首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The folate receptor (FR) is upregulated in various cancer types (FR-α isoform) and in activated macrophages (FR-β isoform) which are involved in inflammatory and autoimmune diseases, but its expression in healthy tissues and organs is highly restricted to only a few sites (e.g kidneys). Therefore, the FR is a promising target for imaging and therapy of cancer and inflammation using folate-based radiopharmaceuticals. Herein, we report the synthesis and evaluation of a novel folic acid conjugate with improved properties suitable for positron emission tomography (PET). [(18)F]-fluoro-deoxy-glucose folate ([(18)F]3) was synthesized based on the click chemistry approach using 2-deoxy-2-[(18)F]fluoroglucopyranosyl azide and a folate alkyne derivative. The novel radiotracer [(18)F]3 was produced in good radiochemical yields (25% d.c.) and high specific radioactivity (90 GBq/μmol). Compared to previously published (18)F-folic acid derivatives, an increase in hydrophilicity was achieved by using a glucose entity as a prosthetic group. Biodistribution and PET imaging studies in KB tumor-bearing mice showed a high and specific uptake of the radiotracer in FR-positive tumors (10.03 ± 1.12%ID/g, 60 min p.i.) and kidneys (42.94 ± 2.04%ID/g, 60 min p.i.). FR-unspecific accumulation of radioactivity was only found in the liver (9.49 ± 1.13%ID/g, 60 min p.i.) and gallbladder (17.59 ± 7.22%ID/g, 60 min p.i.). No radiometabolites were detected in blood, urine, and liver tissue up to 30 min after injection of [(18)F]3. [(18)F]-fluoro-deoxy-glucose-folate ([(18)F]3) is thus a promising PET radioligand for imaging FR-positive tumors.  相似文献   

2.
Rat 9L gliosarcoma cells infiltrating the normal brain have been shown previously to accumulate only approximately 30% as much boron as the intact tumor after administration of the boronated amino acid p-boronophenylalanine (BPA). Long-term i.v. infusions of BPA were shown previously to increase the boron content of these infiltrating tumor cells significantly. Experiments to determine whether this improved BPA distribution into infiltrating tumor cells after a long-term i.v. infusion improves tumor control after BNCT in this brain tumor model and whether it has any deleterious effects in the response of the rat spinal cord to BNCT are the subjects of the present report. BPA was administered in a fructose solution at a dose of 650 mg BPA/kg by single i.p. injection or by i.v. infusion for 2 h or 6 h, at 330 mg BPA/kg h(-1). At 1 h after the end of either the 2-h or the 6-h infusion, the CNS:blood (10)B partition ratio was 0.9:1. At 3 h after the single i.p. injection, the ratio was 0.6:1. After spinal cord irradiations, the ED(50) for myeloparesis was 14.7 +/- 0.4 Gy after i.p. administration of BPA and 12.9 +/- 0.3 Gy in rats irradiated after a 6-h i.v. infusion of BPA; these values were significantly different (P < 0.001). After irradiation with 100 kVp X rays, the ED(50) was 18.6 +/- 0.1 Gy. The boron compound biological effectiveness (CBE) factors calculated for the boron neutron capture dose component were 1.2 +/- 0.1 for the i.p. BPA administration protocol and 1.5 +/- 0.1 after irradiation using the 6-h i.v. BPA infusion protocol (P < 0.05). In the rat 9L gliosarcoma brain tumor model, the blood boron concentrations at 1 h after the end of the 2-h infusion (330 mg BPA/kg h(-1); n = 15) or after the 6-h infusion (190 mg BPA/kg h(-1); n = 13) were 18.9 +/- 2.2 microg 10B/g and 20.7 +/- 1.8 microg 10B/g, respectively. The irradiation times were adjusted individually, based on the preirradiation blood sample, to deliver a predicted 50% tumor control dose of 8.2 Gy ( approximately 30 photon-equivalent Gy) to all tumors. In the present study, the long-term survival was approximately 50% and was not significantly different between the 2-h and the 6-h infusion groups. The mode of BPA administration and the time between administration and irradiation influence the 10B partition ratio between the CNS and the blood, which in turn influences the measured CBE factor. These findings underline the need for clinical biodistribution studies to be carried out to establish 10B partition ratios as a key component in the evaluation of modified administration protocols involving BPA.  相似文献   

