首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evans EC  Vaughan BE 《Plant physiology》1966,41(7):1145-1151
A perfusion bridge technique is described which permits the continuous collection of exudations from both ends of corn root segments. By exposing the central portion of the segments to radiocalcium, the amounts and rates of tracer movement in either direction may be determined. Typically, a peak in both acropetal and basipetal transport occurs at about 90 minutes after exposure to tracer. This transport peak is followed by a sharp decline to relatively low transport rates. Thereafter the 2 perfusates from opposite ends of a segment pair show significant differences. The acropetal increments decrease somewhat erratically to 0 at 10 to 12 hours, while the basipetal increments steadily increase to a steady-state value which remains constant from 8 to 24 hours. After a segment pair has reached steady-state polar transport, a fresh cut on the apical ends causes the resumption of acropetal transport. Such response suggests that polar transport in these root segments is at least partially a wound response. A possible explanation of the complex transport behavior is advanced.  相似文献   

2.
Sporophiala a new genus of Dematiaceae characterized by producing phaeophragmophialospores in acropetal, catenate, simple or branched chains arising from phialides, withS. prolifica as type is described.  相似文献   

3.
The movement of cytoplasmic clusters of high density was studied in the stalk ofAcetabularia mediterranea using time-lapse microcinematography during regeneration. The kinetics of expansion and contraction of cytoplasmic clusters is described in acropetal and basipetal directions.  相似文献   

4.
Xanthium plants were grown vegetatively and their developmental stages were designated by a previously described plastochron index (PI). Internodes of plants, both treated with gibberellic acid (GA3) and untreated, were marked with India ink and photographed during 3 successive days. The relative elemental rates of elongation d(dX/dt)/dX were estimated between 15.7 and 19.0 plastochrons. The rate of growth of the GA3-treated internodes was at least twice that of the control. The emerging pattern of acropetal internode elongation was similar in both GA3-treated and control plants. Only rates of growth were significantly higher in the GA3-treated plants. The acropetal pattern of internode elongation was the opposite of the basipetal pattern observed in Xanthium leaves but followed the acropetal pattern observed in Helianthus and Phaseolus internode growth.  相似文献   

5.
Phloem transport in stems of Phaseolus vulgaris was found tobe sensitive to treatment with the auxin transport inhibitor,2,3,5-triidobenzoic acid (TIBA). The response was dependenton the concentration of TIBA applied. A concentration of TIBA(0?5% in lanolin) which did not interfere with normal phloemtransport proved inhibitory to both basipetal transport of IAAand the acropetal component of IAA-promoted metabolite transport.In contrast, both acropetal IAA transport and basipetal IAA-promotedmetabolite transport were unaffected by TIBA treatment. Theinhibitory effect of TIBA on acropetal IAA-promoted transportwas overcome by providing IAA below the point of TIBA application.Both acropetal and basipetal IAA-promoted transport in stemsegments were unaccompanied by any corresponding changes inthe accumulation of [14C]sucrose by the segments.  相似文献   

6.
Polar transport of kinetin in tissues of radish   总被引:1,自引:1,他引:0       下载免费PDF全文
Polar transport of kinetin-8-14C occurred in segments of petioles, hypocotyls, and roots of radish (Raphanus sativus L.). The polarity was basipetal in petioles and hypocotyls and acropetal in roots. In segments excised from seedlings with fully expanded cotyledons, indole-3-acetic acid was required for polarity to develop. In hypocotyl segments isolated at this stage, basipetal and acropetal movements were equal during the first 12 hours of auxin treatment after which time acropetal movement declined. Pretreatment with auxin eliminated this delay in the appearance of polarity. In hypocotyl segments excised from seedlings with expanding cotyledons, exogenous auxin was unnecessary for polarity. Potassium cyanide abolished polarity at both stages of growth by allowing increased acropetal movement. The rate of accumulation of kinetin in receiver blocks was greater than the in vivo increase in cytokinin content of developing radish roots.  相似文献   

