首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Voltage-clamp experiments have been performed on frog atrial preparations in order to study the mechanism of the inotropic effect of acetylcholine (ACh) at various concentrations. The amplitude of the slow inward current (Is) is reduced even at low ACh concentrations; such low concentrations have little or no effect on potassium permeability. Dose-effect relationships for Is inhibition (Is/Is max) by ACh show a half amplitude dose (K0.5 around 8 X 10(-8) M ACh. The reduction of Is is attributed largely to a decrease of the maximal conductance of the slow channel (gs). Steady-state activation and inactivation parameters are not affected by ACh. Experiments in a Na-free solution (Na replaced by Li ions) or in a Ca-free solution (with EGTA) indicate that the "slow sodium current" is more sensitive to ACh than the "slow Ca current", although these two currents both seem to flow through the slow channel. The decrease of the phasic component of contraction observed in the presence of ACh is very well correlated with the decrease of Is (K0.5 = 8 X 10(-8) M ACh), while the increase of the tonic tension may be related to the outward potassium current induced by high concentrations of ACh. The significant difference between the half amplitude dose (K0.5) observed in the dose effect curves with ACh for Is inhibition (K0.5 = 8 X 10(-8) M) and for ACh-induced extra-current (K0.5 - 10(-6) M) may indicate the presence of two muscarinic receptors.  相似文献   

2.
A Shah  I S Cohen    M R Rosen 《Biophysical journal》1988,54(2):219-225
Alpha-adrenergic amines exert concentration-dependent actions on the automaticity of cardiac Purkinje fibers (Posner, P., E. L. Farrar, and C. R. Lambert. 1976. Am. J. Physiol. 231:1415-1420; Rosen, M. R., A. J. Hordof, J. P. Ilvento, and P. Danilo, Jr. 1977. Circ. Res. 40:390-400; Rosen, M. R., R. M. Weiss, and P. Danilo, Jr. 1984. J. Pharmacol. Exp. Ther. 231:1415-1420). At high concentrations they induce a largely beta adrenergic increase in the spontaneous firing rate of adult canine Purkinje fibers, whereas at concentrations less than 10(-6) M, their effect is mediated through alpha-adrenergic receptors and is seen predominantly as a decrease in the fibers' spontaneous firing rate. The mechanism for this decrease in spontaneous firing rate remains unexplained. We report here that phenylephrine (10(-7) M) increases the activity of the Na/K pump and decreases background gK in Purkinje myocytes. Both effects appear to be alpha-1 adrenergic and, in addition, are abolished on pretreatment with pertussis toxin. These results suggest that like the atrial muscarinic receptor (Pffafinger, P. J., J. M. Martin, D. D. Hunter, N. M. Nathanson, and B. Hille. 1985. Nature [Lond.]. 317:536-538; Breitwieser, G. E., and G. Szabo. 1985. Nature [Lond.]. 317:538-540) the Purkinje fiber alpha-1 receptor is coupled to background gK via a GTP-regulatory protein. Further, they suggest that the phenylephrine-induced decrease in spontaneous firing rate is due to stimulation of the Na/K pump via a novel coupling of the Na/K pump to a pertussis toxin-sensitive GTP regulatory protein.  相似文献   

3.
Chronic pertussis toxin treatment (5 days) of NG108-15 neuroblastoma X glioma hybrid cells had no significant effect on basal cyclic AMP levels whereas it effectively blocked the inhibitory action of acute (10 min) exposure of carbachol (10(-4)M) on intracellular cyclic AMP accumulation, stimulated by prostaglandin E1. This action of pertussis toxin was found to be long lasting: exposure of the cells to pertussis toxin (100 ng/ml) for only 24 h followed by a 5-day withdrawal period still was shown effective on day 7 in abolishing the inhibitory action of carbachol on prostaglandin E1-stimulated cyclic AMP production. Chronic exposure (5 days) of NG108-15 cells to carbachol (10(-5)M) causes an increase in basal cyclic AMP levels by 98%, and a desensitization of the muscarinic inhibition of cyclic AMP accumulation, assessed after a 24-h withdrawal period. When carbachol treatment is carried out in the presence of pertussis toxin (100 ng/ml) both of these effects of carbachol are abolished.  相似文献   

