首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The collagenous tissues of echinoderms, which have the unique capacity to rapidly and reversibly alter their mechanical properties, resemble the collagenous tissues of other phyla in consisting of collagen fibrils in a nonfibrillar matrix. Knowledge of the composition and structure of their collagen fibrils and interfibrillar matrix is thus important for an understanding of the physiology of these tissues. In this report it is shown that the collagen molecules from the fibrils of the spine ligament of a seaurchin and the deep dermis of a sea-cucumber are the same length as those from vertebrate fibrils and that they assemble into fibrils with the same repeat period and gap/overlap ratio as do those of vertebrate fibrils. The distributions of charged residues in echinoderm and vertebrate molecules are somewhat different, giving rise to segment-long-spacing crystallites and fibrils with different banding patterns. Compared to the vertebrate pattern, the banding pattern of echinoderm fibrils is characterized by greatly increased stain intensity in the c3 band and greatly reduced stain intensity in the a3 and b2 bands. The fibrils are spindle-shaped, possessing no constant-diameter region throughout their length. The shape of the fibrils is mechanically advantageous for their reinforcing role in a discontinuous fiber-composite material.  相似文献   

2.
We have characterized the primary structure of a new sea urchin fibrillar collagen, the 5alpha chain, including nine repeats of the sea urchin fibrillar module in its N-propeptide. By Western blot and immunofluorescence analyses, we have shown that 5alpha is co-localized in adult collagenous ligaments with the 2alpha fibrillar collagen chain and fibrosurfin, two other extracellular matrix proteins possessing sea urchin fibrillar modules. At the ultrastructural level, the 5alpha N-propeptide is detected at the surface of fibrils, suggesting the retention of this domain in mature collagen molecules. Biochemical characterization of pepsinized collagen molecules extracted from the test tissue (the endoskeleton) together with a matrix-assisted laser desorption ionization time-of-flight analysis allowed us to determine that 5alpha is a quantitatively minor fibrillar collagen chain in comparison with the 1alpha and 2alpha chains. Moreover, 5alpha forms heterotrimeric molecules with two 1alpha chains. Hence, as in vertebrates, sea urchin collagen fibrils are made up of quantitatively major and minor fibrillar molecules undergoing distinct maturation of their N-propeptide regions and participating in the formation of heterotypic fibrils.  相似文献   

3.
In Sarcopterygii (Latimeria, Neoceratodus, Protopterus, Leptdosiren)and Amiidae (Amia) collagen fibrils of the basal plate are packedin bundles whereas they remain isolated in Teleostei. The basalplate looks like plywood, a system of superimposed layers ofparallel fibers or fibrils the directions of which rotate witha regular angle in two successive layers. The double twistedplywood is constituted of two imbricate systems, the odd andthe even, where the rotation of the fibrillar directions isright-handed in Sarcopterygii and lefthanded in Amiidae andnumerous primitive Teleostei. The orthogonal plywood, with itstwo main orthogonal fibrillar directions, characterizes theevolved Teleostei and some more primitive ones. In most teleosteanspecies, as in Amia and Protopterus, mineralization of the basalplate in elasmoid scales involves Mandl's corpuscles that mineralizewithout contact with a pre-existing calcified tissue; they growand coalesce with the neighbouring ones and fuse to the mineralizingfront. Their shape is directly influenced by the local arrangementof the collagenous fibrils. In two teleostean families (Osteoglossidaeand Mormyridae) Mandl's corpuscles are completely lacking butspreading of mineralization in the basal plate has a peculiaraspect. Whatever that may be, the various characteristic organizationsof the skeletal tissues or isopedine that constitute the basalplate of osteichthyan elasmoid scales, all are varieties ofbone tissue that have undergone more or less important specializationlinked to the general regression of dermal ossifications andto functional adaptations.  相似文献   

4.
Amyloid proteins and peptides comprise a diverse group of molecules that vary both in size and amino-acid sequence, yet assemble into amyloid fibrils that have a common core structure. Kinetic studies of amyloid fibrillogenesis have revealed that certain amyloid proteins form oligomeric intermediates prior to fibril formation. We have investigated fibril formation with a peptide corresponding to residues 195-213 of the human prion protein. Through a combination of kinetic and equilibrium studies, we have found that the fibrillogenesis of this peptide proceeds as an all-or-none reaction where oligomeric intermediates are not stably populated. This variation in whether oligomeric intermediates are stably populated during fibril formation indicates that amyloid proteins assemble into a common fibrillar structure; however, they do so through different pathways.  相似文献   