3.
The efficiency of boron neutron capture therapy (BNCT) for malignant gliomas depends on the selective and absolute accumulation of (10)B atoms in tumor tissues. Only two boron compounds, BPA and BSH, currently can be used clinically. However, the detailed distributions of these compounds have not been determined. Here we used secondary ion mass spectrometry (SIMS) to determine the histological distribution of (10)B atoms derived from the boron compounds BSH and BPA. C6 tumor-bearing rats were given 500 mg/kg of BPA or 100 mg/kg of BSH intraperitoneally; 2.5 h later, their brains were sectioned and subjected to SIMS. In the main tumor mass, BPA accumulated heterogeneously, while BSH accumulated homogeneously. In the peritumoral area, both BPA and BSH accumulated measurably. Interestingly, in this area, BSH accumulated distinctively in a diffuse manner even 800 microm distant from the interface between the main tumor and normal brain. In the contralateral brain, BPA accumulated measurably, while BSH did not. In conclusion, both BPA and BSH each have advantages and disadvantages. These compounds are considered to be essential as boron delivery agents independently for clinical BNCT. There is some rationale for the simultaneous use of both compounds in clinical BNCT for malignant gliomas.  相似文献   

4.
Among a variety of other factors, the clearance kinetics and routes of excretion of radiopharmaceuticals are of crucial importance for early and high tumor/background ratios and thus signal intensity in diagnostic imaging by single photon emission tomography (SPECT) or positron emission tomography (PET). To overcome the unfavorable pharmacokinetics of radiohalogenated octreotide analogues, we evaluated three carbohydrated conjugates of Tyr(3)-octreotide (TOC). Glucose ([(125)I]Gluc-TOC), maltose ([(125)I]Malt-TOC), and maltotriose ([(125)I]Mtr-TOC) derivatives of [(125)I]TOC were synthesized via Maillard reaction and subsequent radioiodination. In cells transfected with sst1-sst5, I-Malt-TOC, and I-Mtr-TOC show sst-subtype binding profiles similar to I-TOC with high affinity for sst2. Comparative biodistribution studies 10, 30, and 60 min pi in nude mice bearing rat pancreatic tumor xenografts showed fast blood clearance for all glycosylated derivatives. Due to their markedly increased hydrophilicity, [(125)I]Gluc-TOC and [(125)I]Malt-TOC were mainly cleared via the kidneys, which led to a significant decrease in activity accumulation in liver and intestine (5.3 and 1.4 versus 10.6%ID/g for [(125)I]TOC in the liver, 1.7 and 1.0 versus 3.8%ID/g for [(125)I]TOC in the intestine 60 min pi). For all compounds, hydrophilicity and uptake in liver and intestines correlate. Uptake of the carbohydrate conjugates in the kidney was comparable. Compared to the parent compound, the accumulation of the carbohydrated compounds in sst-rich tissues (pancreas, adrenals) was increased by a factor of 1.5-3.5. While tumor uptake of [(125)I]TOC (6.7 +/- 2.6%ID/g), [(125)I]Malt-TOC (5.3 +/- 1.9%ID/g), and [(125)I]Mtr-TOC (4.9 +/- 2.2%ID/g) at 30 min postinjection was comparable, accumulation of [(125)I]Gluc-TOC was significantly increased (10.1 +/- 2.8%ID/g at 30 min pi). Somatostatin receptor specificity of tumor uptake was confirmed by pretreatment, competition, and displacement experiments in vivo using 0.8 mg TOC/kg and gamma-camera imaging. Glycosylation proved to be a powerful tool for the development of high affinity sst ligands with excellent excretion profiles and improved tumor accumulation.  相似文献   

