首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A computer program (PINCERS) is described for use in the design of synthetic genes and mixed-probe DNA sequences. A protein sequence is reverse translated with generation of synonymous codons at each position producing a degenerate sequence. In order to locate potential restriction enzyme sites, the degenerate sequence is searched with a library of restriction enzymes for sites that utilize any combination of synonymous codons. These sites are indicated in a map so that they may be incorporated into the synthetic gene sequence. The program allows the user to select the appropriate codon usage table for the organism of interest and then to set a threshold usage frequency below which codons are not generated. PINCERS may also be used to assist in planning the synthesis of mixed-probe DNA sequences for cross-hybridization experiments. It can identify regions of specified length with the protein sequence that have the least overall degeneracy, thereby minimizing the number of probes to be synthesized and, therefore, maximizing the concentration of a given probe sequence.  相似文献   

2.
Microcomputer programs for DNA sequence analysis.   总被引:21,自引:5,他引:16       下载免费PDF全文
Computer programs are described which allow (a) analysis of DNA sequences to be performed on a laboratory microcomputer or (b) transfer of DNA sequences between a laboratory microcomputer and another computer system, such as a DNA library. The sequence analysis programs are interactive, do not require prior experience with computers and in many other respects resemble programs which have been written for larger computer systems (1-7). The user enters sequence data into a text file, accesses this file with the programs, and is then able to (a) search for restriction enzyme sites or other specified sequences, (b) translate in one or more reading frames in one or both directions in order to find open reading frames, or (c) determine codon usage in the sequence in one or more given reading frames. The results are given in table format and a restriction map is generated. The modem program permits collection of large amounts of data from a sequence library into a permanent file on the microcomputer disc system, or transfer of laboratory data in the reverse direction to a remote computer system.  相似文献   

3.
We have written a computer program, BIGPROBE, which facilitates the design of long nucleic acid probes from the partial or complete amino acid sequence of a protein. BIGPROBE relies upon information on codon usage, intercodon dinucleotide frequency, and potential probe self-complementarity. We have examined the accuracy with which the program predicts coding sequences using sample human and rat genes and probe lengths of 30-60 nucleotides. Rat probe sequences selected by BIGPROBE using either codon usage or dinucleotide frequency data alone averaged 86-92% homology with the known exons of the corresponding gene sequences. Predictive accuracy with rat gene probes could be improved to 89-94%, depending upon probe length, by applying codon usage and dinucleotide frequency data in combination. Similar accuracy was achieved for human genes.  相似文献   

4.
A computer program, which runs on MS-DOS personal computers, is described that assists in the design of synthetic genes coding for proteins. The goal of the program is the design of a gene which (i) contains as many unique restriction sites as possible and (ii) uses a specific codon usage. The gene designed according to the criteria above is (i) suitable for 'modular mutagenesis' experiments and (ii) optimized for expression. The program 'reverse-translates' protein sequences into degenerated DNA sequences, generates a map of potential restriction sites and locates sequence positions where unique restriction sites can be accommodated. The nucleic acid sequence is then 'refined' according to a specific codon usage to remove any degeneration. Unique restriction sites, if potentially present, can be 'forced' into the degenerated nucleic acid sequence by using 'priority codes' assigned to different restriction sequences.  相似文献   

5.
Codon usage tables have been produced for E. coli, yeast, human, and mouse. The nonrandom employment of codons allows assignment of probability values to trinucleotides in any DNA sequence. These values represent the probability that a given trinucleotide is used as a codon in the organism from which the table is derived. For the graphical delineation of coding areas in DNA sequences, a probability is assigned to each trinucleotide equal to its frequency in the codon table. Averaging and smoothing procedures then greatly enhance the detectability of areas of high average codon probability and better represent the mean codon probability. These manipulations increase graphical clarity without altering the overall magnitude of probabilities. Averaging introduces an error of less than 0.5% between "raw" and smoothed data. This graphical delineation of coding sequences does not depend on the presence of punctuation, ribosomal binding sites, etc: moreover the delineation of introns and exons is also possible.  相似文献   

6.
The translational termination signal database.   总被引:12,自引:5,他引:7       下载免费PDF全文
The Translational Termination Database (TransTerm) consists of the immediate context sequences around the natural termination codons from 45 organisms, and summary tables. The influence of termination codon context on their effectivness as stop signals has been widely documented. The SPECIES--TRI.DAT table shows trinucleotide stop codon usage in each organism and for comparison the occurrence of these sequences in the noncoding region. The SPECIES--TETRA.DAT table contains is a similar table of tetranucleotide stop signal usage. The database is available from EMBL.  相似文献   