7.
In stem sections of lentil seedlings, there is a typical polar movement of IAA labelled with 14C. The degree of polarity, expressed as the ratio of basipetal to acropetal transport, was (25°C) 7.6. A decrease (from 25° to 15°C) and an increase (from 25° to 30°C) of temperature cause a reduction of the IAA uptake by the sections and a decrease of both the basipetal and the acropetal translocation of IAA. Results suggest that the basipetal as well as the acropetal movement of auxin, are dependent of a metabolical component which is discussed.  相似文献   

8.
Wu G  Lewis DR  Spalding EP 《The Plant cell》2007,19(6):1826-1837
Auxin affects the shape of root systems by influencing elongation and branching. Because multidrug resistance (MDR)-like ABC transporters participate in auxin transport, they may be expected to contribute to root system development. This reverse genetic study of Arabidopsis thaliana roots shows that MDR4-mediated basipetal auxin transport did not affect root elongation or branching. However, impaired acropetal auxin transport due to mutation of the MDR1 gene caused 21% of nascent lateral roots to arrest their growth and the remainder to elongate 50% more slowly than the wild type. Reporter gene analyses indicated a severe auxin deficit in the apex of mdr1 but not mdr4 lateral roots. The mdr1 deficit was explained by 40% less acropetal auxin transport within the mdr1 lateral roots. The slow elongation of mdr1 lateral roots was rescued by auxin and phenocopied in the wild type by an inhibitor of polar auxin transport. Confocal microscopy analysis of a functional green fluorescent protein-MDR1 translational fusion showed the protein to be auxin inducible and present in the tissues responsible for acropetal transport in the primary root. The protein also accumulated in lateral root primordia and later in the tissues responsible for acropetal transport within the lateral root, fully supporting the conclusion that auxin levels established by MDR1-dependent acropetal transport control lateral root growth rate to influence root system architecture.  相似文献   

9.
Distribution of Lateral Root Primordia in Root Tips of Musa acuminata Colla   总被引:3,自引:0,他引:3  
CHARLTON  W. A. 《Annals of botany》1982,49(4):509-520
The distribution of lateral root primordia in Musa acuminatashows discrete elements of pattern, a major element of whichis the rather regular spacing of laterals along protoxylem-basedranks. There is some co-ordination of positions of lateralsin different ranks. Laterals are apparently not initiated ina single acropetal sequence within the root tip as a whole althoughthey are initiated in acropetal sequence within each rank. Musa acuminata, banana, roots, lateral roots  相似文献   

10.
The dependence of acropetal Ca2+ transport on polar basipetal indoleacetic acid (IAA) transport was investigated in excised tomato fruits ( Lycopersicon esculentum L. Mill.) using an in vitro fruit system. Auxin transport inhibitors like triiodobenzoic acid (TIBA), chlorofluorenolmethyl ester (CME) and naphthylphthalamic acid (NPA) were used in order to investigate the effect of restricted polar basipetal auxin transport on the acropetal transport of 45Ca2+, 86Rb+ and 98Sr2+ into the same fruits. TIBA and CME inhibited basipetal transport of IAA. particularly in 10- to 12-day-old tomato fruits, and simultaneously restricted the acropetal transport of 45Ca2+. The auxin transport inhibitors failed to significantly reduce the upward transport of 86Rb+ and the transport of 96Sr2+ was less inhibited than that of 45Ca2+. TIBA and CME did not significantly affect the acropetal transport of labelled water into the fruit, nor the cation-exchange capacity or K+ and Mg2+ concentrations in the tomato fruit. These results support the view that a part of the Ca2+-specific acropetal transport into tomato fruits is associated with the polar basipetal IAA transport. This Ca2+ transport is independent of the transpiration stream into the fruit and the cation exchange capacity of the fruit tissue.  相似文献   

11.
12.
Elongation growth of protonemata of Adiantum capillus-veneris , which can be controlled by light irradiation, was examined under acropetal and basipetal hypergravity conditions (from -13 to +20 g ) using a newly developed centrifugation equipment. Elongation of the protonemata under red light was inhibited by basipetal hypergravity at more than +15 g but was promoted by acropetal hypergravity from -5 to -8 g . Division of the protonemal cells that was induced by white light was inhibited under basipetal hypergravity at +20 g but was unaffected under acropetal hypergravity at -15 g . Upon exposure to continuous red light for 7 to 8 days, most of the protonemata grew as filamentous cells in the absence of a change in the normal gravitational force (control), but more than half of the protonemal cells were abnormal in terms of shape when maintained under hypergravity at +20 g .  相似文献   

