首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The basic phospholipase A2 purified from the venom of Naja nigricollis (Institut Pasteur), possesses an intense cytotoxic activity toward fetal cells from FL strain. At a concentration equal to 1.6 x 10(-6) M, the PLA2 lyses 50% of the cells present in a suspension containing 3.5 x 10(6) cells per millilitre. Other PLA2 from various origins do not exhibit such cytotoxic activity.  相似文献   

2.
S Stefansson  R M Kini  H J Evans 《Biochemistry》1990,29(33):7742-7746
The three phospholipase A2 isoenzymes from Naja nigricollis venom inhibit blood coagulation with different potencies. The strongly anticoagulant basic isoenzyme CM-IV inhibits the prothrombinase complex, whereas the weakly anticoagulant isoenzymes CM-I and CM-II do not. To determine the role of enzymatic activity of the phospholipases in the inhibition of prothrombinase, we varied the time of incubation of each of these isoenzymes with the prothrombinase complex. The inhibition by CM-IV did not increase with time of incubation. CM-I and CM-II failed to inhibit the complex, even with complete hydrolysis of phospholipids in the assay mixture. After alkylation of its active-site histidine, CM-IV lost 97% of its enzymatic activity but retained 60% of its inhibitory potency on prothrombinase. CM-IV also inhibited prothrombinase activity in the absence of phospholipids, whereas CM-I and CM-II did not. The inhibition of the prothrombinase complex by CM-IV is thus not due to its binding to or hydrolysis of phospholipids. The kinetics of CM-IV inhibition of the prothrombinase complex in both the presence and absence of phospholipids was noncompetitive. This inhibition can be explained by binding of CM-IV to either factor Va or Xa, or both, to inhibit the complex. CM-IV differs from previously described nonenzymatic anticoagulants that are proteinase inhibitors or that inhibit the coagulation complexes by interfering with the binding of clotting factors to phospholipids. We conclude that the basic enzyme, CM-IV, inhibits the prothrombinase complex by a novel mechanism independent of enzymatic activity.  相似文献   

3.
Four non-enzymatic polypeptides from Naja nigricollis crawshawii venom were recently isolated and shown to inhibit plasma coagulation and platelet aggregation. We have now determined the amino acid compositions, amino terminal sequences and direct lytic activity of these anticoagulants. The results of these studies allow us to identify the anticoagulants as cardiotoxins. The anticoagulant activity of these cardiotoxins is far more potent than that of other cardiotoxins previously reported to have anticoagulant activity.  相似文献   

4.
The strongly anticoagulant basic phospholipase A(2) (CM-IV) from Naja nigricollis venom has previously been shown to inhibit the prothrombinase complex of the coagulation cascade by a novel nonenzymatic mechanism (S. Stefansson, R. M. Kini, and H. J. Evans Biochemistry 29, 7742-7746, 1990). That work indicated that CM-IV is a noncompetitive inhibitor and thus it interacts with either factor Va or factor Xa, or both. We further examined the interaction of CM-IV and the protein components of the prothrombinase complex. Isothermal calorimetry studies indicate that CM-IV does not bind to prothrombin or factor Va, but only to factor Xa. CM-IV has no effect on the cleavage of prothrombin by factor Xa in the absence of factor Va. However, in the presence of factor Va, CM-IV inhibits thrombin formation by factor Xa. With a constant amount of CM-IV, raising the concentration of factor Va relieved the inhibition. The phospholipase A(2) enzyme inhibits by competing with factor Va for binding to factor Xa and thus prevents formation of the normal Xa-Va complex or replaces bound factor Va from the complex. Thus factor Xa is the target protein of this anticoagulant phospholipase A(2), which exerts its anticoagulant effect by protein-protein rather than protein-phospholipid interactions.  相似文献   

5.
Human platelets in three physiological states were prepared. These states were the gel-filtered, the thrombin-induced shape-changed, and the thrombin-activated platelets. The phospholipid distributions in these three types of membrane were probed by using the basic phospholipase A2 of Naja nigricollis. This enzyme could penetrate through these membranes to hydrolyze all of their accessible phospholipids and to cause cell lysis. The hydrolytic time-courses displayed three phases. The state of platelet in each lipid hydrolytic phase was examined by: (1) measuring the leakage of lactate dehydrogenase; (2) analyzing the morphology by both scanning and transmission electron microscopy (scanning EM and transmission EM); and (3) estimating the hydrolysis of the [32P]phosphate-labeled platelets. The existence of these three hydrolytic phases may signify that the phospholipase A2 sequentially hydrolyzed its substrates in the membrane outer leaflet, in the inner one, and in the cytosol. The content and the distribution of each phospholipid class in the plasma membranes of the resting and of the shape-changed platelets were similar. These membrane surfaces consisted mainly of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Phosphatidylserine (PS) was not exposed on the surface of the shape-changed platelet. The content of each lipid class in the activated platelet membrane was 10% more than that in the resting platelet. PS was found on the activated platelet cell surface. This implies that PS is exposed only during platelet secretion.  相似文献   