5.
Collagen fibrils are the main structural element of connective tissues. In many tissues, these fibrils contain two fibrillar collagens (types I and V) in a ratio that changes during tissue development, regeneration, and various diseases. Here we investigate the influence of collagen composition on the structure and rheology of networks of purified collagen I and V, combining fluorescence and atomic force microscopy, turbidimetry, and rheometry. We demonstrate that the network stiffness strongly decreases with increasing collagen V content, even though the network structure does not substantially change. We compare the rheological data with theoretical models for rigid polymers and find that the elasticity is dominated by nonaffine deformations. There is no analytical theory describing this regime, hampering a quantitative interpretation of the influence of collagen V. Our findings are relevant for understanding molecular origins of tissue biomechanics and for guiding rational design of collagenous biomaterials for biomedical applications.  相似文献   

6.
Understanding the viscoelastic behavior of collagenous tissues with complex hierarchical structures requires knowledge of the properties at each structural level. Whole tissues have been studied extensively, but less is known about the mechanical behavior at the submicron, fibrillar level. Using a microelectromechanical systems platform, in vitro coupled creep and stress relaxation tests were performed on collagen fibrils isolated from the sea cucumber dermis. Stress-strain-time data indicate that isolated fibrils exhibit viscoelastic behavior that could be fitted using the Maxwell-Weichert model. The fibrils showed an elastic modulus of 123 ± 46 MPa. The time-dependent behavior was well fit using the two-time-constant Maxwell-Weichert model with a fast time response of 7 ± 2 s and a slow time response of 102 ± 5 s. The fibrillar relaxation time was smaller than literature values for tissue-level relaxation time, suggesting that tissue relaxation is dominated by noncollagenous components (e.g., proteoglycans). Each specimen was tested three times, and the only statistically significant difference found was that the elastic modulus is larger in the first test than in the subsequent two tests, indicating that viscous properties of collagen fibrils are not sensitive to the history of previous tests.  相似文献   

7.
Tenascin-X is an extracellular matrix protein whose absence leads to an Ehlers-Danlos syndrome in humans, characterized mainly by disorganisation of collagen and elastic fibril networks. After producing recombinant full-length tenascin-X in mammalian cells, we find that this protein assembled into disulfide-linked oligomers. Trimers were the predominant form observed using rotary shadowing. By solid phase interaction studies, we demonstrate that tenascin-X interacts with types I, III and V fibrillar collagen molecules when they are in native conformation. The use of tenascin-X variants with large regions deleted indicated that both epidermal growth factor repeats and the fibrinogen-like domain are involved in this interaction. Moreover, we demonstrate that tenascin-X binds to the fibril-associated types XII and XIV collagens. We thus suggest that tenascin-X, via trimerization and multiple interactions with components of collagenous fibrils, plays a crucial role in the organisation of extracellular matrices.  相似文献   

8.
Amyloid fibrils of patients treated with regular hemodialysis essentially consists of beta2-microglobulin (beta2-m) and its truncated species DeltaN6beta2-m lacking six residues at the amino terminus. The truncated fragment has a more flexible three-dimensional structure and constitutes an excellent candidate for the analysis of a protein in the amyloidogenic conformation. The surface topology of synthetic fibrils obtained from intact beta2-m and truncated DeltaN6beta2-m was investigated by the limited proteolysis/mass spectrometry approach that appeared particularly suited to gain insights into the structure of beta2-m within the fibrillar polymer. The distribution of prefential proteolytic sites observed in both fibrils revealed that the central region of the protein, which had been easily cleaved in the full-length globular beta2-m, was fully protected in the fibrillar form. In addition, the amino- and carboxy-terminal regions of beta2-m became exposed to the solvent in the fibrils, whereas they were masked completely in the native protein. These data indicate that beta2-m molecules in the fibrils consist of an unaccessible core comprising residues 20-87 with the strands I and VIII being not constrained in the fibrillar polymer and exposed to the proteases. Moreover, proteolytic cleavages observed in vitro at Lys 6 and Lys 19 reproduce specific cleavages that have to occur in vivo to generate the truncated forms of beta2-m occurring in natural fibrils. On the basis of these data, a possible mechanism for fibril formation from native beta2-m is discussed and an explanation for the occurrence of truncated protein species in natural fibrils is given.  相似文献   

