggest that favourable conditions for each species may be present on every continent. However, S. (S.) flava appears to be potentially the most widespread species. Moreover, the resulting maps provide important information on the corridors by which invasive species are able to penetrate into new areas.
  3. A mean of the area under the receiver operating characteristic curve at the levels of 0.937, 0.947, 0.968, 0.937 for S. (R.) maydis, S. (R.) elegans, S. (S.) glyceriae and S. (S.) flava, respectively, indicated a high level of discriminatory power of the maximum entropy model.
  4. A jackknife test indicated that the precipitation of the coldest quarter with the highest gain value was the most important environmental variable restricting the expansion of the studied species.
  相似文献   

14.
  总被引:7,自引:0,他引:7  
Ageratina adenophora (Sprengel) R. King & H. Robinson (=Eupatorium adenophorum Sprengel) is one of the worst invasive alien species in China. Since A. adenophora was first noticed in Yunnan Province of China in the 1940s, its rapid spread has caused an ecological problem in south‐western China. Understanding its historical invasion pattern and its potential for further spread is needed to plan the management of the species. We reconstructed the historical process of its invasion and analysed its ecological preferences in the invaded region. After a lag phase of 20 years (1940–60), A. adenophora spread rapidly throughout the south and middle subtropical zones in Yunnan, Guizhou, Sichuan, and Guangxi, China, with an average expansion rate of 20 km per year. It spread relatively slowly in north subtropical areas, with an average expansion rate of 6.8 km per year. It has not established in warm temperate areas within the invaded regions. Although range expansion in Yunnan stopped after 1990, the expansion of its range into neighbouring provinces indicates that A. adenophora has not reached the full potential of its distribution and its range is still rapidly expanding within China. We applied ecological niche modelling (GARP — Genetic Algorithm for Rule‐set Prediction) to predict potential invasion areas in mainland China on the basis of occurrence points within colonized areas where A. adenophora has reached equilibrium. The predictions, confirmed by the range of values of four key environmental parameters, generally match the parameters of the geography and ecology in the invaded region. Southern and south‐central China have climatic conditions suggestive of a high potential for invasion by A. adenophora. Climatic conditions in northern and western China appear unsuitable for A. adenophora. Urgent measures should be taken to prevent this species from further spreading into the vast areas of potential habitat in southern and south‐central China.  相似文献   

15.
    
Supercolonies of the red fire ant Solenopsis saevissima (Smith) develop in disturbed environments and likely alter the ant community in the native range of the species. For example, in French Guiana only 8 ant species were repeatedly noted as nesting in close vicinity to its mounds. Here, we verified if a shared set of biological, ecological, and behavioral traits might explain how these 8 species are able to nest in the presence of S. saevissima. We did not find this to be the case. We did find, however, that all of them are able to live in disturbed habitats. It is likely that over the course of evolution each of these species acquired the capacity to live syntopically with S. saevissima through its own set of traits, where colony size (4 species develop large colonies), cuticular compounds which do not trigger aggressiveness (6 species) and submissive behaviors (4 species) complement each other.  相似文献   

16.
Species delimitation within recently evolved groups can be challenging because species may be difficult to distinguish morphologically. Following the General Lineage Concept, we apply a multiple evidence approach to assess species limits within the carpet chameleon Furcifer lateralis, which is endemic to Madagascar and exported in large numbers for the pet trade. Cryptic speciation within F. lateralis was considered likely because this species (1) has a vast distribution, (2) occupies exceptionally diverse habitats and (3) exhibits subtle regional differences in morphology. Phylogenetic trees reconstructed using nuclear and mitochondrial genes recovered three well-supported clades corresponding with geography. Morphological results based on canonical variates analysis show that these clades exhibit subtle differences in head casque morphology. Ecological niche modelling results found that these phylogenetic groups also occupy unique environmental space and exhibit patterns of regional endemism typical of other endemic reptiles. Combined, our findings provide diverse yet consistent evidence for the existence of three species. Consequently, we elevate the subspecies F. lateralis major to species rank and name a new species distributed in northern and western Madagascar. Initial ecological divergence, associated with speciation of F. lateralis in humid eastern habitat, fits the Ecographic Constraint model for species diversification in Madagascar. By contrast, the second speciation event provides some support for the Riverine Barrier model, with the Mangoky River possibly causing initial isolation between species. These findings thus support two contrasting models of speciation within closely related species and demonstrate the utility of applying a combined-evidence approach for detecting cryptic speciation.  相似文献   

17.
    