7.
A novel bias in codon third-letter usage was found in Escherichia coli genes with low fractions of "optimal codons", by comparing intact sequences with control random sequences. Third-letter usage has been found to be biased according to preference in codon usage and to doublet preference from the following first letter. The present study examines third-letter usage in the context of the nucleotide sequence when these preferences are considered. In order to exclude any influence by these factors, the random sequences were generated such that the amino acid sequence, codon usage, and the doublet frequency in each gene were all preserved. Comparison of intact sequences with these randomly generated sequences reveals that third letters of codons show a strong preference for the purine/pyrimidine pattern of the next codons: purine (R) is preferred to pyrimidine (Y) at the third site when followed by an R-Y-R codon, and pyrimidine is preferred when followed by an R-R-Y, an R-Y-Y or a Y-R-Y codon. This bias is probably related to interactions of tRNA molecules in the ribosome.  相似文献   

8.
A computer program (PCBI) was developed to quickly calculate codon bias index (CBI). PCBI can analyze a gene containing introns. The 22 preferred codons defined fromSaccharomyces cerevisiae were used in PCBI as the standard to measure the CBI values. However, users can modify the preferred codons to suit each organism. The data PCBI provides include DNA sequence of open reading frame without introns, amino acid sequence of gene product, a table of amino acid composition, a table of codon usage and (G+C) content, parameters for calculating CBI, and the value of CBI. PCBI runs on DOS or Windows environment, but results can be saved in ASCII text format.  相似文献   

9.
A method for measuring the non-random bias of a codon usage table   总被引:7,自引:3,他引:4       下载免费PDF全文
We describe a new statistical method for measuring bias in the codon usage table of a gene. The test is based on the multinomial and Poisson distributions. The method is used to scan DNA sequences and measure the strength of codon preference. For E. Coli we show that the strength of codon preference is related to levels of gene expression. The method can also be used to compare base triplet frequencies with those expected from the base composition. This second type of codon bias test is useful for distinguishing coding from non-coding regions.  相似文献   

10.
The frequencies of each of the 257 468 complete protein coding sequences (CDSs) have been compiled from the taxonomical divisions of the GenBank DNA sequence database. The sum of the codons used by 8792 organisms has also been calculated. The data files can be obtained from the anonymous ftp sites of DDBJ, Kazusa and EBI. A list of the codon usage of genes and the sum of the codons used by each organism can be obtained through the web site http://www.kazusa.or.jp/codon/ . The present study also reports recent developments on the WWW site. The new web interface provides data in the CodonFrequency-compatible format as well as in the traditional table format. The use of the database is facilitated by keyword based search analysis and the availability of codon usage tables for selected genes from each species. These new tools will provide users with the ability to further analyze for variations in codon usage among different genomes.  相似文献   

11.
Abstract-- A novel approach for gene classification, which adopts codon usage bias as input feature vector for classification by support vector machines (SVM) is proposed. The DNA sequence is first converted to a 59-dimensional feature vector where each element corresponds to the relative synonymous usage frequency of a codon. As the input to the classifier is independent of sequence length and variance, our approach is useful when the sequences to be classified are of different lengths, a condition that homology-based methods tend to fail. The method is demonstrated by using 1,841 Human Leukocyte Antigen (HLA) sequences which are classified into two major classes: HLA-I and HLA-II; each major class is further subdivided into sub-groups of HLA-I and HLA-II molecules. Using codon usage frequencies, binary SVM achieved accuracy rate of 99.3% for HLA major class classification and multi-class SVM achieved accuracy rates of 99.73% and 98.38% for sub-class classification of HLA-I and HLA-II molecules, respectively. The results show that gene classification based on codon usage bias is consistent with the molecular structures and biological functions of HLA molecules.  相似文献   

12.
The similarity of two nucleotide sequences is often expressed in terms of evolutionary distance, a measure of the amount of change needed to transform one sequence into the other. Given two sequences with a small distance between them, can their similarity be explained by their base composition alone? The nucleotide order of these sequences contributes to their similarity if the distance is much smaller than their average permutation distance, which is obtained by calculating the distances for many random permutations of these sequences. To determine whether their similarity can be explained by their dinucleotide and codon usage, random sequences must be chosen from the set of permuted sequences that preserve dinucleotide and codon usage. The problem of choosing random dinucleotide and codon-preserving permutations can be expressed in the language of graph theory as the problem of generating random Eulerian walks on a directed multigraph. An efficient algorithm for generating such walks is described. This algorithm can be used to choose random sequence permutations that preserve (1) dinucleotide usage, (2) dinucleotide and trinucleotide usage, or (3) dinucleotide and codon usage. For example, the similarity of two 60-nucleotide DNA segments from the human beta-1 interferon gene (nucleotides 196-255 and 499-558) is not just the result of their nonrandom dinucleotide and codon usage.   相似文献   

13.
本文介绍了一个在微机(IBM PC)上实现的、用于核酸顺序分析的计算机程序系统.该系统由三个层次和18个功能块构成,菜单及人机对话使得用户能较快地掌握和使用它.在编程中,采用了树结构、先进后出栈和稀疏矩阵等数据结构技巧,运用了Bayes法等统计分析方法,Kruskal算法和Floyd算法等一系列图论方法也被得到应用,这个软件系统的推出对于分子生物学研究具有一定的积极作用.  相似文献   

14.