9.
The development of the basement membrane and collagen fibrils below placodes, including the corneal region of the ectoderm, lens epithelium, nasal plate, and auditory vesicle in anuran larvae was observed by transmission electron microscopy and compared with that in nonplacodal regions such as the epidermis, neural tube, and optic vesicle. In the corneal region the lamina densa becomes thick concomitantly with the development of the connecting apparatuses such as hemidesmosomes and anchoring fibrils. The collagen fibrils increase in number and form a multilayered structure, showing similar morphology to the connective tissues below the epidermis. These two areas, i.e., the corneal region and epidermis, possess much collagenous connective tissue below them. On the other hand, the neural tube and ophthalmic vesicle that originated from the neural tube each have a thin lamina densa and a small number of underlying collagen fibrils. The lamina densa does not thicken and the number of collagen fibrils do not significantly increase during development. These two areas possess little extracellular matrix. The nasal plate and auditory vesicle show intermediate characteristics between the epidermis-type and the neural tube-type areas. In these areas, the lamina densa becomes thick and hemidesmosomes and anchoring fibrils develop. The number of collagen fibrils increases during development, but does not show an orderly arrangement; rather, they are randomly distributed. It is thought that the difference in the arrangement of collagen fibrils in different tissues is due to differences in the extracellular matrix around the collagen fibrils. Placodal epithelia have the same origin as epidermis, but during development their morphological characteristics differ and they are not associated with the pattern of extracellular matrix with characteristics of epidermal and corneal multilayered collagen fibril areas.  相似文献   

10.
The effects of colchicine on collagen formation were examined ultrastructurally using secretory odontoblasts in mouse molar tooth germs isografted to the spleen for 1 week. Colchicine in concentrations of 0.025 or 0.05 mg/0.1 ml was injected intravenously 12-24 h prior to harvesting. Colchicine induced the disruption of the Golgi apparatus and caused the accumulation of various types of Golgi-associated vacuoles containing collagenous fibrillar structures. Many vacuoles containing fine particles, nonstriated parallel filaments, banding patterns with a periodicity of approximately 63-nm intervals, and occasionally segment-long-spacing-like assemblies were aggregated in the cytoplasm during the experimental period. These morphological changes in vacuole contents may reflect the initial steps for polymerization of the intracellular collagen fibrils. The majority of the aggregated vacuoles were degraded by fusion with lysosomes but banded filamentous material in some vacuoles appeared to polymerize into the collagen fibrils with native structures. These results suggested that in unsecreted vacuoles accumulated in the odontoblasts as a result of colchicine administration the polymerization of collagen fibrils with native structures can occur.  相似文献   

11.
The architecture of the intact cellulosome of Clostridium thermocellum, a huge extracellular multi-polypetide bacterial enzyme complex engaged in degradation of cellulose, was investigated by electron microscopy. This was done because former electron microscopic studies aimed at elucidation of the structure of polycellulosomes and cellulosomes were restricted by the fact that data on macromolecular details could only be derived from deformed or disrupted enzyme complexes, or by application of cryo preparation and imaging techniques yielding insufficient resolution. The shape of well-preserved cellulosomes was more or less spherical, often similar to that of an olive fruit with a cavity. Therein, multiple fibrillar structures could be visualized, interpreted to be the proximal stretches of copies of the fibrillar protein Cip A ('scaffoldin'), the nonenzymatic scaffolding protein known to function as attachment site for the enzymatic subunits, as well as fibrillar parts of anchoring proteins. The enzymatic subunits were depicted to be attached, in a repetitive fashion, to the distal stretches of the Cip A proteins. The enzymatic subunits were seen, in the intact cellulosome, to form a shell-like complex substructure surrounding the cavity. Obviously, this kind of architecture makes sure that the catalytic domains of the enzymatic subunits are exposed to the environment, and, hence, to the substrate, the cellulose fibrils. Attempts were made to demonstrate the alternating occurrence of coiled domains and fibrillar stretches along the elongated protein Cip A previously characterized by sequencing, X-ray, and NMR studies. To this end, Cip A molecules, with adhering enzymatic subunits, were partially removed from their native location within the cellulosome, "stretched" by hydromechanical forces directly on the electron microscopic support film, negatively stained, and depicted by electron microscopy. The alternating occurrence of presumed coiled domains and fibrillar stretches along Cip A could be visualized, together with detached enzymatic subunits found on the support film.  相似文献   