4.
A study was made of the action of theophylline, isobutyrylmethylxanthine and caffeine on the sensitivity of mouse diaphragmatic muscle fibers to iontophoretically applied acetylcholine (ACh). It was shown that these substances at concentrations of 5 X 10(-4) -5 X 10(-3) M reduced the amplitude and increased the duration of the ACh potential as well as accelerated desensitization of the cholinoceptor at repetitive application of ACh. As regards the action on the ACh potential amplitude two phases which differed in the time-course of development and washing were recognized: rapid and slow. Addition of dibutyryl-cAMP (5 X 10(-4) M) after theophylline (10(-3) M) potentiated the latter's action on the ACh potential amplitude but did not influence its duration and the rate of desensitization. It is assumed that the action of phosphodiesterase inhibitors on the duration of the ACh potential and the rate of desensitization is not mediated by an elevation in the muscle cAMP content. Apparently, cAMP accumulation may be responsible but for the phase of a slow decrease in the ACh potential amplitude.  相似文献   

5.
The atrioventricular node (AVN) can act as a subsidiary cardiac pacemaker if the sinoatrial node fails. In this study, we investigated the effects of the Na-Ca exchange (NCX) inhibitor KB-R7943, and inhibition of the sarcoplasmic reticulum calcium ATPase (SERCA), using thapsigargin or cyclopiazonic acid (CPA), on spontaneous action potentials (APs) and [Ca(2+)](i) transients from cells isolated from the rabbit AVN. Spontaneous [Ca(2+)](i) transients were monitored from undialysed AVN cells at 37°C using Fluo-4. In separate experiments, spontaneous APs and ionic currents were recorded using the whole-cell patch clamp technique. Rapid application of 5 μM KB-R7943 slowed or stopped spontaneous APs and [Ca(2+)](i) transients. However, in voltage clamp experiments in addition to blocking NCX current (I(NCX)) KB-R7943 partially inhibited L-type calcium current (I(Ca,L)). Rapid reduction of external [Na(+)] also abolished spontaneous activity. Inhibition of SERCA (using 2.5 μM thapsigargin or 30 μM CPA) also slowed or stopped spontaneous APs and [Ca(2+)](i) transients. Our findings are consistent with the hypothesis that sarcoplasmic reticulum (SR) Ca(2+) release influences spontaneous activity in AVN cells, and that this occurs via [Ca(2+)](i)-activated I(NCX); however, the inhibitory action of KB-R7943 on I(Ca,L) means that care is required in the interpretation of data obtained using this compound.  相似文献   

6.
J P Brockes  Z W Hall 《Biochemistry》1975,14(10):2100-2106
Acetylcholine (ACh) receptors have been purified separately from normal rat diaphragm muscle (junctional receptors) and from extrajunctional regions of denervated diaphragm (extrajunctional receptors) in order to compare their properties. The toxin-receptor complexes of the two receptors were indistinguishable by gel filtration and by zone sedimentation in sucrose gradients, and showed identical precipitation curves with rabbit antiserum to the eel ACh receptor. Both toxin-receptor complexes bind concanavalin A and are therefore probably glycoproteins. Low concentrations of d-tubocuratine (dTC) were more effective in decreasing the rate of toxin binding to junctional than to extrajunctional receptors. The apparent dissociation constant for dTC binding to the junctional receptor was 4.5 X 10 minus 8 M, whereas the value for the extrajunctional receptor was 5.5 X 10 minus 7 M. When the complexes were analyzed by isoelectric focusing, the junctional complex focused at approximately 0.15 pH unit lower than the extrajunctional complex. This result was also found with crude preparations of receptor. We conclude that junctional and extrajunctional receptors are similar but distinct molecules. The properties of receptors present in neonatal diaphragm muscle were also examined and found to be similar to those of receptors in denervated muscle, as shown by dTC inhibition and isoelectric focusing.  相似文献   

