首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of the growth hormone receptor (GHR) gene was investigated in semitendinosus muscle during bovine foetal development in both normal and double-muscled Charolais foetuses which differ with respect to muscle development. Northern-blot analysis of foetal muscle RNA preparations with a GHR cDNA probe identified the 4.5 kb GHR mRNA as early as 130 days post-conception. In double-muscled animals, the expression of GHR mRNA increased from 130 to 210 days of gestation while it stayed stable in normal ones. It was significantly higher (P < 0.05) in double-muscled foetuses compared to normal ones from the second third of gestation. Northern-blot analysis of foetal muscle RNA preparations from both genotypes with a beta-actin cDNA probe, revealed lower beta-actin gene expression in double-muscled foetuses than in normal ones, suggesting a delay in the differentiation of muscle cells. In situ hybridisation revealed the localisation of specific GHR mRNA in muscle cells at all gestation stages analysed (130, 170, 210 days post-conception) but not in connective tissue surrounding the muscle cells. At the adult stage, the hybridisation signal was also very high and observed in muscle cells only. These results show the ontogeny of GHR mRNA in bovine muscle and demonstrate a difference between normal and double-muscled animals.  相似文献   

2.
3.
The aim of the present study was to precise the origin of the particular muscle characteristics of double-muscled cattle by comparing muscle properties of Holstein and double-muscled Belgian Blue (BB) foetuses. Ten 100-day-old foetuses of each genotype were studied. The weight and length of foetuses and the length, weight and area of the Semitendinosus (ST) muscle were analysed. Contractile differentiation of the different fibre types was studied by immunohistochemistry using several monoclonal antibodies raised against different myosin heavy chain isoforms (MHC slow, fast, foetal) and by electrophoresis. Proliferation phase of myoblasts from each genotype was analysed in primary culture. On 100 days of foetal life, the foetuses of both genotypes did not show any significant differences in their weight and length. However, BB cattle already present muscle hypertrophy, which seems to originate from a higher myoblast proliferation observed in primary culture. The use of anti-MHC antibodies shows that ST muscle of BB contained a smaller proportion of primary fibres and a higher proportion of secondary fibres which will give principally fast fibres in adult muscle. Electrophoresis analysis confirms a lower proportion of slow MHC in ST of BB.  相似文献   

4.
The ontogenesis of total collagen and of different collagen types was studied in four muscle types from genetically different cattle. Hydroxyproline content was 1.2-fold higher in muscles from cross-bred foetuses with normal muscle growth compared to those of the other genetic types (pure bred with different growth rates, double-muscled breed). A similar tendency was observed for type III collagen content. In all muscles of each animal studied, type XII and XIV collagens were colocated in perimysium. Immunolabelling obtained for type XII collagen was higher during foetal life than after birth, while for type XIV collagen, the opposite result was obtained. Whatever the muscle studied, but especially in semitendinosus muscle, during the foetal and the post-natal period until 15 months of age, immunolabelling with antibody anti-type XIV collagen tended to be more intense in muscles of animals from fathers selected for a low muscle growth capacity compared to those from fathers selected for a high muscle growth capacity. In conclusion, this study shows, that during foetal life, selection according to muscle growth capacity has no significant effect on the contents of total hydroxyproline or type III collagen, but minor effects on collagen localization.  相似文献   

