首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The degradation of the soybean SRS4 mRNA, which encodes the small subunit of ribulose-1,5-bisphosphate carboxylase, yields a set of proximal (5' intact) and distal (3' intact) products both in vivo and in vitro. These products are generated by endonucleolytic cleavages that occur essentially in a random order, although some products are produced more rapidly than others. Comparison of sizes of products on Northern (RNA) blots showed that the combined sizes of pairs of proximal and distal products form contiguous full-length SRS4 mRNAs. When the 3' ends of the proximal products and the 5' ends of the distal products were mapped by S1 nuclease and primer extension assays, respectively, both sets of ends mapped to the same sequences within the SRS4 mRNA. A small in vitro-synthesized RNA fragment containing one cleavage site inhibited cleavage of all major sites, equivalently consistent with one enzymatic activity generating the endonucleolytic cleavage products. These products were rich in GU nucleotides, but no obvious consensus sequence was found among several cleavage sites. Preliminary evidence suggested that secondary structure could play a role in site selection. The structures of the 5' ends of the proximal products and the 3' ends of the distal products were examined. Proximal products were found with approximately equal frequency in both m7G cap(+) and m7G cap(-) fractions, suggesting that the endonucleolytic cleavage events occurred independently of the removal of the 5' cap structure. Distal products were distributed among fractions with poly(A) tails ranging from undetectable to greater than 100 nucleotides in length, suggesting that the endonucleolytic cleavage events occurred independently of poly(A) tail shortening. Together, these data support a stochastic endonuclease model in which an endonucleolytic cleavage event is the initial step in SRS4 mRNA degradation.  相似文献   

4.
Cells producing avian sarcoma virus (ASV) contain at least three virus-specific mRNAs, two of which are encoded within the 3' half of the viral genome. Each of these viral RNAs can hybridize with single-stranded DNA(cDNA5') that is complementary to a sequence of 101 nucleotides found at the 5' terminus of the ASV genome, but not within the 3' half of the genome. We proposed previously (Weiss, Varmus and Bishop, 1977) that this nucleotide sequence may be transposed to the 5' termini of viral mRNAs during the genesis of these RNAs. We now substantiate this proposal by reporting the isolation and chemical characterization of the nucleotide sequences complementary to cDNA5' in the genome and mRNAs of the Prague B strain of ASV. We isolated the three identified classes of ASVmRNA (38, 28 and 21S) by molecular hybridization; each class of RNA contained a "capped" oligonucleotide identical to that found at the 5' terminus of the ASV genome. When hybridized with cDNA5', each class of RNA gave rise to RNAase-resistant duplex hybrids that probably encompassed the full extent of cDNA5'. The molar yields of duplex conformed approximately to the number of virus-specific RNA molecules in the initial samples; hence most if not all of the molecules of virus-specific RNA could give rise to the duplexes. The duplexes prepared from the various RNAs all contained the capped oligonucleotide found at the 5' terminus of the viral genome and had identical "fingerprints" when analyzed by two-dimensional fractionation following hydrolysis with RNAase T1. In contrast, RNA representing the 3' half of the ASV genome did not form hybrids with cDNA5'. We conclude that a sequence of more than 100 nucleotides is transposed from the 5' end of the ASV genome to the 5' termini of smaller viral RNAs during the genesis of these RNAs. Transposition of nucleotide sequences during the production of mRNA has now been described for three families of animal viruses and may be a common feature of mRNA biogenesis in eucaryotic cells. The mechanism of transposition, however, and the function of the transposed sequences are not known.  相似文献   

5.
6.
7.
8.
9.
We have detected specific endonucleolytic cleavages of mouse albumin mRNA by S1 nuclease protection analysis of total RNA from fetal mouse liver using a cDNA probe spanning the middle, coding region of albumin mRNA. With the use of probe labeled at its 5' end, three prominent cleavages were detected which were confirmed and their endonucleolytic nature was established by further analysis using 3' end-labeled probe. The latter probe also revealed one more cleavage which was not detected with the 5' end-labeled probe. These cleavages mapped to positions on the mRNA which included a unique sequence motif CCAN1-3CUGN0-1UGAU. Degradation intermediates corresponding to these cleavages were consistently observed, specifically in fetal liver but not in normal or regenerating adult liver and appeared to have originated in vivo. Their levels decreased progressively from 18th day of gestation and became undetectable by 20 days after birth. No detectable changes in the levels of any of the prominent degradation products of alpha-fetoprotein (a homologue of albumin) mRNA could be observed during this period of development. Since accumulation of degradation intermediates is known to correlate with higher rate of mRNA turnover, our observations raise the possibility that the stability of albumin mRNA may be lower in fetal than in adult mouse liver.  相似文献   