7.
We have characterized the GTPase activity of the Ni-like guanine-nucleotide-binding regulatory protein in rabbit neutrophil plasma membranes. The low Km (3.64 +/- 0.87 X 10(-7) M) GTPase copurified with the formyl peptide receptor in the plasma membrane fraction obtained by discontinuous sucrose density gradient centrifugation. The Vmax (23.9 +/- 2.91 pmol/mg/min) and Km of the unstimulated enzyme were similar to those reported for Ni in other cell types. The activity of the unstimulated enzyme was both magnesium and sodium dependent and linear over the first 4 min of the assay. The chemoattractants, formyl-methionyl-leucyl-phenylalanine (fMLP), C5a, and leukotriene B4 (LTB4) stimulated the GTPase in purified neutrophil plasma membrane preparations, whereas other secretagogues, such as A23187 and PMA, were without effect. Lineweaver-Burk analysis showed an fMLP-induced increase in Vmax (31.94 +/- 4.80 pmol/mg/min) (33.1 +/- 9.5%) but not in Km. The dose-response curve for fMLP stimulation showed an ED50 of 4.1 +/- 1.0 X 10(-8) M and an overall 22.2 +/- 3.1% maximal stimulation. C5a (30 micrograms/ml) increased the activity of the GTPase 21.3 +/- 5.7% and 10(-7) M LTB4 produced a 32.2 +/- 5.4% increase. Activated pertussis toxin treatment of neutrophil plasma membranes inhibited by 72.5 +/- 14.3% the stimulation of GTPase activity induced by fMLP; however, activated cholera toxin had no effect on the inhibition of fMLP stimulation, suggesting a direct role for an Ni-like protein in the coupling process. In contrast to the lack of inhibition of fMLP stimulation by activated cholera toxin treatment of plasma membranes, both pertussis toxin and to a lesser extent cholera toxin treatment reduced fMLP, C5a, and LTB4 stimulation of the GTPase in sonicates prepared from pretreated whole cells. Pertussis toxin inhibited fMLP stimulation of the GTPase by 75 +/- 7%, C5a stimulation was inhibited by 83 +/- 13%, and LTB4 stimulation was inhibited completely. Sonicates prepared from neutrophils treated similarly with cholera toxin showed a smaller inhibition of GTPase activity (50 +/- 4% and 14 +/- 9% for fMLP and LTB4, respectively) with the exception of C5a, where CT inhibition (81 +/- 32%) equaled pertussis toxin inhibition. Similarly, pertussis toxin completely inhibited the release of the granule enzyme N-acetyl-glucosaminidase by all three chemoattractants, whereas cholera toxin, except with C5a stimulation, had little or no effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Motilin and acetylcholine (ACh) have a direct contractile effect on rabbit small intestinal smooth muscle. To explore the role of calcium influx in these contractions, we studied the effect of extracellular calcium concentration and of calcium antagonists on the response of longitudinal muscle preparations from rabbit duodenum. Motilin- (10(-7) M) and ACh- (10(-4) M)-induced contractions were abolished in Ca2+-depleted medium. ACh (10(-4) M) or motilin (10(-8) and 10(-7) M) increased the contractile response to added Ca2+ to 130 +/- 6%, 129 +/- 10% and 145 +/- 5% of the maximal response to Ca2+ added alone (10 mM in a cumulative concentration response curve). The sensitivity to Ca2+ was greater in the presence of ACh and motilin (EC50 = 1.0 and 1.1 mM Ca2+) than in the absence of any agonist (1.7 mM). In cumulative concentration response (CCR) curves for motilin and ACh, pD2'-values were 7.0 and 6.6 for diltiazem, 8.4 and 7.8 for verapamil (two calcium entry blockers), 5.6 and 5.2 for TMB-8 (an inhibitor of intracellular calcium), 5.3 and 5.2 for TFP (a calmodulin-antagonist). All CCR-curves showed metactoid-like action of the antagonistic drugs. We conclude that ACh and motilin cause calcium to enter the smooth muscle cell. They are probably operating via separate channels, and use a mechanism which differs from K+-induced influx. Intracellular calcium stores appear to play a minor role in these contractions.  相似文献   

9.
We compared isotonic shortening with isometric force generation as a function of external Ca2+ in 166 tracheal smooth muscle (TSM) strips from 27 mongrel dogs in vitro. Concentration-response curves were generated with muscarinic stimulation (acetylcholine, ACh), alpha-adrenergic receptor activation (norepinephrine after beta-adrenoceptor blockade, NE), serotonin (5-HT), and KCl-substituted Krebs-Henseleit solution. The concentrations of 5-HT causing half-maximal shortening (ECS50, 1.54 +/- 0.14 X 10(-7) M) and half-maximal active isometric tension (ECT50, 1.72 +/- 0.30 X 10(-7) M) were similar (P = NS). Likewise, ECS50 (21.9 +/- 0.7 mM) and ECT50, (22.0 +/- 0.9 mM) were similar for KCl. In contrast, facilitated isotonic shortening (i.e., greater isotonic shortening for comparable degrees of force generation) was elicited with ACh and NE for all levels of force generation between 15 and 85% of maximum and for all concentrations of ACh from 3 X 10(-8) to 3 X 10(-5) M (P less than 0.05 for all points). Facilitated isotonic shortening also was elicited for all concentrations of NE from 10(-8) to 10(-6) M (P less than 0.05 for all points). Removal of Ca2+ from the perfusate substantially reduced the potency of ACh (P less than 0.001) and abolished differences between ECS50 (2.23 +/- 0.28 X 10(-5) M) and ECT50 (2.50 +/- 0.46 X 10(-5) M, P = NS). We demonstrate that for comparable degrees of force generation, muscarinic and alpha-adrenergic receptor activation cause greater isotonic shortening than KCl or 5-HT and that this facilitated shortening is associated with the concentration of external Ca2+.  相似文献   