13.
IAA transport in Vicia root segments was investigated for comparisonwith that in intact roots. Lanolin paste (1-mm-wide ring) oragar blocks (3?3?1.5mm), both containing IAA-2-14C were appliedto the surface or a cut end of the root segments, respectively;transported 14C was collected in receiver agar blocks placedon the cut end of the segments. When lanolin paste was appliedto 5-mm segments, basipetal transport of IAA predominated overacropetal transport. When agar blocks were applied to 1- and2-mm segments, the same was true; in longer segments (3 and5 mm long), however, basipetal movement occurred predominantlyat first but was surpassed by acropetal movement after 2–3hr. Among the segments tested (regions 2–4, 4–6and 8–10 mm from the tip), the most apical one showedthe distinctest predominancy of basipetal movement. The velocitiesof the acropetal and basipetal movement of the 14C were estimatedat 3–3.8 and 8–12 mm/hr, respectively. Autoradiographicstudy and the experiment in which wire was inserted longitudinallythrough the central part of the segments showed that basipetalmovement occurred mainly through the outer part of the rootsand acropetal movement mainly through the central cylinder.The present results were compatible with those obtained previouslywith intact roots. Some properties of polar movement, such asits specificity, inhibition by TIBA, and dependency on terneprature are described. (Received March 22, 1978; )  相似文献   

14.
The movement of IAA through 6-mm segments excised 1 mm, 7 mm,and 13 mm behind the apex of the primary root of Zea mays seedlingshas been investigated at temperatures between 10 and 25°C. In all segments, and at all temperatures, the movement of IAAwas polarized acropetally, more IAA being found in apical receiverblocks than in basal ones after transport periods of up to 24h. The amounts of IAA which moved acropetally through a segmentdecreased as the segment was taken at an increasing distancebehind the root apex. Similarly, at least after transport periodsof 8 h, more IAA moved basipetally through the apical segmentthan through the basal ones. At 10°C the velocity of acropetal movement was similar inall three segments, but the acropetbut the acropetal flux wasgreatest in the apical segment and smallest in the most basalone. The same situation appears to exist at the other temperatures. The flux and velocity of the acropetal movement of IAA througha 6-mm segment taken 7 mm behind the apex of the root were similarto those previously reported for the acropetal movement througha 12-mm segment excised 1 mm behind the apex. The smaller amountsof IAA which move acropetally through longer root segments aretherefore attributable to a limitation of the flux in the mostbasal regions of the segment.  相似文献   

15.
Polarity of Indoleacetic Acid in young Coleus Stems   总被引:1,自引:1,他引:0       下载免费PDF全文
Young internodes of Coleus blumei Benth. have long been known for their sizable amount of acropetal indoleacetic acid movement. However, plants of the same clone, under improved growing conditions, now show almost absolute basipetal polarity of 14C-indoleacetic acid, as measured by liquid scintillation counting of 14C in the receiver cylinders of agar. The ratio of basipetal to acropetal movement is now as much as 85:1, instead of the 3:1 ratio found years ago under conditions providing slower growth.  相似文献   

16.
Acropetal and basipetal movement of indole-3-acetic acid through coleoptiles of Avena sativa L. was studied. Sections 10-mm long were supplied with either apical or basal sources containing C(14) carboxyl-labeled indoleacetic acid (10(-5)m). Anaerobic conditions inhibit metabolically dependent movement (transport) thus reducing basipetal but not acropetal movement. Total inhibition of basipetal transport abolishes the polarity of auxin uptake and movement. The nonpolar movement that remains in anaerobic sections is free diffusion with an average diffusion coefficient of approximately 1 x 10(-4) mm(2) per second. During an 8-hour diffusion, at least the first millimeter of the section comes to equilibrium at approximately the same concentration as the donor.Acropetal movement is probably by diffusion and is accompanied by an aerobic immobilization of indoleacetic acid that increases more than proportionally to concentration. Anaerobic conditions totally prevent this immobilization and reduce acropetal uptake but not the amount of indoleacetic acid moving into the upper parts of the section; there is, therefore, no evidence for acropetal transport.Polarity of auxin movement in aerobic coleoptile sections is achieved by strict basipetal transport of auxin. The basipetal transport may intensify the polarity by recycling auxin that is moving acropetally.  相似文献   