5.
The first control of a malignant tumor in vivo by porphyrin- mediated boron neutron capture therapy (BNCT) is described. In mice bearing implanted EMT-6 mammary carcinomas, boron uptake using a single injection of either p-boronophenylalanine (BPA) or mercaptoundecahydrododecaborane (BSH) was compared with either a single injection or multiple injections of the carboranylporphyrin CuTCPH. The BSH and BPA doses used were comparable to the highest doses of these compounds previously administered in a single injection to rodents. For BNCT, boron concentrations averaged 85 microg (10)B/g in the tumor and 4 microg (10)B/g in blood 2 days after the last of six injections (over 32 h) that delivered a total of 190 microg CuTCPH/g body weight. During a single 15, 20, 25 or 30 MW-min exposure to the thermalized neutron beam of the Brookhaven Medical Research Reactor, a tumor received average absorbed doses of approximately 39, 52, 66 or 79 Gy, respectively. A long-term (>200 days) tumor control rate of 71% was achieved at a dose of 66 Gy with minimal damage to the leg. Equivalent long-term tumor control by a single exposure to 42 Gy X rays was achieved, but with greater damage to the irradiated leg.  相似文献   

6.
We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer. Blood vessel normalization was induced by two doses of thalidomide in tumor-bearing hamsters on 2 consecutive days. All studies in thalidomide-treated animals were performed 48 h after the first dose of thalidomide, previously established as the window of normalization. Biodistribution studies were performed with BPA at a dose of 15.5 mg (10)B/kg in thalidomide-treated (Th+) and untreated (Th-) tumor-bearing hamsters. The effect of blood vessel normalization prior to BPA administration on the efficacy of BNCT was assessed in in vivo BNCT studies at the RA-3 Nuclear Reactor in tumor-bearing hamsters. Group I was treated with BPA-BNCT after treatment with thalidomide (Th+ BPA-BNCT). Group II was treated with BPA-BNCT alone (Th- BPA-BNCT). Group III was treated with the beam only after treatment with thalidomide (Th+ BO), and Group IV was treated with the beam only (Th- BO). Groups I and II were given the same dose of BPA (15.5 mg (10)B/kg), and all groups (I-IV) were exposed to the same neutron fluence. Two additional groups were treated with the beam only at a higher dose to exacerbate mucositis in precancerous tissue and to explore the potential direct protective effect of thalidomide on radiation-induced mucositis in a scenario of more severe toxicity, i.e. Group V (Th+ hdBO) and Group VI (Th- hdBO). The animals were followed for 28 days. Biodistribution studies revealed no statistically significant differences in gross boron content between Th+ and Th- animals. Overall tumor control (complete response + partial response) at 28 days post-treatment was significantly higher for Group I (Th+ BPA-BNCT) than for Group II (Th- BPA-BNCT): 84 ± 3% compared to 67 ± 5%. Pretreatment with thalidomide did not induce statistically significant changes in overall tumor control induced by the beam only, i.e. 15 ± 5% in Group III (Th+ BO) and 18 ± 5% in Group IV (Th- BO), or in overall tumor control induced by the high-dose beam only, i.e. 60 ± 7% in Group V (Th+ hdBO) and 47 ± 10% in Group VI (Th- hdBO). BPA-BNCT alone (Group II) induced mucositis in precancerous tissue that reached Grades 3-4 in 80% of the animals, whereas pretreatment with thalidomide (Group I) prevented mucositis Grades 3 and 4 completely. Beam-only Group III (Th+ BO) exhibited only Grade 1 mucositis in precancerous tissue, whereas 17% of the animals in beam-only Group IV (Th- BO) reached Grade 2 mucositis. High-dose beam-only group V (Th+ hdBO) exhibited only Grade 2 mucositis, whereas high-dose beam-only group VI (Th- hdBO) reached Grade 3 mucositis in 83% of the animals. In all cases mucositis in precancerous tissue was reversible. No normal tissue radiotoxicity was observed with any of the protocols. Pretreatment with thalidomide enhanced the therapeutic efficacy of BNCT and reduced precancerous tissue toxicity.  相似文献   