10.
The role of prostaglandins (PGs) in the mechanism of action of acetylcholine (ACh) on frog adrenocortical cells has been examined. Administration of a single dose of ACh (5 X 10(-5) M) to perifused frog interrenal fragments, for 20 min, stimulated the production of corticosterone, aldosterone, PGE2 and 6-keto-PGF1 alpha. In contrast ACh did not significantly alter TXB2 production. The effect of ACh could be mimicked by muscarine (10(-5) M). Conversely, nicotine (10(-6) to 10(-4) M) was totally inactive. The increase in PG biosynthesis preceded the peak of corticosteroid release. Repeated 20-min pulses of ACh (5 X 10(-5) M) or muscarine (10(-5) M) given at 130-min intervals induced a desensitization phenomenon. In presence of indomethacin (5 X 10(-6) M), the effect of ACh on PG and steroid secretion was totally abolished. In calcium-free medium, the effect of ACh on PG and corticosteroid production was completely blocked. These results indicate that, in the frog, ACh stimulates corticosteroid secretion through a PG-dependent mechanism.  相似文献   

11.
These studies were performed to determine the intracellular pathways involved in regulating gastrin gene expression. The inclusion of 10(-4) M forskolin or 10(-4) M dibutyryl cyclic AMP (DBcAMP) in incubation medium containing dog antral mucosa resulted in 249% and 323% increases, respectively, in gastrin mRNA levels. The stimulatory effects of forskolin and DBcAMP were both inhibited significantly by 10(-6) M somatostatin. Preincubation of antral mucosa with pertussis toxin nearly abolished the inhibitory effects of somatostatin on gastrin mRNA stimulated by forskolin, but had no effect following DBcAMP. To examine whether calcium-dependent pathways might be involved in regulating gastrin gene expression, antral mucosa was incubated with increasing concentrations of calcium or the ionophore ionomycin. Both agents produced only modest increases in gastrin mRNA, which were abolished by the addition of somatostatin to the incubation medium. These studies indicate that somatostatin appears to inhibit gastrin gene expression through mechanisms involving both pertussis toxin-sensitive and -insensitive pathways.  相似文献   

12.
The effects of pharmacological stimulation at different levels of the beta-adrenoceptor (AR) pathway, including the receptor, the receptor-coupled Gs protein, and adenylyl cyclase, were studied by simultaneous measurements of acetylcholine (ACh) release and isometric force evoked by electric stimulation in isolated bovine trachealis. The beta-AR agonists isoproterenol (10-6 and 10-5 M) and salbutamol (10-7 to 10-5 M) significantly attenuated both ACh release and contractile force. Forskolin, at 10-6 M, significantly increased ACh release without effect on contractile force, whereas at 10-5 M it increased ACh release but significantly decreased force. Activation of Gs protein by cholera toxin (10 microg/ml) significantly attenuated both ACh release and contractile force, but its effect on ACh release was abolished by calcium-activated potassium (KCa)-channel blocker iberiotoxin (10-7 M). The KCa-channel opener NS-1619 (10-4 M) attenuated significantly both ACh release and contractile force. It is concluded that beta-AR agonists attenuate cholinergic neurotransmission in isolated bovine trachealis model by a mechanism not involving cAMP but KCa channels.  相似文献   

13.
Dopamine (DA) has dual actions (inhibitory and stimulatory) in the regulation of prolactin (PRL) release, depending on its concentration. To investigate the stimulatory effects of DA, perifused rat anterior pituitary cells were exposed to the highly-specific DA D2 receptor agonist, quinpirole hydrochloride (LY). Very low concentrations of LY (10(-12)-10(-10) M) stimulated PRL release and potentiated thyrotropin-releasing hormone (TRH)-induced PRL release. Higher concentrations of LY did not stimulate. Pretreatment with pertussis toxin (30 ng/ml, 24 h) completely abolished these effects of LY. The D2 receptor antagonist, metoclopramide, also blocked the potentiation by LY of TRH-induced PRL release. These data indicate that very low concentrations of dopamine stimulate PRL release via an interaction with a D2 receptor connected to a pertussis toxin-sensitive G protein.  相似文献   