12.
The formation of amyloid-like fibrils is characteristic of various diseases, but the underlying mechanism and the factors that determine whether, when, and how proteins form amyloid, remain uncertain. Certain mechanisms have been proposed based on the three-dimensional or runaway domain swapping, inspired by the fact that some proteins show an apparent correlation between the ability to form domain-swapped dimers and a tendency to form fibrillar aggregates. Intramolecular β-sheet contacts present in the monomeric state could constitute intermolecular β-sheets in the dimeric and fibrillar states. One example is an amyloid-forming mutant of the immunoglobulin binding domain B1 of streptococcal protein G, which in its native conformation consists of a four-stranded β-sheet and one α-helix. Under native conditions this mutant adopts a domain-swapped dimer, and it also forms amyloid-like fibrils, seemingly in correlation to its domain-swapping ability. We employ magic angle spinning solid-state NMR and other methods to examine key structural features of these fibrils. Our results reveal a highly rigid fibril structure that lacks mobile domains and indicate a parallel in-register β-sheet structure and a general loss of native conformation within the mature fibrils. This observation contrasts with predictions that native structure, and in particular intermolecular β-strand interactions seen in the dimeric state, may be preserved in "domain-swapping" fibrils. We discuss these observations in light of recent work on related amyloid-forming proteins that have been argued to follow similar mechanisms and how this may have implications for the role of domain-swapping propensities for amyloid formation.  相似文献   

13.
Collagen family of proteins   总被引:39,自引:0,他引:39  
Collagen molecules are structural macro-molecules of the extracellular matrix that include in their structure one or several domains that have a characteristic triple helical conformation. They have been classified by types that define distinct sets of polypeptide chains that can form homo- and heterotrimeric assemblies. All the collagen molecules participate in supramolecular aggregates that are stabilized in part by interactions between triple helical domains. Fourteen collagen types have been defined so far. They form a wide range of structures. Most notable are 1) fibrils that are found in most connective tissues and are made by alloys of fibrillar collagens (types I, II, III, V, and XI) and 2) sheets constituting basement membranes (type IV collagen), Descemet's membrane (type VIII collagen), worm cuticle, and organic exoskeleton of sponges. Other collagens, present in smaller quantities in tissues, play the role of connecting elements between these major structures and other tissue components. The fibril-associated collagens with interrupted triple helices (FACITs) (types IX, XII, and XIV) appear to connect fibrils to other matrix elements. Type VII collagen assemble into anchoring fibrils that bind epithelial basement membranes and entrap collagen fibrils from the underlying stroma to glue the two structures together. Type VI collagen forms thin-beaded filaments that may interact with fibrils and cells.  相似文献   

14.
The Sea URchin Fibrillar (SURF) domain is a four-cysteine module present in the amino-propeptide of the sea urchin 2alpha fibrillar collagen chain. Despite numerous international genome and expressed sequence tag projects, computer searches have so far failed to identify similar domains in other species. Here, we have characterized a new sea urchin protein of 2656 amino acids made up of a series of epidermal growth factor-like and SURF modules. From its striking similarity to the modular organization of fibropellins, we called this new protein fibrosurfin. This protein is acidic with a calculated pI of 4.12. Eleven of the 17 epidermal growth factor-like domains correspond to the consensus sequence of calcium-binding type. By Western blot and immunofluorescence analyses, this protein is not detectable during embryogenesis. In adult tissues, fibrosurfin is co-localized with the amino-propeptide of the 2alpha fibrillar collagen chain in several collagenous ligaments, i.e., test sutures, spine ligaments, peristomial membrane, and to a lesser extent, tube feet. Finally, immunogold labeling indicates that fibrosurfin is an interfibrillar component of collagenous tissues. Taken together, the data suggest that proteins possessing SURF modules are localized in the vicinity of mineralized tissues and could be responsible for the unique properties of sea urchin mutable collagenous tissues.  相似文献   