7.
Integrin alphavbeta3 plays a critical role in tumor angiogenesis and metastasis. Radiolabeled RGD peptides that are integrin alphavbeta3-specific are very useful for noninvasive imaging of integrin expression in rapidly growing and metastatic tumors. In this study, we determined the binding affinity of E{E[c(RGDfK)]2}2 (tetramer) and its 6-hydrazinonicotinamide conjugate (HYNIC-tetramer) against the binding of 125I-echistatin to the integrin alphavbeta3-positive MDA-MB-435 breast cancer cells. The athymic nude mice bearing MDA-MB-435 xenografts were used to evaluate the potential of ternary ligand complex [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] (TPPTS = trisodium triphenylphosphine-3,3',3' '-trisulfonate) as a new radiotracer for imaging breast cancer integrin alphavbeta3 expression by single photon emission computed tomography (SPECT). It was found that the binding affinity of tetramer (IC50 = 51 +/- 11 nM) was slightly higher than that of its dimeric analogue (IC50 = 78 +/- 27 nM) and is comparable to that of the HYNIC-tetramer conjugate (IC50 = 55 +/- 11 nM) within the experimental error. Biodistribution data showed that [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] had a rapid blood clearance (4.61 +/- 0.81 %ID/g at 5 min postinjection (p.i.) and 0.56 +/- 0.12 %ID/g at 120 min p.i.) and was excreted mainly via the renal route. [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] had high tumor uptake with a long tumor retention (5.60 +/- 0.87 %ID/g and 7.30 +/- 1.32 %ID/g at 5 and 120 min p.i., respectively). The integrin alphavbeta3-specificity was demonstrated by co-injection of excess E[c(RGDfK)]2, which resulted in a significant reduction in tumor uptake of the radiotracer. The metabolic stability of [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] was determined by analyzing urine and feces samples from the tumor-bearing mice at 120 min p.i. In the urine, about 20% of [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] remained intact while only approximately 15% metabolized species was detected in feces. SPECT images displayed significant radiotracer localization in tumor with good contrast as early as 1 h p.i. The high tumor uptake and fast renal excretion make [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] a promising radiotracer for noninvasive imaging of the integrin alphavbeta3-positive tumors by SPECT.  相似文献   

8.
Gastrin/CCK-2 receptors are overexpressed in a number of tumors such as medullary thyroid cancer (MTC) and small cell lung cancer (SCLC). Recently [D-Glu1]-minigastrin (MG) has been radiolabeled with 131I, 111In, and 90Y and evaluated in patients. This study describes the labeling and evaluation of MG with technetium-99m using two different labeling approaches: HYNIC as bifunctional coupling agent and (Nalpha-His)Ac as tridentate ligand for 99mTc(CO3) labeling. Labeling was perfomed at high specific activities using Tricine and EDDA as coligands for HYNIC-MG and [99mTc(OH2)3(CO)3]+ for (Nalpha-His)Ac-MG. Stability experiments were carried out by reversed phase HPLC analysis in PBS, serum, histidine, and cysteine solutions, as well as rat liver and kidney homogenates. Receptor binding and internalization experiments were performed using CCK-2 receptor positive AR42J rat pancreatic tumor cells. Biodistribution experiments were carried out in nude mice carrying AR42J tumors by injection of 99mTc-labeled peptide with or without coinjection of 50 microg of minigastrin I human (MGh). HYNIC-MG and (Nalpha-His)Ac-MG could be radiolabeled at high specific activities (>1 Ci/micromol). For HYNIC-MG, high labeling yields (>95%) were achieved using Tricine and EDDA as coligands. Stability experiments of all 99mTc-labeled conjugates revealed a high stability of the label in PBS and serum as well as toward challenge with histidine and cysteine. Incubation in kidney homogenates resulted in a rapid degradation of all conjugates with <10% intact peptide after 60 min at 37 degrees C, with no considerable differences between the radiolabeled conjugates; a somewhat lower degradation rate was seen in liver homogenates. Protein binding varied considerably with lowest levels for 99mTc-EDDA/HYNIC-MG. Competition experiments of unlabeled conjugates on AR42J membranes versus [125I-Tyr12]-gastrin I showed high CCK-2 receptor affinity for all conjugates under study. Internalization behavior was very rapid for all radiolabeled conjugates in the order of 99mTc-(Nalpha-His)Ac-MG > 99mTc-EDDA/HYNIC-MG > 99mTc-Tricine/HYNIC-MG. In tumor-bearing nude mice the highest tumor-uptake was observed with 99mTc-EDDA/HYNIC-MG (8.1%ID/g) followed by 99mTc-Tricine/HYNIC-MG (2.2%ID/g) and 99mTc-(Nalpha-His)Ac-MG (1.2%ID/g) which correlated with kidney uptake (101.0%ID/g, 53.8%ID/g, 1.8%ID/g respectively). In this series of compounds 99mTc-EDDA/HYNIC-MG with its very high tumor/organ ratios except for kidneys seems to be the most promising agent to target CCK-2 receptors. Despite promising properties concerning receptor binding, internalization, and in vitro stability, 99mTc-(Nalpha-His)Ac-MG showed low tumor uptake in vivo.  相似文献   