6.
Malayan cobra (Naja naja sputatrix) venom was found to exhibit an in vitro anticoagulant activity that was much stronger than most common cobra (genus Naja) venoms. The most potent anticoagulants of the venom are two lethal phospholipase A2 enzymes with pI's of 6.15 and 6.20, respectively. The anticoagulant activity of the venom is due to the synergistic effect of the venom phospholipase A2 enzymes and polypeptide anticoagulants. Bromophenacylation of the two phospholipase A2 enzymes reduced their enzymatic activity with a concomitant drop in both the lethal and anticoagulant activities.  相似文献   

7.
A kinetic analysis of the "dual phospholipid model" for cobra venom phospholipase A2 (Hendrickson, H. S., and Dennis, E. A. (1984) J. Biol. Chem. 259, 5734-5739) was applied to the activation of phospholipase A2-catalyzed hydrolysis of a thiol ester analog of phosphatidylethanolamine (thio - PE) in Triton X - 100/phospholipid mixed micelles by various phosphorylcholine-containing activators. Activation of thio-PE hydrolysis by didecanoylphosphatidylcholine (PC) was found to be a function of the surface concentration of activator rather than bulk concentration. Its presence did not affect the initial binding of enzyme to phospholipid in the micelle surface as determined kinetically. After initial binding of enzyme to the surface, the activation appears to be due to enzyme-lipid binding in the surface. Activation does not appear to affect the affinity of the enzyme for phospholipid substrate, but rather affects the catalytic efficiency of the enzyme as characterized by the value of Vmax. The monomeric phospholipid dibutyryl-PC, when used as an activator at 57 mM (bulk concentration), also showed effects of surface dilution with Triton X-100, which would not be expected unless the lipid is incorporated into the micelles to some extent at these high concentrations. A thiol ester analog of phosphatidylcholine, thio-PC, was less effective than didecanoyl-PC as an activator, but appeared to be more effective than decylphosphorylcholine. A conformational change of the enzyme upon binding of the activator, after enzyme is bound to substrate at the interface, is discussed as a possible mechanism for this activation.  相似文献   

8.
A platelet aggregation inhibitor phospholipase A(2) (NND-IV-PLA(2)) was isolated from Naja naja (Eastern India) venom by a combination of cation and anion exchange chromatography. NND-IV-PLA(2) is the most catalytically active enzyme isolated from the Indian cobra venom. The acidic PLA(2) profile of Eastern regional Indian cobra venom is distinctly different from that of the western regional venom. However the acidic PLA(2)s from both the regions follow the pattern of increasing catalytic activity with increase in acidic nature of the PLA(2) isoform. NND-IV-PLA(2) is a Class B1 platelet aggregation inhibitor and inhibits platelet aggregation induced by ADP, collagen and epinephrine. Modification of active site histidine abolishes both catalytic activity and platelet aggregation inhibition activities while aristolochic acid, a phospholipase A(2) inhibitor has only partial effect on the two activities.  相似文献   

9.
Cytotoxin P4 was isolated from the venom of Naja nigricollis nigricollis in three steps and contained 55% of the crude cytotoxic activity. It had a molecular weight of 8 KD, was stable over a pH range of 1-11 and in boiling water for at least 15 min. It had no measurable enzymatic activities, but was destroyed by proteases. Concentrations of 0.8, 1, 1.2, 25. 20 and 45 ug/ml, were needed to destroy murine melanoma B16 and WEHI 3B leukemia, rat chondrosarcoma, mouse erythrocytes and spleen cells, and human erythrocytes, respectively, thereby showing preferential cytotoxicity to the examined tumor cells. It also prevented the development of the melanoma, leukemia and chondrosarcoma tumors in vivo when mixed with the cells prior to the injection into the animal.  相似文献   

10.
Evidence that the phospholipase A 2 of Crotalus adamanteus venom are dimers   总被引:1,自引:0,他引:1  
M A Wells 《Biochemistry》1971,10(22):4074-4078
  相似文献   