15.
Collagens are essential components of extracellular matrices in multicellular animals. Fibrillar type II collagen is the most prominent component of articular cartilage and other cartilage-like tissues such as notochord. Its in situ macromolecular and packing structures have not been fully characterized, but an understanding of these attributes may help reveal mechanisms of tissue assembly and degradation (as in osteo- and rheumatoid arthritis). In some tissues such as lamprey notochord, the collagen fibrillar organization is naturally crystalline and may be studied by x-ray diffraction. We used diffraction data from native and derivative notochord tissue samples to solve the axial, D-periodic structure of type II collagen via multiple isomorphous replacement. The electron density maps and heavy atom data revealed the conformation of the nonhelical telopeptides and the overall D-periodic structure of collagen type II in native tissues, data that were further supported by structure prediction and transmission electron microscopy. These results help to explain the observed differences in collagen type I and type II fibrillar architecture and indicate the collagen type II cross-link organization, which is crucial for fibrillogenesis. Transmission electron microscopy data show the close relationship between lamprey and mammalian collagen fibrils, even though the respective larger scale tissue architecture differs.  相似文献   

16.
Second harmonic generation (SHG) multiphoton imaging can visualize fibrillar collagen in tissues. SHG has previously shown that fibrillar collagen is altered in various types of cancer. In the present study, in vivo high resolution SHG multi‐photon tomography in living mice was used to study the relationship between cancer cells and intratumor collagen fibrils. Using green fluorescent protein (GFP) to visualize cancer cells and SHG to image collagen, we demonstrated that collagen fibrils provide a scaffold for cancer cells to align themselves and acquire optimal shape. These results suggest a new paradigm for a stromal element of tumors: their role in maintaining anchorage and shape of cancer cells that may enable them to proliferate. J. Cell. Biochem. 114: 99–102, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
M I Cho  P R Garant 《Acta anatomica》1985,121(4):205-215
The administration of colchicine disrupts the normal organization of the Golgi complex and blocks the secretion of collagen precursors in periodontal ligament fibroblasts of the mouse. The fate of the unsecreted collagen precursors contained in Golgi-derived saccules and newly formed dense bodies was followed by electron microscopy. A progressive condensation of saccule content along with phase separation of electron-dense and electron-lucent material was observed. Fusion of saccules with dense secretory bodies gave rise to larger inclusions (zebra bodies; ZB) filled with a combination of electron-dense and electron-lucent material. In some ZB, these materials appeared to polymerize into fibrillar units. The fibrillar units stained with silver methenamine like normal collagenous fibrils. These results suggest that unsecreted collagen precursors accumulate in vesicular compartments within which partial polymerization can occur. This finding may explain some reports of intracellular collagenous fibrils in fibroblasts of pathologically altered connective tissues.  相似文献   

18.

Background

Amyloid-related degenerative diseases are associated with the accumulation of misfolded proteins as amyloid fibrils in tissue. In Alzheimer disease (AD), amyloid accumulates in several distinct types of insoluble plaque deposits, intracellular Aβ and as soluble oligomers and the relationships between these deposits and their pathological significance remains unclear. Conformation dependent antibodies have been reported that specifically recognize distinct assembly states of amyloids, including prefibrillar oligomers and fibrils.