17.
The effect of a 180° displacement from the normal vertical orientation on longitudinal growth and on the acropetal and basipetal movement of 14C-IAA was investigated in Avena sativa L. and Zea mays L. coleoptile sections. Inversion inhibits growth in intact sections (apex not removed) and in decapitated sections supplied apically with donor blocks containing auxin. Under aerobic conditions, inversion inhibits basipetal auxin movement and promotes acropetal auxin movement, whereas under anaerobic conditions, it does not influence the movement of auxin in either direction. Inversion retards the basipetal movement of the peak of a 30-minute pulse of auxin in corn.

The inversion-induced inhibition of basipetal auxin movement is not explained by an effect of gravity on production, uptake, destruction, exit from sections, retention in tissue, or purely physical movement of auxin. It is concluded that inversion (a) inhibits basipetal transport, the component of auxin movement that is metabolically dependent, and as a result (b) inhibits growth and (c) promotes acropetal auxin movement.

  相似文献   

18.
John J. Taylor 《Mycopathologia》1970,41(3-4):379-382
Observations of secondary conidium production in an African strain ofS. schenckii revealed that secondary conidia are produced (1) acropetally on short sterigmata, (2) sympodially on short conidial appendages, and/or (3) sympodially or acropetally on short sporogenous cells which arise directly from the primary conidium. The secondary conidia therefore appear also to be sympodulospores.
Zusammenfassung Beobachtungen von sekundärer Konidienbildung in einer afrikanischen Kultur vonS. schenckii zeigten, daß sekundäre Konidien gebildet werden:1) acropetal an kurzen Sterigmata; 2) sympodial oder acropetal an kurzen, sporentragenden Zellen, und 3) sympodial oder acropetal an kurzen sporentragenden Zellen, die direkt vom primären Konidium entspringen. Die sekundären Konidien erscheinen deshalb auch Sympodulosporen zu sein.
  相似文献   

19.
Clonal plant growth is common in aquatic freshwater plants and their success is largely attributed to the sharing of resources (e.g., photosynthates, minerals, and water) within the greater genet. The flow of materials within the clone is largely driven by source-sink dynamics, and in established genets may involve acropetal and/or basipetal flow. During the production of new ramets, however, the mother often provides needed resources to the daughter through acropetal flow. In this study, we consider the role of water sharing in a clonal hydrophyte, Justicia americana, when soil moisture levels around the daughter plant declined. The results of this study indicate that acropetal water sharing is an important function between mother and daughter ramets in this species, as indicated by sustained growth and higher survival in connected daughters residing in water-deprived soils. Interestingly, mother plants, when connected to a drought daughter, began to develop similar xeromorphic features (e.g., greater leaf succulence) even though the parent remained in flooded conditions. We suspect that some physical or chemical signal was conveyed from the daughter to the mother that ??forecast?? water scarcities, which could prepare the entire genet for potential drought conditions.  相似文献   

20.
The light stimulation of cold acclimation of Hedera helix L. var. Thorndale has been shown to result in the production of translocatable promoters of hardiness. Movement of the promoters from an illuminated donor portion to a darkened receptor portion was demonstrated. The majority of transport was acropetal through the phloem and to a much lesser degree basipetal through the xylem. In the early stages of hardening, transport was strictly acropetal. It is suggested that acropetal transport is under the influence of a mobilizing center located in the apex of the plant. Mobilization of the promoters of hardiness was induced by applications of 6N-benzyladenine. Attempts to characterize the light-generated promoters through fixation of 14CO2 and subsequent translocation of 14C-labeled compounds from the illuminated donor to the darkened receptor indicated that the translocatable promoting material was either some component of the Dowex 1 fraction or sucrose. Furthermore, the hardiness of leaves was significantly increased by sucrose solutions but not by equi-molar solutions of glucose, galactose or mannitol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号