首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
T cell-specific adapter protein (TSAd), encoded by the SH2D2A gene, interacts with Lck through its C terminus and thus modulates Lck activity. Here we mapped Lck phosphorylation and interaction sites on TSAd and evaluated their functional importance. The three C-terminal TSAd tyrosines Tyr(280), Tyr(290), and Tyr(305) were phosphorylated by Lck and functioned as docking sites for the Lck Src homology 2 (SH2) domain. Binding affinities of the TSAd Tyr(P)(280) and Tyr(P)(290) phosphopeptides to the isolated Lck SH2 domain were similar to that observed for the Lck Tyr(P)(505) phosphopeptide, whereas the TSAd Tyr(P)(305) peptide displayed a 10-fold higher affinity. The proline-rich Lck SH3-binding site on TSAd as well as the Lck SH2 domain were required for efficient tyrosine phosphorylation of TSAd by Lck. Interaction sites on TSAd for both Lck SH2 and Lck SH3 were necessary for TSAd-mediated modulation of proximal TCR signaling events. We found that 20-30% of TSAd molecules are phosphorylated in activated T cells and that the proportion of TSAd to Lck molecules in such cells is approximately 1:1. Therefore, in activated T cells, a considerable number of Lck molecules may potentially be engaged by TSAd. In conclusion, Lck binds to TSAd prolines and phosphorylates and interacts with the three C-terminal TSAd tyrosines. We propose that through multivalent interactions with Lck, TSAd diverts Lck from phosphorylating other substrates, thus modulating its functional activity through substrate competition.  相似文献   

2.

Background

The chemokine CXCL12/SDF-1α interacts with its G-protein coupled receptor CXCR4 to induce migration of lymphoid and endothelial cells. T cell specific adapter protein (TSAd) has been found to promote migration of Jurkat T cells through interaction with the G protein β subunit. However, the molecular mechanisms for how TSAd influences cellular migration have not been characterized in detail.

Principal Findings

We show that TSAd is required for tyrosine phosphorylation of the Lck substrate IL2-inducible T cell kinase (Itk). Presence of Itk Y511 was necessary to boost TSAd''s effect on CXCL12 induced migration of Jurkat T cells. In addition, TSAd''s ability to promote CXCL12-induced actin polymerization and migration of Jurkat T lymphocytes was dependent on the Itk-interaction site in the proline-rich region of TSAd. Furthermore, TSAd-deficient murine thymocytes failed to respond to CXCL12 with increased Itk phosphorylation, and displayed reduced actin polymerization and cell migration responses.

Conclusion

We propose that TSAd, through its interaction with both Itk and Lck, primes Itk for Lck mediated phosphorylation and thereby regulates CXCL12 induced T cell migration and actin cytoskeleton rearrangements.  相似文献   

3.
T cell-specific adapter (TSAd) protein and adapter protein in lymphocytes of unknown function (ALX) are two related Src homology 2 (SH2) domain-containing signaling adapter molecules that have both been shown to regulate TCR signal transduction in T cells. TSAd is required for normal TCR-induced synthesis of IL-2 and other cytokines in T cells and acts at least in part by promoting activation of the LCK protein tyrosine kinase at the outset of the TCR signaling cascade. By contrast, ALX functions as a negative-regulator of TCR-induced IL-2 synthesis through as yet undetermined mechanisms. In this study, we report a novel T cell-expressed adapter protein named SH2D4A that contains an SH2 domain that is highly homologous to the TSAd protein and ALX SH2 domains and that shares other structural features with these adapters. To examine the function of SH2D4A in T cells we produced SH2D4A-deficient mice by homologous recombination in embryonic stem cells. T cell development, homeostasis, proliferation, and function were all found to be normal in these mice. Furthermore, knockdown of SH2D4A expression in human T cells did not impact upon their function. We conclude that in contrast to TSAd and ALX proteins, SH2D4A is dispensable for TCR signal transduction in T cells.  相似文献   

4.
TCR engagement can induce either T cell proliferation and differentiation or activation-induced T cell death (AICD) through apoptosis. The intracellular signaling pathways that dictate such a disparate fate after TCR engagement have only been partially elucidated. Non-FcR-binding anti-CD3 mAbs induce a partial agonist TCR signaling pattern and cause AICD on Ag-activated, cycling T cells. In this study, we examined TCR signaling during the induction of AICD by anti-CD3 fos, a non-FcR-binding anti-CD3 mAb. This mAb activates Fyn, Lck, and extracellular signal-regulated kinase, and induces phosphorylation of Src-like adapter protein, despite the inability to cause calcium mobilization or TCR polarization. Anti-CD3 fos also fails to effectively activate zeta-associated protein of 70 kDa or NF-kappaB. Using Ag-specific T cells deficient for Fyn or Lck, we provide compelling evidence that activation of Lck is required for the induction of AICD. Our data indicate that a selective and distinct TCR signaling pattern is required for AICD by TCR partial agonist ligands.  相似文献   