9.
10B-enriched L-p-boronophenylalanine (BPA) is one of the compounds used in boron neutron capture therapy (BNCT). In this study, several variations of nuclear magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) were applied to investigate the uptake, clearance and metabolism of the BPA-fructose complex (BPA-F) in normal mouse kidneys, rat oligodendroglioma xenografts, and rat blood. Localized 1H MRS was capable of following the uptake and clearance of BPA-F in mouse kidneys with temporal resolution of a few minutes, while 1H MRSI was used to image the BPA distribution in the kidney with a spatial resolution of 9 mm3. The results also revealed significant dissociation of the BPA-F complex to free BPA. This finding was corroborated by 1H and 11B NMR spectroscopy of rat blood samples as well as of tumor samples excised from mice after i.v. injection of BPA-F. This investigation demonstrates the feasibility of using 1H MRS and MRSI to follow the distribution of BPA in vivo, using NMR techniques specifically designed to optimize BPA detection. The implementation of such procedures could significantly improve the clinical efficacy of BNCT.  相似文献   

10.
In this report we describe various aspects of tumor and normal tissue radiosensitization by nicotinamide. The LD50 for a single injection of nicotinamide in C3H mice was found to be 2050 mg/kg. When a large nonlethal dose (1000 mg/kg) was injected into tumor-bearing mice, peak plasma and tumor levels were reached 30-60 min after injection and decayed with a half-life of about 3 h. This dose of nicotinamide enhanced radiation-induced cell killing in three different tumor models (EMT6, Lewis Lung, and RIF-1) when injected at least 1 h before irradiation and produced enhancement ratios (ERs) of between 1.2 and 1.7. The ER in the EMT6 tumor was dependent on the dose of nicotinamide injected, but even at doses as low as 25% of the LD50 value an ER greater than 1.5 could still be observed. In two normal tissue assays (jejunum crypt cell survival and mean skin reaction) ERs of less than 1.2 were obtained. These results, and the fact that high levels can be tolerated in humans, suggest that nicotinamide, or a structurally related compound, could be a likely candidate for development in clinical trials.  相似文献   