10.
RNA interference (RNAi) is a conserved RNA silencing pathway that leads to sequence-specific mRNA decay in response to the presence of double-stranded RNA (dsRNA). Long dsRNA molecules are first processed by Dicer into 21-22-nucleotide small interfering RNAs (siRNAs). The siRNAs are incorporated into a multimeric RNA-induced silencing complex (RISC) that cleaves mRNAs at a site determined by complementarity with the siRNAs. Following this initial endonucleolytic cleavage, the mRNA is degraded by a mechanism that is not completely understood. We investigated the decay pathway of mRNAs targeted by RISC in Drosophila cells. We show that 5' mRNA fragments generated by RISC cleavage are rapidly degraded from their 3' ends by the exosome, whereas the 3' fragments are degraded from their 5' ends by XRN1. Exosome-mediated decay of the 5' fragments requires the Drosophila homologs of yeast Ski2p, Ski3p, and Ski8p, suggesting that their role as regulators of exosome activity is conserved. Our findings indicate that mRNAs targeted by siRNAs are degraded from the ends generated by RISC cleavage, without undergoing decapping or deadenylation.  相似文献   

11.
12.
13.
14.
Requirement of a downstream sequence for generation of a poly(A) addition site   总被引:43,自引:0,他引:43  
  相似文献   

15.
16.
17.
18.
Polyadenylation accelerates degradation of chloroplast mRNA.   总被引:13,自引:0,他引:13       下载免费PDF全文
J Kudla  R Hayes    W Gruissem 《The EMBO journal》1996,15(24):7137-7146
The expression of chloroplast genes is regulated by several mechanisms, one of which is the modulation of RNA stability. To understand how this regulatory step is controlled during chloroplast development, we have begun to define the mechanism of plastid mRNA degradation. We show here that the degradation petD mRNA involves endonucleolytic cleavage at specific sites upstream of the 3' stem-loop structure. The endonucleolytic petD cleavage products can be polyadenylated in vitro, and similar polyadenylated RNA products are detectable in vivo. PCR analysis of the psbA and psaA-psaB-rps14 operons revealed other polyadenylated endonucleolytic cleavage products, indicating that poly(A) addition appears to be an integral modification during chloroplast mRNA degradation. Polyadenylation promotes efficient degradation of the cleaved petD RNAs by a 3'-5' exoribonuclease. Furthermore, polyadenylation also plays an important role in the degradation of the petD mRNA 3' end. Although the 3' end stem-loop is usually resistant to nucleases, adenylation renders the secondary structure susceptible to the 3'-5' exoribonuclease. Analysis of 3' ends confirms that polyadenylation occurs in vivo, and reveals that the extent of adenylation increases during the degradation of plastid mRNA in the dark. Based on these results, we propose a novel mechanism for polyadenylation in the regulation of plastid mRNA degradation.  相似文献   

19.
Faithful degradation of soybean rbcS mRNA in vitro.   总被引:6,自引:1,他引:5       下载免费PDF全文
The mRNA encoding the soybean rbcS gene, SRS4, is degraded into a set of discrete lower-molecular-weight products in light-grown soybean seedlings and in transgenic petunia leaves. The 5'-proximal products have intact 5' ends, lack poly(A) tails, lack various amounts of 3'-end sequences, and are found at higher concentrations in the polysomal fraction. To study the mechanisms of SRS4 mRNA decay more closely, we developed a cell-free RNA degradation system based on a polysomal fraction isolated from soybean seedlings or mature petunia leaves. In the soybean in vitro degradation system, endogenous SRS4 mRNA and proximal product levels decreased over a 6-h time course. When full-length in vitro-synthesized SRS4 RNAs were added to either in vitro degradation system, the RNAs were degraded into the expected set of proximal products, such as those observed for total endogenous RNA samples. When exogenously added SRS4 RNAs already truncated at their 3' ends were added to either system, they too were degraded into the expected subset of proximal products. A set of distal fragments containing intact 3' ends and lacking various portions of 5'-end sequences were identified in vivo when the heterogeneous 3' ends of the SRS4 RNAs were removed by oligonucleotide-directed RNase H cleavage. Significant amounts of distal fragments which comigrated with the in vivo products were also observed when exogenous SRS4 RNAs were degraded in either in vitro system. These proximal and distal products lacking various portions of their 3' and 5' sequences, respectively, were generated in essentially a random order, a result supporting a nonprocessive mechanism. Tagging of the in vitro-synthesized RNAs on their 5' and 3' ends with plasmid vector sequences or truncation of the 3' end had no apparent effect on the degradation pattern. Therefore, RNA sequences and/or structures in the immediate vicinity of each 3' end point may be important in the degradation machinery. Together, these data suggest that SRS4 mRNA is degraded by a stochastic mechanism and that endonucleolytic cleavage may be the initial event. These plant in vitro systems should be useful in identifying the cis- and trans-acting factors involved in the degradation of mRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号