5.
The Src family kinase Fyn mediates signals induced by TCR antagonists   总被引:1,自引:0,他引:1  
FcR nonbinding anti-CD3 epsilon mAbs elicit partial TCR signaling that leads to T cell unresponsiveness and tolerance in vivo. In this study, the membrane-proximal events that promote T cell inactivation by FcR nonbinding anti-CD3 mAbs were examined. In the context of FcR nonbinding anti-CD3, TCR complexes did not aggregate and failed to translocate into glycolipid-enriched membrane microdomains. Furthermore, FcR nonbinding anti-CD3 mAbs induced tyrosine phosphorylation of the Fyn substrate Cbl, but not the ZAP-70 substrate linker for activation of T cells. Overexpression of Fyn, but not Lck, restored the mitogenicity of FcR nonbinding anti-CD3 in primary T cells. Taken together, these results suggest that Fyn mediates the partial signaling induced by TCR antagonists.  相似文献   

6.
TSAd/Lad is a T cell adaptor molecule involved in p56 lck -mediated T cell activation. To investigate the functions of TSAd in T cells, we generated transgenic (TG) mice expressing the SH2 domain of TSAd (TSAd-SH2) under the control of the p56 lck proximal promoter. In T cells from TSAd-SH2 TG mice, T cell receptor (TCR)-mediated early signaling events, such as Ca2+ flux and ERK activation, were normal; however, late activation events, such as IL-2 production and proliferation, were significantly reduced. Moreover, TCR-induced cell adhesion to extracellular matrix (ECM) proteins and migration through ECM proteins were defective in T cells from TSAd-SH2 TG mice. Furthermore, the contact hypersensitivity (CHS) reaction, an inflammatory response mainly mediated by T helper 1 (Th1) cells, was inhibited in TSAd-SH2 TG mice. Taken together, these results show that TSAd, particularly the SH2 domain of TSAd, is essential for the effector functions of T cells.  相似文献   

7.
8.
9.
Src family kinases are suppressed by a "tail bite" mechanism, in which the binding of a phosphorylated tyrosine in the C terminus of the protein to the Src homology (SH) 2 domain in the N-terminal half of the protein forces the catalytic domain into an inactive conformation stabilized by an additional SH3 interaction. In addition to this intramolecular suppressive function, the SH2 domain also mediates intermolecular interactions, which are crucial for T cell antigen receptor (TCR) signaling. To better understand the relative importance of these two opposite functions of the SH2 domain of the Src family kinase Lck in TCR signaling, we created three mutants of Lck in which the intramolecular binding of the C terminus to the SH2 domain was strengthened. The mutants differed from wild-type Lck only in one to three amino acid residues following the negative regulatory tyrosine 505, which was normally phosphorylated by Csk and dephosphorylated by CD45 in the mutants. In the Lck-negative JCaM1 cell line, the Lck mutants had a much reduced ability to transduce signals from the TCR in a manner that directly correlated with SH2-Tyr(P)(505) affinity. The mutant with the strongest tail bite was completely unable to support any ZAP-70 phosphorylation, mitogen-activated protein kinase activation, or downstream gene activation in response to TCR ligation, whereas other mutants had intermediate abilities. Lipid raft targeting was not affected. We conclude that Lck is regulated by a weak tail bite to allow for its activation and service in TCR signaling, perhaps through a competitive SH2 engagement mechanism.  相似文献   

10.
LFA-1, a member of the integrin family of molecules, is involved in mediating cellular adhesion in all phases of the immune response, playing a role in the interaction of helper T cells as well as in killing of target cells by both cytotoxic T cells and natural killer cells. We have developed a monoclonal antibody, anti-HVS6B6, which recognizes a functionally unique epitope of the LFA-1 molecule. Although this mAb itself was not mitogenic against T cells, it induced a strong proliferative response when added to T cells with submitogenic concentrations of anti-CD2 (anti-T11(2) and anti-T11(3)) mAbs. In contrast, other anti-LFA-1 mAbs (CD11a and CD18) suppressed this anti-CD2 mAb-induced T cell proliferation. Kinetic studies showed that anti-HVS6B6 acts on an early event in CD2-mediated T cell activation. Although T11(3)-epitope expression induced by anti-T11(2) mAb was not affected by treatment of cells with anti-HVS6B6, both Ca2+ influx and phosphatidylinositol turnover induced by anti-CD2 mAbs were markedly enhanced by the pretreatment of T cells with anti-HVS6B6 mAb. These results indicate that the LFA-1 mediating signal contributes to a very early phase of signal transduction during CD2-mediated T cell activation.  相似文献   