11.
The human Matrix MetalloProtease-9 (hMMP-9) is overexpressed in tumors where it promotes the release of cancer cells thus contributing to tumor metastasis. We raised aptamers against hMMP-9, which constitutes a validated marker of malignant tumors, in order to design probes for imaging tumors in human beings. A chemically modified RNA aptamer (F3B), fully resistant to nucleases was previously described. This compound was subsequently used for the preparation of F3B-Cy5, F3B-S-acetylmercaptoacetyltriglycine (MAG) and F3B-DOTA. The binding properties of these derivatives were determined by surface plasmon resonance and electrophoretic mobility shift assay. Optical fluorescence imaging confirmed the binding to hMMP-9 in A375 melanoma bearing mice. Quantitative biodistribution studies were performed at 30 min, 1h and 2 h post injection of 99mTc-MAG-aptamer and 111In-DOTA-F3B. 99mTc radiolabeled aptamer specifically detected hMMP-9 in A375 melanoma tumors but accumulation in digestive tract was very high. Following i.v. injection of 111In-DOTA-F3B, high level of radioactivity was observed in kidneys and bladder but digestive tract uptake was very limited. Tumor uptake was significantly (student t test, p<0.05) higher for 111In-DOTA-F3B with 2.0%ID/g than for the 111In-DOTA-control oligonucleotide (0.7%ID/g) with tumor to muscle ratio of 4.0. Such difference in tumor accumulation has been confirmed by ex vivo scintigraphic images performed at 1h post injection and by autoradiography, which revealed the overexpression of hMMP-9 in sections of human melanomas. These results demonstrate that F3B aptamer is of interest for detecting hMMP-9 in melanoma tumor.  相似文献   

12.
The feasibility of d,l-[5-14C]ornithine ([14C]ornithine), a precursor for polyamine synthesis, and d,l-2-difluoromethyl[5-14C]ornithine ([14C]DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC) were investigated for tumor localization. As an animal model, mice bearing mammary carcinoma, FM3A, were used. After i.v. injection of [14C]ornithine accumulation of radioactivity was observed in the FM3A, in which 43% of the 14C radioactivity was measured in the polyamine pool and 41% in the amino acid pool at 60 min after injection. Tumor uptake of [14C]DFMO was relatively low but constant during 60 min after injection. At 60 min after injection, 11% of the 14C was present in the acid-precipitable fraction of the FM3A, which suggests the formation of an irreversible complex of [14C]DFMO with ODC. For both compounds rapid blood clearance and high tumor-to-organ ratios were observed. Our results indicate that in connection with an enhanced polyamine synthesis in the tumors, the compounds investigated have potential as tracers for tumor detection.  相似文献   

13.
The radiolabeled triplex-forming oligonucleotide (TFO) demonstrated the potential for sequence-specific DNA binding and destruction. In this study, by selecting the polypurine-polypyrimidine stretch (2950-2978) in the human N-myc gene as a target, the (111)In-labeled TFO targeting human N-myc gene (N-mycTFO(111)In) was tested for its cellular uptake and nuclear localization in vitro and in vivo. This is because the deregulated N-myc expression is strongly implicated in the pathogenesis of several important human malignancies, including breast carcinoma and neuroblastoma. N-mycTFO(111)In was bound selectively to the N-myc sequence in vitro. The total cellular uptake of TFO after the incubation of various normal and cancer cells with TFO for 24 h was 20-54.8% of the injected dose (%ID), and the nuclear localization was 6.59-30.0%ID, depending on cell lines. The highest cellular uptake was found in the human neuroblastoma SK-N-DZ (54.8%ID), human mammary ductal carcinoma T47-D (54%ID), human acute T cell leukemia Jurkat (54%ID), and multidrug-resistant human breast adenocarcinoma MCF7/TH (49.5%ID). The lowest was in the human normal mammary epithelium MCF10A (20.0%ID). The highest nuclear localization was found in MCF7/TH (30%ID) and SK-N-DZ (28.7%ID). The lowest was in MCF11A (6.59%ID). We next injected TFO into human mammary tumor-xenografted Balb/c nude mice. Tumor targeting of TFO in vivo reached its maximum peak 5 h after the intravenous injection in three types of tumor models. They are 21.0 +/- 3.23%ID per gram of tissue (%ID/g) for MCF7/TH, 7.77 +/- 2.11%ID/g for MCF7, and 4.53 +/- 1.20%ID/g for MCF10A. The TFO blood level decreased from 8.00 +/- 0.90%ID/g 15 min after the injection, to 1.30 +/- 0.30%ID/g after 19 h. The kidney TFO level increased rapidly from 5.93 +/- 0.94%ID/g after 15 min, to 25.1 +/- 5.60%ID/g after 19 h. A high TFO level (19.7-24.5%ID/g) in the liver was maintained until 19 h after the injection. Therefore, we suggest that the (111)In-labeled N-myc-targeting TFO, a promising modality for nanoexplosive gene therapy, could effectively target the nucleus of the multidrug-resistant breast carcinoma MCF7/TH in vitro and in vivo. It has approximately 130 min of half-life of blood TFO.  相似文献   