11.
Fibrinogenases, proteinases which release peptides from the carboxy-terminal end of fibrinogen, are classified as alpha-fibrinogenases or beta-fibrinogenases, based on their ability to preferentially attack the A alpha or B beta chain, respectively, of fibrinogen. alpha-Fibrinogenases have been shown to inhibit platelet aggregation whereas beta-fibrinogenases do not. We have studied the inhibition of platelet aggregation by proteinase F1, an alpha-fibrinogenase from Naja nigricollis venom. This proteinase inhibits whole blood aggregation in a dose-dependent manner, with an IC50 value of 145 micrograms. However, the proteinase fails to inhibit aggregation in washed platelet suspensions. Thus, proteinase F1 appears to require a plasma factor to cause inhibition. Since fibrinogen acts as an adhesive protein which links platelets during aggregation, and since proteinase F1 cleaves fibrinogen, we investigated the role of fibrinogen in the inhibition of platelet aggregation by proteinase F1. The degradation products of fibrinogen formed by the proteinase did not cause significant inhibition. Thus, the inhibition of platelet aggregation appears to be independent of the formation of fibrinogen degradation products. We also studied the effect of proteinase F1 on aggregation of platelets that were reconstituted with defibrinogenated plasma. The proteinase inhibited aggregation of platelets even in the absence of plasma fibrinogen. Proteinase F1 was about 4-fold more potent in inhibiting platelet aggregation in defibrinogenated blood. From these results, we conclude that the inhibition of platelet aggregation by proteinase F1 from N. nigricollis venom is independent of its action on fibrinogen.  相似文献   

12.
The inhibitory effects of a naturally occurring diterpenoid furanolactone, columbin, on partially purified acidic phospholipase A2 (PLA2) from Naja nigricolis was investigated. Columbin inhibited the N. nigricolis PLA2 in a dose related pattern with an IC50 value of 2.5 microM. Double reciprocal plots of initial velocity data of inhibition by columbin revealed a non-competitive pattern. The KM remained constant at 19 microM, while the Vmax changed from 54 micromoles/min/mg to 32 micromoles/min/mg and 20 micromoles/min/mg in the presence of 2 and 10 microM of columbin, respectively. Extrapolated Ki values were 3 and 6.28 microM at 2 and 10 microM inhibitor, respectively. Columbin also inhibited PLA2 hydrolysis of ghost RBC in a dose-dependent fashion. At least 70% suppression of PLA2-catalysed haemolysis of RBC was observed in the presence of 2 microM columbin.  相似文献   

13.
14.
This paper is an attempt to localize the critical area determining toxicity in a snake cardiotoxin. Toxin gamma is a single-chain polypeptide of 60 amino acids, which has been isolated from the venom of the African spitting cobra, Naja nigricollis. Three aromatic residues, namely, Trp-11, Tyr-22, and Tyr-51, have been individually modified by chemical means. The structure of the native toxin and of each derivative has been carefully investigated by circular dichroism, fluorescence, proton magnetic resonance spectroscopy, and two specific monoclonal antibodies. None of the chemical modifications alters the overall structure of the toxin, which in all cases remains folded into three adjacent loops (I, II, and III) rich in beta-pleated sheet emerging from a small globular region containing four disulfide bridges. A number of subtle changes, however, have been detected in the structure of each derivative compared with that of the native toxin. In particular, nitration of Tyr-51 provoked a structural perturbation in the globular region. Nitration of Tyr-22 induces a more substantial change in the beta-sheet area of the molecule. Thus, the strong inter-ring NOE that is observed in the native toxin between Tyr-22 and Tyr-51 vanishes in the Tyr-22 derivative, and significant changes are observed in the globular region. In contrast, no alteration of the beta-sheet structure of loops II and III has been detected after modification of Trp-11. All changes observed for this derivative remain located in the vicinity of the indole side chain of Trp-11 in loop I. The biological consequences of the modifications were measured: the lethal potency in vivo in mice and the cytotoxic activities in vitro on FL-cells. Lethal activities correlate with cytotoxicity: Tyr-51 modified toxin is equally potent as native toxin, whereas Tyr-22 and Trp-11 derivatized toxins are characterized by substantially lesser activities, the Trp-11 derivatized toxin being the least potent. We conclude that (1) Tyr-51 is not involved in the functional site of the toxin, although it is in interaction with the core of the molecule, (2) Tyr-22 may play a dual structural and functional role, and (3) Trp-11 is in, or in close proximity to, the functional site of the toxin. These data indicate the importance of loop I in determining toxicity of the cardiotoxin.  相似文献   