11.
A protein, called tip, of herpesvirus saimiri associates with Lck in transformed T cells. To investigate the effects of complex formation on cellular signal transduction, we constructed human Jurkat-T-cell lines expressing tip. The expression of tip in Jurkat-T cells dramatically suppressed cellular tyrosine phosphorylation and surface expression of lymphocyte antigens. The expression of tip also blocked the induction of tyrosine phosphorylation by anti-CD3 stimulation. The expression of tip in fibroblast cells suppressed the transforming activity of oncogenic F505 Lck. Binding assays showed that the SH3 domain of Lck is sufficient to form a stable complex with tip in vitro. These results demonstrate that tip acts at an early stage of the T-cell signal transduction cascade by associating with Lck and downregulating Lck-mediated activation. Inhibition of Lck-mediated signal transduction by tip in T cells appears to be analogous to the inhibition of Lyn/Syk-mediated signal transduction in B cells by LMP2A of the B-cell-tropic Epstein-Barr virus.  相似文献   

12.
Previous studies have demonstrated that naive splenic mouse T cells express no or only very low levels of the delta-type opioid receptor (delta OR), but stimulation of mouse splenocytes with Con A results in induction of delta OR mRNA and protein. In this report we have shown that stimulation of highly purified populations of naive mouse T cells with anti-CD3 mAb alone results in T cell activation, as evidenced by sustained IL-2 secretion and cell proliferation, but fails to elicit delta OR expression. However, delta OR expression is induced by costimulation of these very pure T cells with anti-CD3 and anti-CD28 mAbs. The delta OR induction by anti-CD3 and anti-CD28 costimulation was completely blocked by inhibition of phosphatidylinositol 3-kinase with wortmannin. Because phosphatidylinositol 3-kinase activation in T cells is linked to costimulation, these results suggest that induction of delta OR expression during T cell activation is strictly dependent on costimulation. It also appears that costimulatory receptors other than CD28 can provide the signaling required for delta OR expression because delta OR mRNA was induced by Con A stimulation of splenocytes from CD28-deficient mice.  相似文献   

13.
Loss of tolerance to self-Ags in patients with systemic lupus erythematosus (SLE), a prototypic autoimmune disease, is associated with dysregulation of T cell signaling, including the depletion of total levels of lymphocyte-specific protein kinase (Lck) from sphingolipid-cholesterol-enriched membrane microdomains (lipid rafts). Inhibitors of 3-hyroxy-3-methylgluteryl CoA reductase (statins) can modify the composition of lipid rafts, resulting in alteration of T cell signaling. In this study, we show that atorvastatin targets the distribution of signaling molecules in T cells from SLE patients, by disrupting the colocalization of total Lck and CD45 within lipid rafts, leading to a reduction in the active form of Lck. Upon T cell activation using anti-CD3/anti-CD28 in vitro, the rapid recruitment of total Lck to the immunological synapse was inhibited by atorvastatin, whereas ERK phosphorylation, which is decreased in SLE T cells, was reconstituted. Furthermore, atorvastatin reduced the production of IL-10 and IL-6 by T cells, implicated in the pathogenesis of SLE. Thus, atorvastatin reversed many of the signaling defects characteristic of SLE T cells. These findings demonstrate the potential for atorvastatin to target lipid raft-associated signaling abnormalities in autoreactive T cells and provide a rationale for its use in therapy of autoimmune disease.  相似文献   

14.
Optimal CD4+ T cell activation requires the cooperation of multiple signaling pathways coupled to the TCR-CD3 complex and to the CD28 costimulatory molecule. In this study, we have investigated the expression of surface CXC chemokine receptor 4 (CXCR4) in enriched populations of CD4+ T PBL, stimulated with anti-CD3 and anti-CD28 mAbs, immobilized on plastic. Anti-CD3 alone induced a progressive down-regulation of surface CXCR4, accompanied by a significant decline in the entry of the HXB2 T cell line-tropic (X4-tropic) HIV-1 clone in CD4+ T cells. Of note, this effect was strictly dependent on the presence in culture of CD14+ monocytes. On the other hand, anti-CD28 alone induced a small but reproducible increase in the expression of surface CXCR4 as well as in the entry of HXB2 HIV-1 clone in resting CD4+ T cells. When the two mAbs were used in combination, anti-CD28 potently synergized with anti-CD3 in inducing the expression of CD69 activation marker and stimulating the proliferation of CD4+ T cells. On the other hand, anti-CD28 counteracted the CXCR4 down-modulation induced by anti-CD3. The latter effect was particularly evident when anti-CD28 was associated to suboptimal concentrations of anti-CD3. Because CXCR4 is the major coreceptor for the highly cytopathic X4-tropic HIV-1 strains, which preferentially replicate in proliferating CD4+ T cells, the ability of anti-CD28 to up-regulate the surface expression of CXCR4 in both resting and activated CD4+ T cells provides one relevant mechanism for the progression of HIV-1 disease.  相似文献   