14.
Boron neutron capture therapy (BNCT) is based on selective accumulation of 10B carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3. The general aim of these studies is to contribute to the knowledge of BNCT radiobiology and optimize BNCT for head and neck cancer. Sodium borocaptate (50 mg 10B/kg) was administered to tumor-bearing hamsters. Groups of 3–5 animals were killed humanely at nine time-points, 3–12 h post-administration. Samples of blood, tumor, precancerous pouch tissue, normal pouch tissue and other clinically relevant normal tissues were processed for boron measurement by optic emission spectroscopy. Tumor boron concentration peaked to therapeutically useful boron concentration values of 24–35 ppm. The boron concentration ratio tumor/normal pouch tissue ranged from 1.1 to 1.8. Pharmacokinetic curves showed that the optimum interval between BSH administration and neutron irradiation was 7–11 h. It is concluded that BNCT mediated by BSH at nuclear reactor RA-3 would be feasible.  相似文献   

15.
We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of (10)B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studies at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na(2)(10)B(10)H(10)), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3.  相似文献   

16.
A method for the synthesis of cholesterol–metallacarborane conjugates bearing cobalt, iron and chromium was developed. Effective incorporation of the cholesterol conjugate bearing cobalt into liposome membrane was revealed. Using the metallacarborane-encrusted liposomes as boron delivery system in vivo biodistribution experiments in tumor-bearing mice, high accumulation and selective delivery of boron into tumor tissues was observed. The results demonstrate that the cholesterol–metallacarborane conjugates can be considered as a potential candidate for boron delivery vehicle in BNCT.  相似文献   

17.
The distribution of apomorphine following subcutaneous injection of 20 mg/kg (as the hydrochloride) was measured spectrofluorometrically in specific regions of rat brain. Measurable concentrations were found in the brain within a few minutes of injection, the drug was still detectable for at least 60 min in all regions, and maximum concentration was observed 20 min after injection. Stereotyped behavior, characteristic of apomorphine action, followed a time course parallel to accumulation of the drug in the brain.  相似文献   

18.
[(11)C]Choline has been evaluated as a positron emission tomography (PET) biomarker for assessment of established human prostate cancer tumor models. [(11)C]Choline was prepared by the reaction of [(11)C]methyl triflate with 2-dimethylaminoethanol (DMAE) and isolated and purified by solid-phase extraction (SPE) method in 60-85% yield based on [(11)C]CO(2), 15-20 min overall synthesis time from end of bombardment (EOB), 95-99% radiochemical purity and specific activity >0.8 Ci/micromol at end of synthesis (EOS). The biodistribution of [(11)C]choline was determined at 30 min post iv injection in prostate cancer tumor models C4-2, PC-3, CWR22rv, and LNCaP tumor-bearing athymic mice. The results showed the accumulation of [(11)C]choline in these tumors was 1.0% dose/g in C4-2 mouse, 0.4% dose/g in PC-3 mice, 3.2% dose/g in CWR22rv mice, and 1.4% dose/g in LNCaP mice; the ratios of tumor/muscle (T/M) and tumor/blood (T/B) were 2.3 (T/M, C4-2), 1.4 (T/M, PC-3), 2.5 (T/M, CWR22rv), 1.2 (T/M, LNCaP) and 2.6 (T/B, C4-2), 2.6 (T/B, PC-3), 7.8 (T/B, CWR22rv), 3.2 (T/B, LNCaP), respectively. The micro-PET imaging of [(11)C]choline in prostate cancer tumor models was acquired from a C4-2, PC-3, CWR22rv, or LNCaP implanted mouse at 30 min post iv injection of 1 mCi of the tracer using a dedicated high resolution (<3 mm full-width at half-maximum) small FOV (field-of-view) PET imaging system, IndyPET-II scanner, developed in our laboratory, which showed the accumulation of [(11)C]choline in C4-2, PC-3, CWR22rv, or LNCaP tumor implanted in a nude athymic mouse. The initial dynamic micro-PET imaging data indicated the average T/M ratios were approximately 3.0 (C4-2), 2.1 (PC-3), 3.5 (CWR22rv), and 3.3 (LNCaP), respectively, which showed the tumor accumulation of [(11)C]choline in all four tumor models is high. These results suggest that there are significant differences in [(11)C]choline accumulation between these different tumor types, and these differences might offer some useful measure of tumor biological process.  相似文献   