Background  

Codon usage has direct utility in molecular characterization of species and is also a marker for molecular evolution. To understand codon usage within the diverse phylum Nematoda, we analyzed a total of 265,494 expressed sequence tags (ESTs) from 30 nematode species. The full genomes of Caenorhabditis elegans and C. briggsae were also examined. A total of 25,871,325 codons were analyzed and a comprehensive codon usage table for all species was generated. This is the first codon usage table available for 24 of these organisms.  相似文献   

15.
Two species of the DNA virus Torque teno sus virus (TTSuV), TTSuV1 and TTSuV2, have become widely distributed in pig-farming countries in recent years. In this study, we performed a comprehensive analysis of synonymous codon usage bias in 41 available TTSuV2 coding sequences (CDS), and compared the codon usage patterns of TTSuV2 and TTSuV1. TTSuV codon usage patterns were found to be phylogenetically conserved. Values for the effective number of codons (ENC) indicated that the overall extent of codon usage bias in both TTSuV2 and TTSuV1 was not significant, the most frequently occurring codons had an A or C at the third codon position. Correspondence analysis (COA) was performed and TTSuV2 and TTSuV1 sequences were located in different quadrants of the first two major axes. A plot of the ENC revealed that compositional constraint was the major factor determining the codon usage bias for TTSuV2. In addition, hierarchical cluster analysis of 41 TTSuV2 isolates based on relative synonymous codon usage (RSCU) values suggested that there was no association between geographic distribution and codon bias of TTSuV2 sequences. Finally, the comparison of RSCU for TTSuV2, TTSuV1 and the corresponding host sequence indicated that the codon usage pattern of TTSuV2 was similar to that of TTSuV1. However the similarity was low for each virus and its host. These conclusions provide important insight into the synonymous codon usage pattern of TTSuV2, as well as better understangding of the molecular evolution of TTSuV2 genomes.  相似文献   

16.
Different codons encoding the same amino acid are not used equally in protein-coding sequences. In bacteria, there is a bias towards codons with high translation rates. This bias is most pronounced in highly expressed proteins, but a recent study of synthetic GFP-coding sequences did not find a correlation between codon usage and GFP expression, suggesting that such correlation in natural sequences is not a simple property of translational mechanisms. Here, we investigate the effect of evolutionary forces on codon usage. The relation between codon bias and protein abundance is quantitatively analyzed based on the hypothesis that codon bias evolved to ensure the efficient usage of ribosomes, a precious commodity for fast growing cells. An explicit fitness landscape is formulated based on bacterial growth laws to relate protein abundance and ribosomal load. The model leads to a quantitative relation between codon bias and protein abundance, which accounts for a substantial part of the observed bias for E. coli. Moreover, by providing an evolutionary link, the ribosome load model resolves the apparent conflict between the observed relation of protein abundance and codon bias in natural sequences and the lack of such dependence in a synthetic gfp library. Finally, we show that the relation between codon usage and protein abundance can be used to predict protein abundance from genomic sequence data alone without adjustable parameters.  相似文献   

17.
To date, the sequences of 45 Bradyrhizobium japonicum genes are known. This provides sufficient information to determine their codon usage and G+C content. Surprisingly, B. japonicum nodulation and NifA-regulated genes were found to have a less biased codon usage and a lower G+C content than genes not belonging to these two groups. Thus, the coding regions of nodulation genes and NifA-regulated genes could hardly be identified in codon preference plots whereas this was not difficult with other genes. The codon frequency table of the highly biased genes was used in a codon preference plot to analyze the RSRj9 sequence which is an insertion sequence (IS)-like element. The plot helped identify a new open reading frame (ORF355) that escaped previous detection because of two sequencing errors. These were now corrected. The deduced gene product of ORF355 in RSRj9 showed extensive similarity to a putative protein encoded by an ORF in the T-DNA of Agrobacterium rhizogenes. The DNA sequences bordering both ORFs showed inverted repeats and potential target site duplications which supported the assumption that they were IS-like elements.  相似文献   

18.
19.
Translational selection on codon usage in Xenopus laevis   总被引:2,自引:0,他引:2  
A correspondence analysis of codon usage in Xenopus laevis revealed that the first axis is strongly correlated with the base composition at third codon positions. The second axis discriminates between putatively highly expressed genes and the other coding sequences, with expression levels being confirmed by the analysis of Expressed sequence tag frequencies. The comparison of codon usage of the sequences displaying the extreme values on the second axis indicates that several codons are statistically more frequent among the highly expressed (mainly housekeeping) genes. Translational selection appears, therefore, to influence synonymous codon usage in Xenopus.  相似文献   

20.
A statistical method for characterizing nucleotidic sequences based on maximum entropy techniques is presented. The method uses only codon usage tables and takes into account the length of sequences, and preserves the information contained in each codon by a punctual index. We present the methodological aspects of the analysis, showing an application relative to nucleotidic sequences of eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号