15.
The TNF-related apoptosis-inducing ligand was shown to provide a costimulatory signal that cooperates with the TCR/CD3 complex to induce T cell proliferation and cytokine production. Although a number of signaling pathways were linked to the TCR/CD3 complex, it is not known how these two receptors cooperate to induce T cell activation. In this study, we show that TRAIL-induced costimulation of T cells depends on activation of the NF-κB pathway. TRAIL induced the NF-κB pathway by phosphorylation of inhibitor of κB factor kinase and protein kinase C in conjunction with anti-CD3. Furthermore, we demonstrated that TRAIL costimulation induced phosphorylation of the upstream TCR-proximal tyrosine kinases, Lck and ZAP70. Ligation of the TRAIL by its soluble receptor, DR4-Fc, alone was able to induce the phosphorylation of Lck and ZAP70 and to activate the NF-κB pathway; however, it was insufficient to fully activate T cells to support T cell proliferation. In contrast, TRAIL engagement in conjunction with anti-CD3, but not TRAIL ligation alone, induced lipid raft assembly and recruitment of Lck and PKC. These results demonstrate that TRAIL costimulation mediates NF-κB activation and T cell proliferation by lipid raft assembly and recruitment of Lck. Our results suggest that in TRAIL costimulation, lipid raft recruitment of Lck integrates mitogenic NF-κB-dependent signals from the TCR and TRAIL in T lymphocytes.  相似文献   

16.
Apoptosis is one way of controlling immune responses, and a variety of immunosuppressive drugs suppress harmful immune responses by inducing apoptosis of lymphocytes. In this study we observed that rosmarinic acid, a secondary metabolite of herbal plants, induced apoptosis in an p56(lck) (Lck)-dependent manner; Lck(+) Jurkat T cells undergo apoptosis in response to rosmarinic acid (RosA) treatment, whereas Lck(-) Jurkat subclone J.CaM1.6 cells do not. J.CaM1.6 cells with various Lck mutants indicated that Lck SH2 domain, but not Lck kinase activity, was required for RosA-induced apoptosis. RosA induced apoptosis in the absence of a TCR stimulus, and this was not prevented by interruption of the Fas/Fas ligand interaction. Instead, RosA-mediated apoptosis involved a mitochondrial pathway as indicated by cytochrome c release and the complete blockage of apoptosis by an inhibitor of mitochondrial membrane depolarization. Both caspase-3 and -8 were indispensable in RosA-induced apoptosis and work downstream of mitochondria and caspase-9 in the order of caspase-9/caspase-3/caspase-8. In freshly isolated human PBMC, RosA specifically induced apoptosis of Lck(+) subsets such as T and NK cells, but not Lck-deficient cells, including B cells and monocytes. Moreover, RosA's ability to kill T and NK cells was restricted to actively proliferating cells, but not to resting cells. In conclusion, Lck-dependent apoptotic activity may make RosA an attractive therapeutic tool for the treatment of diseases in which T cell apoptosis is beneficial.  相似文献   

17.
The lymphocyte-specific protein-tyrosine kinase Lck plays a critical role in T cell activation. In response to T cell antigen receptor binding Lck undergoes phosphorylation on serine residues that include serines 59 and 194. Serine 59 is phosphorylated by ERK mitogen-activated protein kinase. Recently, we showed that in mitotic T cells Lck becomes hyper-phosphorylated on serine residues. In this report, using one-dimensional phosphopeptide mapping analysis, we identify serine 59 as a site of in vivo mitotic phosphorylation in Lck. The mitotic phosphorylation of serine 59 did not require either the catalytic activity or functional SH2 or SH3 domains of Lck. In addition, the presence of ZAP-70 also was dispensable for the phosphorylation of serine 59. Although previous studies demonstrated that serine 59 is a substrate for the ERK MAPK pathway, inhibitors of this pathway did not block the mitotic phosphorylation of serine 59. These results identify serine 59 as a site of mitotic phosphorylation in Lck and suggest that a pathway distinct from that induced by antigen receptor signaling is responsible for its phosphorylation. Thus, the phosphorylation of serine 59 is the result of two distinct signaling pathways, differentially activated in response to the physiological state of the T cell.  相似文献   