19.
The nido-carborane lipid 2 as a double-tailed boron lipid was synthesized from heptadecanol in five steps. The lipid 2 formed stable liposomes at 25% molar ratio toward DSPC with cholesterol. Transferrin was able to be introduced on the surface of boron liposomes (Tf(+)-PEG-CL liposomes) by the coupling of transferrin to the PEG-CO(2)H moieties of Tf(-)-PEG-CL liposomes. The biodistribution of Tf(+)-PEG-CL liposomes, in which (125)I-tyraminyl inulins were encapsulated, showed that Tf(+)-PEG-CL liposomes accumulated in tumor tissues and stayed there for a sufficiently long time to increase tumor/blood concentration ratio, although Tf(-)-PEG-CL liposomes were gradually released from tumor tissues with time. A boron concentration of 22 ppm in tumor tissues was achieved by the injection of Tf(+)-PEG-CL liposomes at 7.2 mg/kg body weight boron in tumor-bearing mice. After neutron irradiation, the average survival rate of mice not treated with Tf(+)-PEG-CL liposomes was 21 days, whereas that of the treated mice was 31 days. Longer survival rates were observed in the mice treated with Tf(+)-PEG-CL liposomes; one of them even survived for 52 days after BNCT.  相似文献   

20.
《MABS-AUSTIN》2013,5(4):1051-1058
The humanized monoclonal antibody with high affinity for the human epidermal growth factor receptor (HER) 3, RG7116, is a glycoengineered, IgG1 class antibody. By labeling RG7116 with zirconium-89 (89Zr) we aimed to visualize in vivo HER3 expression and study the biodistribution of this antibody in human tumor-bearing mice. Biodistribution of 89Zr-RG7116 was studied in subcutaneously xenografted FaDu tumor cells (HER3-positive). Dose-dependency of 89Zr-RG7116 organ distribution and specific tumor uptake was assessed by administering doses ranging from 0.05 to 10 mg/kg RG7116 to SCID/Beige mice. Biodistribution was analyzed at 24 and 144 h after injection. MicroPET imaging was performed at 1, 3, and 6 days after injection of 1.0 mg/kg 89Zr-RG7116 in the FaDu, H441, QG-56 and Calu-1 xenografts with varying HER3 expression. The excised tumors were analyzed for HER3 expression. Biodistribution analyses showed a dose- and time-dependent 89Zr-RG7116 tumor uptake in FaDu tumors. The highest tumor uptake of 89Zr-RG7116 was observed in the 0.05 mg/kg dose group with 27.5%ID/g at 144 h after tracer injection. MicroPET imaging revealed specific tumor uptake of 89Zr-RG7116 in FaDu and H441 models with an increase in tumor uptake over time. Biodistribution data was consistent with the microPET findings in FaDu, H441, QG56 and Calu-1 xenografts, which correlated with HER3 expression levels. In conclusion, 89Zr-RG7116 specifically accumulates in HER3 expressing tumors. PET imaging with this tracer provides real-time non-invasive information about RG7116 distribution, tumor targeting and tumor HER3 expression levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号