Results

We immunized rabbits with a morphologically homogeneous population of Aβ42 fibrils. The resulting immune serum (OC) specifically recognizes fibrils, but not random coil monomer or prefibrillar oligomers, indicating fibrils display a distinct conformation dependent epitope that is absent in prefibrillar oligomers. The fibril epitope is also displayed by fibrils of other types of amyloids, indicating that the epitope is a generic feature of the polypeptide backbone. The fibril specific antibody also recognizes 100,000 × G soluble fibrillar oligomers ranging in size from dimer to greater than 250 kDa on western blots. The fibrillar oligomers recognized by OC are immunologically distinct from prefibrillar oligomers recognized by A11, even though their sizes overlap broadly, indicating that size is not a reliable indicator of oligomer conformation. The immune response to prefibrillar oligomers and fibrils is not sequence specific and antisera of the same specificity are produced in response to immunization with islet amyloid polypeptide prefibrillar oligomer mimics and fibrils. The fibril specific antibodies stain all types of amyloid deposits in human AD brain. Diffuse amyloid deposits stain intensely with anti-fibril antibody although they are thioflavin S negative, suggesting that they are indeed fibrillar in conformation. OC also stains islet amyloid deposits in transgenic mouse models of type II diabetes, demonstrating its generic specificity for amyloid fibrils.

Conclusion

Since the fibril specific antibodies are conformation dependent, sequence-independent, and recognize epitopes that are distinct from those present in prefibrillar oligomers, they may have broad utility for detecting and characterizing the accumulation of amyloid fibrils and fibrillar type oligomers in degenerative diseases.  相似文献   

19.
In contrast to most amyloidogenic proteins or peptides that do not contain any significant posttranslational modifications, the prion protein (PrP) is modified with either one or two polysaccharides and a GPI anchor which attaches PrP to the plasma membrane. Like other amyloidogenic proteins, however, PrP adopts a fibrillar shape when converted to a disease-specific conformation. Therefore, PrP polymerization offers a unique opportunity to examine the effects of biologically relevant nonpeptidic modifications on conversion to the amyloid conformation. To test the extent to which a long hydrophobic chain at the C-terminus affects the intrinsic amyloidogenic propensity of PrP, we modified recombinant PrP with an N-myristoylamidomaleimidyl group, which can serve as a membrane anchor. We show that while this modification increases the affinity of PrP for the cell membrane, it does not alter the structure of the protein. Myristoylation of PrP affected amyloid formation in two ways: (i) it substantially decreased the extent of fibrillation, presumably due to off-pathway aggregation, and (ii) it prohibited assembly of filaments into higher order fibrils by preventing their lateral association. The negative effect on lateral association was abolished if the myristoylated moiety at the C-terminus was replaced by a polar group of similar size or by a hydrophobic group of smaller size. When preformed PrP fibrils were provided as seeds, myristoylated PrP supported fibril elongation and formation of higher order fibrils composed of several filaments. Our studies illustrate that, despite a bulky hydrophobic moiety at C-terminus, myristoylated PrP can still incorporate into fibrillar structure and that the C-terminal hydrophobic substitution does not affect the size of the proteinase K resistant core but controls the mode of lateral assembly of filaments into higher order fibrils.  相似文献   

20.
The [URE3] phenotype in the yeast Saccharomyces cerevisiae is inherited by a prion mechanism involving self-propagating Ure2p aggregates. It is believed that assembly of intact Ure2p into fibrillar polymers that bind Congo Red and show yellow-green birefringence upon staining and are resistant to proteolysis is the consequence of a major change in the conformation of the protein. We recently dissected the assembly process of Ure2p and showed the protein to retain its native alpha-helical structure upon assembly into protein fibrils that are similar to amyloids in that they are straight, bind Congo red and show green-yellow birefringence and have an increased resistance to proteolysis (). Here we further show using specific ligand binding, FTIR spectroscopy and X-ray fiber diffraction that Ure2p fibrils assembled under physiologically relevant conditions are devoid of a cross-beta core. The X-ray fiber diffraction pattern of these fibrils reveals their well-defined axial supramolecular order. By analyzing the effect of heat-treatment on Ure2p fibrils we bring evidences for a large conformational change that occurs within the fibrils with the loss of the ligand binding capacity, decrease of the alpha helicity, the formation of a cross-beta core and the disappearance of the axial supramolecular order. The extent of the conformational change suggests that it is not limited to the N-terminal part of Ure2p polypeptide chain. We show that the heat-treated fibrils that possess a cross-beta core are unable to propagate their structural characteristic while native-like fibrils are. Finally, the potential evolution of native-like fibrils into amyloid fibrils is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号