18.
RAGE ligation affects T cell activation and controls T cell differentiation   总被引:1,自引:0,他引:1  
The pattern recognition receptor, RAGE, has been shown to be involved in adaptive immune responses but its role on the components of these responses is not well understood. We have studied the effects of a small molecule inhibitor of RAGE and the deletion of the receptor (RAGE-/- mice) on T cell responses involved in autoimmunity and allograft rejection. Syngeneic islet graft and islet allograft rejection was reduced in NOD and B6 mice treated with TTP488, a small molecule RAGE inhibitor (p < 0.001). RAGE-/- mice with streptozotocin-induced diabetes showed delayed rejection of islet allografts compared with wild type (WT) mice (p < 0.02). This response in vivo correlated with reduced proliferative responses of RAGE-/- T cells in MLRs and in WT T cells cultured with TTP488. Overall T cell proliferation following activation with anti-CD3 and anti-CD28 mAbs were similar in RAGE-/- and WT cells, but RAGE-/- T cells did not respond to costimulation with anti-CD28 mAb. Furthermore, culture supernatants from cultures with anti-CD3 and anti-CD28 mAbs showed higher levels of IL-10, IL-5, and TNF-alpha with RAGE-/- compared with WT T cells, and WT T cells showed reduced production of IFN-gamma in the presence of TTP488, suggesting that RAGE may be important in the differentiation of T cell subjects. Indeed, by real-time PCR, we found higher levels of RAGE mRNA expression on clonal T cells activated under Th1 differentiating conditions. We conclude that activation of RAGE on T cells is involved in early events that lead to differentiation of Th1(+) T cells.  相似文献   

19.
T cell-specific Src family tyrosine kinase, p56lck, plays crucial roles in T cell differentiation, activation, and proliferation. These multiple functions of p56lck are believed to be conducted through the protein-protein interactions with various cellular signaling proteins. To clarify the mechanisms through which p56lck contributes to T cell signaling, we identified the proteins binding to the Src homology 2 (SH2) domain of p56lck through a tyrosine phosphorylation-dependent yeast two-hybrid screening. Subsequent characterization of positive clones revealed the presence of a protein of 366 aa named Lad (Lck-associated adapter protein), which is a potential murine homologue of previously reported TSAd, a T cell-specific adapter protein. Lad contains several protein-protein interaction domains including a zinc-finger motif, an SH2 domain, a proline-rich SH3 binding motif, and several phosphotyrosine sites. Furthermore, Lad was tyrosine phosphorylated and associated with p56lck in vivo and redistributed from cytoplasm to the plasma membrane in a T cell activation-dependent manner. Moreover in T cells, IL-2 promoter activity was enhanced upon coexpression of Lad but was inhibited by the coexpression of antisense Lad RNA. These characteristics of Lad suggest that Lad play an essential role as an adapter protein in p56lck-mediated T cell signaling.  相似文献   

20.
Lymphoma induction and T-cell transformation by herpesvirus saimiri strain C488 depends on two viral oncoproteins, StpC and Tip. The major interaction partner of Tip is the protein tyrosine kinase Lck, a key regulator of T-cell activation. The Lck binding domain (LBD) of Tip comprises two interaction motifs, a proline-rich SH3 domain-binding sequence (SH3B) and a region with homology to the C terminus of Src family kinase domains (CSKH). In addition, biophysical binding analyses with purified Lck-SH2 domain suggest the phosphorylated tyrosine residue 127 of Tip (pY127) as a potential third Lck interaction site. Here, we addressed the relevance of the individual binding motifs, SH3B, CSKH, and pY127, for Tip-Lck interaction and for human T-cell transformation. Both motifs within the LBD displayed Lck binding activities and cooperated to achieve a highly efficient interaction, while pY127, the major tyrosine phosphorylation site of Tip, did not enhance Lck binding in T cells. Herpesvirus saimiri strain C488 recombinants lacking one or both LBD motifs of Tip lost their transforming potential on human cord blood lymphocytes. Recombinant virus expressing Tip with a mutation at position Y127 was still able to transform human T lymphocytes but, in contrast to wild-type virus, was strictly dependent on exogenous interleukin-2. Thus, the strong Lck binding mediated by cooperation of both LBD motifs was essential for the transformation of human T cells by herpesvirus saimiri C488. The major tyrosine phosphorylation site Y127 of Tip was particularly required for transformation in the absence of exogenous interleukin-2, suggesting its involvement in cytokine signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号