15.
The full amino acid sequence of the acidic phospholipase A2 from Indian cobra (Naja naja naja) venom was determined and its tertiary structure examined by circular dichroism (CD). The sequence was aligned with other sequences of secreted phospholipase A2 from snakes of the genus Naja, using the progressive alignment method of Feng and Doolittle (J. Mol. Evol. (1987) 25, 351-360). The primary sequence of Naja naja naja phospholipases A2 shows up to 85% identity with the other acidic Naja phospholipase A2. CD studies indicate a 40-50% alpha-helical content in a tertiary structure which resists denaturation at high temperature, with or without chaotropic salts.  相似文献   

16.
A rapid and sensitive spectrophotometric assay for venom phospholipase A2 based on the hemolysis of guinea pig erythrocytes in the presence of decomplemented serum and cardiotoxin (direct lytic factor) is described. This assay is particularly useful for rapid multisample analyses, such as those used in monitoring chromatography fractions, and is specific for phospholipase A2 in she presence of other potentially hemolytic venom components. The hemolytic mechanism is shown to be a combination of the action of lysophospholipids liberated from lipoproteins in the serum and the synergistic action of phospholipase A2 and cardiotoxin on the erythrocyte membrane.  相似文献   

17.
Two phospholipase enzymes NN1 and NN2 were purified from the venom of Naja nigricolis nigricolis Reinhardt to apparent homogeneity. NN1 was purified by a two-step anion-exchange chromatography on DEAE-cellulose column while NN2 was purified by a combination of anion-exchange chromatography and gel filtration on Sephadex G-150. The enzyme NN1 moved homogenously on acrylamide gel as a monomer with a molecular weight of 65 kDa while NN2 was a dimer of 71 kDa. Both enzymes were clearly separated. Both enzymes hydrolyzed L-alpha-phosphatidyl choline with activities of 345.5 for NN1 and 727.8 micromol min(-1) x mg(-1) for NN2. The dimeric 71-kDa enzyme has a higher haemolytic and anticoagulant activity than the monomeric 65-kDa enzyme. It is apparent that the dimeric enzyme has a more pronounced activity than the monomer has, thus toxic activity may be related to the hydrolysis of phospholipids.  相似文献   

18.
The hydrolysis of 1,2-dihexanoyl-sn-glycero-3-phosphorylcholine (diC6PC), catalyzed by a cobra (Naja naja atra) venom phospholipase A2, was studied at 25 degrees C ionic strength 0.1 in the presence of 3-10 mM Ca2+, which can saturate the Ca2+-binding site of the enzyme. The initial velocity data, obtained at various concentrations of the substrate below the critical micellar concentration (cmc), were analyzed according to the Michaelis-Menten equation. The Km value was practically independent of pH (between pH 6.75 and 10.30). This finding was consistent with the result of a direct binding study on monodispersed n-alkylphosphorylcholines (Teshima et al. (1981) J. Biochem. 89, 1163-1174). The hydrolysis of the substrate was competitively inhibited by the presence of monodispersed n-dodecylphosphorylcholine (n-C12PC). These results indicated that the substrate and n-C12PC compete for the same site on the enzyme molecule. The pH dependence curve of the kinetic parameter, kcat/Km, exhibited three transitions, below pH 8, between pH 8 and 9.5, and above pH 10. The analysis indicated the participation of three ionizable groups with pK values of 7.25, 8.50, and 10.4. The deprotonation of the first group and the protonation of the third group were found to be essential for the catalysis. The first group was assigned as His 48 in the active site on the basis of its pK value, which had been determined from the pH dependence of the binding constant of Ca2+ (Teshima et al. (1981) J. Biochem. 89, 13-20).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effect of Naja nigricollis venom of fibrinogen and highly crosslinked fibrin was examined by SDS-polyacrylamide gel electrophoresis of the reduced products of venom treatment. The venom contains a proteolytic activity which degraded the A alpha-chain of fibrinogen, but had no apparent effect on the B beta- or gamma-chains of the molecule. The venom also readily degraded the alpha-polymer or highly crosslinked fibrin, without apparent cleavage of the beta-chain or the gamma-dimer of fibrin. The venom had no observed effect on plasminogen, indicating that the effects on the A alpha-chain and the alpha-polymer are by direct action of the venom, and not due to activation of plasminogen. The fibrinogenolysis was inhibited by EDTA or 1,10-phenanthroline. Inhibition with EDTA could be reversed by the addition of Zn2+. The fibrinogenolysis was optimal between pH 7 and 8, consistent with the expected pH optimum for a Zn2+ metalloproteinase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号