  1. The round goby (Neogobius melanostomus) is among the fastest-spreading introduced aquatic species in North America and is radiating inland from the Great Lakes into freshwater ecosystems across the landscape. Predicting and managing the impacts of round gobies requires information on the factors influencing their distribution in habitats along the invasion front, yet this information is not available for many recently invaded ecosystems. We evaluated the seasonal habitat use and biomass of round gobies in an inland temperate lake to define the spatiotemporal scope of biological interactions at the leading edge of the round goby invasion.
  2. Using novel statistical approaches, we combined hierarchical models that control for imperfect species detection with flexible smooth terms to describe non-linear relationships between round goby abundance and environmental gradients. Subsequently, we generated accurate detection-corrected estimates of the standing stock biomass of round gobies.
  3. Our results show seasonally differentiated habitat niches, where suitable round goby habitat in summer months is restricted to shallow depths (<18.4 m) with a mixture of vegetative and mussel cover. We found high round goby biomass of 122 kg/ha in occupied habitats during the summer, with a total lake-wide biomass of 766,000 kg. In winter, round gobies migrate to deep offshore habitats and disperse, dramatically altering their scope for biological interactions with resident aquatic species across summer and winter seasons.
  4. The results of this study indicate that the scope of biological interactions in inland lakes may be seasonally variable, with potential for high round goby biomass in shallow lakes or at the periphery of deep lakes in the summer months. Such shallow-water habitats may therefore present higher risk of ecological impacts from round gobies in invaded lentic ecosystems. As round gobies expand inland, consideration of seasonal habitat use will be an important factor in predicting the impacts of this pervasive invader.
  相似文献   

18.
    
Species distribution models (SDMs) are broadly used to predict species distributions from available presence data. However, SDMs results have been criticized for several reasons mainly related to two basic characteristics of most SDMs: 1) general lack of reliable species absence information, 2) the frequent use of an arbitrary geographical extent (GE) or accessible area of the species. These impediments have motivated us to generate a procedure called niche of occurrence (NOO). NOO provides the probable distribution of species (realized niche) relying solely on partial information about presence of species. It operates within a natural geographical extent delimited by available observations and avoids using misleading thresholds to obtain binary presence–absence estimations when the species prevalence is unknown. In this study the main characteristics of NOO are presented, comparing its performance with other recognized and more complex SDMs by using virtual species to avoid the omnipresent error sources of real data sets.  相似文献   

19.
    
The genetic composition of founding populations is likely to play a key role in determining invasion success. Individual genotypes may differ in habitat preference and environmental tolerance, so their ability to colonize novel environments can be highly variable. Despite the importance of genetic variation on invasion success, its influence on the potential distribution of invaders is rarely investigated. Here, we integrate population genomics and ecological niche models (ENMs) into a single framework to predict the distribution of globally invasive common ragweed (Ambrosia artemisiifolia) in Australia. We identified three genetic clusters for ragweed and used these to construct cluster-specific ENMs and characterize within-species niche differentiation. The potential range of ragweed in Australia depended on the genetic composition and continent of origin of the introduced population. Invaders originating from warmer, wetter climates had a broader potential distribution than those from cooler, drier ones. By quantifying this change, we identified source populations most likely to expand the ragweed distribution. As prevention remains the most effective method of invasive species management, our work provides a valuable way of ranking the threat posed by different populations to better inform management decisions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号