14.
In isolated mouse left atria, acetylcholine (ACh) produced a biphasic inotropic response; a transient decrease in developed tension was followed by an increase. Both negative and positive responses were concentration dependent and were inhibited by atropine. The negative and positive inotropic responses were also observed with a nonselective muscarinic stimulant, oxotremorine-M, but not with an M1-receptor selective stimulant, McN-A343. Pirenzepine, an M1-receptor antagonist, inhibited both negative and positive inotropic responses at high concentrations. Gallamine, an M2-receptor antagonist, inhibited the negative response. Hexahydro-siladifenidol hydrochloride, p-fluoro analog (p-F-HHSiD), an M3-receptor antagonist, inhibited the positive response with no effect on the negative phase. In pertussis toxin (PTX) treated preparations, negative inotropic response to ACh was not observed. These results suggest that the negative and positive inotropic responses to acetylcholine in mouse atria are mediated by M2 and M3 receptors, respectively. The negative phase, but not the positive phase, was mediated by a PTX-sensitive G protein.  相似文献   

15.
Clonazepam, up to concentrations of 5 x 10(-5) M produced only 15% inhibition of contraction without effecting isoproterenol-induced slow action potentials (APs) of guinea pig papillary muscles. On the other hand, 10(-6) M diltiazem completely inhibited both slow APs and contractions. Both clonazepam and diltiazem inhibited Na+-induced Ca2+ release from isolated mitochondria. The half-maximum effect of clonazepam and diltiazem occurred at 7 and 8 x 10(-6) M respectively. The results suggest that clonazepam more specifically inhibits the Na+-induced Ca2+ release process of mitochondria.  相似文献   

16.
Abstract

The present study was conducted to localize and characterize the subtype(s) of muscarinic receptor involved in prostacyclin (PGI2) production elicited by the cholinergic transmitter acetylcholine (ACh) in various cell types in the rabbit heart. ACh increased PGI2 synthesis measured as 6-keto-PGF1α, in cultured coronary endothelial cells and freshly dissociated ventricular myocytes in a dose dependent manner but not in cultured coronary smooth muscle cells of rabbit heart. McN-A-343, a partially selective M1 muscarinic ACh receptor (mAChR) agonist, did not alter 6-keto-PGF1α synthesis in these cell types. ACh induced 6-keto-PGF1α synthesis in coronary endothelial cells and ventricular myocytes was not altered by a low concentration (10?8 M) of pirenzipine, an M1 mAChR antagonist but was reduced by a higher concentration (10?6 M). In coronary endothelial cells ACh induced 6-keto-PGF1α production was reduced by hexahydro-sila-difendial (HHSiD), an M3 mAChR antagonist, and in ventricular myocytes by both 11-(2-[(di-ethylamino) methyl]-1-piperidinyl]acetyl-5,11-dihydro-6-H-pyrido-[2,3-b]-benzodiazepine-6 one] (AF-DX 116), an M2 receptor antagonist, and HHSiD. The decrease by ACh of isoporterenol stimulated cAMP accumulation was minimized by AF-DX 116 but not by HHSiD or pirenzipine. Pertussis toxin treatment minimized ACh induced decrease in isoproterenol stimulated rise in cAMP and ATP release, but not ACh induced 6-keto-PGF1α synthesis. These data suggest that ACh stimulates prostacyclin production in coronary endothelial cells via M3 mAChR and in ventricular myocytes M2 and M3 mAChR. Moreover, ACh induced decrease in cAMP, but not the increase in 6-keto-PGF1α production, is mediated by pertussis toxin sensitive Gαi proteins in these cells.  相似文献   

17.
The site of neuromuscular blockade induced by polymyxin B and rolitetracycline was studied on isolated nerve and nerve-muscle preparations. Polymyxin B (1.8 X 10(-4) M) was equipotent to lidocaine as a local anaesthetic on a frog desheathed nerve preparation, while rolitetracycline (up to 3.6 X 10(-3)M) had no local anaesthetic effect. Polymyxin B (6 X 10(-5) M) and rolitetracycline (7 X 10(-4) M) blocked by 50% the response of rat diaphragm induced by phrenic nerve stimulation, but did not decrease the amount of acetylcholine (ACh) released from this preparation during nerve stimulation. Both antibiotics depressed the response of the rat diaphragm to inject ACh, and this response was more sensitive to inhibition by the drugs than was the response to nerve stimulation. With rolitetracycline, a concentration that blocked the response to nerve stimulation by 50% inhibited the response to injected ACh by 85%, and this relationship was similar to that with d-tubocurarine; however, polymyxin B was relatively more effective than d-tubocurarine in inhibiting the effect of ACh. Polymyxin B (1-1.5 X 10(-4) M) but not rolitetracycline (1 X 10(-3) M) depressed the response of the diaphragm to direct muscle stimulation. It is concluded that polymyxin B and rolitetracycline block neuromuscular transmission predominatly by an effect to depress the muscle's sensitivity to ACh; polymyxin B probably acts by an effect similar to that of local anaesthetics, while rolitetracycline probably acts by an effect similar to that of d-tubocurarine.  相似文献   

18.
The effect of stretching from L0 to Lmax on the electrical activity was studied on human myocardial preparations from patients with heart disease and on strips of rabbit ventricular myocardium. Muscular deformation was shown to decrease the amplitude and velocity of depolarization in slow action potentials. The action potentials (AP) possessing a fast depolarization phase were not sensitive to physiological stretching. Antiarrhythmic drugs--ethmozin (2 X 10(-5) M) and ethacizin (2 X 10(-6) M)--caused a decrease in the rate of AP depolarization, thus increasing AP sensitivity to deformation. It is suggested that stretching under the action of ethmozin and ethacizin reduced cardiomyocyte excitability due to suppression of slow Ca-current.  相似文献   

19.
125I-Galanin was cross-linked to receptor in Rin m 5F cell membranes using the bifunctional reagent disuccinimidyl tartarate. Regardless of the presence of reducing agents, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cross-linked galanin-receptor complexes revealed the presence of a radioactive band at Mr 57,000. Excess unlabeled galanin completely inhibited the labeling of the band while other regulatory peptides had no effect. Labeling of the Mr 57,000 complex was abolished by galanin concentration from 10(-9) to 10(-6) M (IC50 = 5 X 10(-9) M). Initial incubation with 125I-galanin in the presence of increasing concentrations of guanyl-5'-yl imidodiphosphate (GMP-P(NH)P) (10(-7) to 10(-4) M) also inhibited the labeling of the Mr 57,000 complex. Moreover, pretreatment of membranes with pertussis toxin before formation of the covalent galanin-receptor complex, dramatically reduced the labeling of the Mr 57,000 species. Covalent Mr 57,000 galanin-receptor complexes solubilized by Triton X-100 bound specifically to wheat germ agglutinin-concanavalin A-, and soybean-coupled Sepharose, supporting the glycoproteic nature of the galanin receptor. Assuming one molecule of 125I-galanin (Mr 3,000) was bound per molecule of protein, these results suggest that the pancreatic galanin receptor is a glycoprotein with a Mr of 54,000 bearing the recognition site for the ligand and which is coupled with a pertussis toxin-sensitive G protein in the plasma membrane.  相似文献   

20.
Isolated newborn, but not adult, rabbit sinoatrial node (SAN) cells exhibit spontaneous activity that (unlike adult) are highly sensitive to the Na(+) current (I(Na)) blocker TTX. To investigate this TTX action on automaticity, cells were voltage clamped with ramp depolarizations mimicking the pacemaker phase of spontaneous cells (-60 to -20 mV, 35 mV/s). Ramps elicited a TTX-sensitive current in newborn (peak density 0.89 +/- 0.14 pA/pF, n = 24) but not adult (n = 5) cells. When depolarizing ramps were preceded by steplike depolarizations to mimic action potentials, ramp current decreased 54.6 +/- 8.0% (n = 3) but was not abolished. Additional experiments demonstrated that ramp current amplitude depended on the slope of the ramp and that TTX did not alter steady-state holding current at pacemaker potentials. This excluded a steady-state Na(+) window component and suggested a kinetic basis, which was investigated by measuring TTX-sensitive I(Na) during long step depolarizations. I(Na) exhibited a slow but complete inactivation time course at pacemaker voltages (tau = 33.9 +/- 3.9 ms at -50 mV), consistent with the rate-dependent ramp data. The data indicate that owing to slow inactivation of I(Na) at diastolic potentials, a small TTX-sensitive current flows during the diastolic depolarization in neonatal pacemaker myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号