5.
We have carried out a comprehensive study of the formation of muscle fibers in the human quadriceps in a large series of well dated human foetuses and children. Our results demonstrate that a first generation of muscle fibers forms between 8-10 weeks. These fibers all express slow twitch myosin heavy chain (MHC) in addition to embryonic and foetal MHCs, vimentin and desmin. Between 10-11 weeks, a subpopulation of these fibers express slow tonic MHC, being the first primordia of muscle spindles. Extrafusal fibers of a second generation form progressively and asynchronously around the primary fibers between 10-18 weeks, giving the muscle a very heterogeneous aspect due to different degrees of organization of their proteins. By 20 weeks, these second generation fibers become homogeneous and thereafter undergo a process of maturation and differentiation when they eliminate vimentin, embryonic and foetal MHCs to express either slow twitch or fast MHC. The differentiation of these second generation fibers into slow and fast depends upon different factors, such as motor innervation or level of thyroid hormone. Around the intrafusal first generation fibers, additional subsequent generations of fibers are also progressively formed. Some differ from the extrafusal second generation fibers by expressing slow tonic MHC, others by continuous expression of foetal MHC. The differentiation of intrafusal fibers is probably under the influence of both sensory and motor innervation.  相似文献   

6.
Muscle metabolism (in interaction with other organs and tissues, including adipose tissue) plays an important role in the control of growth and body composition. Muscle ontogenesis has been described in different genotypes of cattle for myofibres, connective tissue and intramuscular depots. The ontogenesis or the action of putatively important factors controlling muscle development (IGF-II expression, IGF receptors, growth hormone (GH) receptor, myostatin, basic fibroblast growth factor, transforming growth factor-β1, insulin and thyroid hormones) has also been studied on bovine foetal muscle samples and satellite cells. The glucose/insulin axis has been specifically studied in both the bovine adipose tissue and heart. Clearly, cattle, like sheep, are mature species at birth based on their muscle characteristics compared to other mammalian or farm animal species. The different myoblast generations have been well characterised in cattle, including the second generation which is liable to be affected by foetal undernutrition at least in sheep. Interesting genotypes, for example, double-muscled genotype, have been characterised by an altered metabolic and endocrine status associated with a reduced fat mass, specific muscle traits and different foetal characteristics. Finally, the recent development of genomics in cattle has allowed the identification of novel genes controlling muscle development during foetal and postnatal life. Generally, a high muscle growth potential is associated with a reduced fat mass and a switch of muscle fibres towards the glycolytic type. The possibility and the practical consequences of manipulating muscle growth and, hence, body composition by nutritional and hormonal factors are discussed for bovines based on our current biological knowledge.  相似文献   

7.
Dynamics of myofiber differentiation/maturation in porcine skeletal muscle is associated with domestication, breeding and rearing conditions. This study was aimed to comparatively elucidate the age-dependent myosin heavy chain (MyHC) isoform expression and transition pattern in domestic and wild pig (WP) skeletal muscle from birth until adulthood. Domestic pigs (DPs) of Large White breed raised in conventional production system were compared with WPs reared in a large hunting enclosure. Muscle samples for immuno/enzyme histochemistry were taken from the longissimus dorsi muscle within 24 h postmortem at 24 to 48 h, 21 to 23 days, 7 months and ~2 years postpartum. Based on the antibody reactivity to MyHCs (NCL-MHCs, A4.74, BF-F3) and succinate dehydrogenase activity, myofibers were classified into I, I/IIa, IIa, IIx and IIb types. In addition, foetal MyHC expression was determined with the use of F158.4C10 antibody. Maturation of the longissimus dorsi muscle in the WP was characterized by an accelerated transformation of the fast to slow MyHC during the first hours postpartum, followed by differentiation towards oxidative myofibers in which type I, IIa and IIx MyHCs predominated. In the DP, the transformation shifted towards glycolytic myofibers that expressed MyHC-IIb. The expression of foetal MyHC was higher in the DP than in the WP at 1 day of age, and the decline in the foetal MyHC during the first 3 weeks was more rapid in the WP than in the DP denoting an accelerated early postnatal muscle maturation in WP than DP piglets. All foetal MyHC-positive myofibers co-expressed IIa isoform, but not vice versa. The intense myofiber hypertrophy was evident from 3 weeks until 7 months of age. In this period, the myofiber cross-sectional area increased up to 10- and 20-fold in the WP and the DP, respectively. In the DP, the hypertrophy of all myofiber types was more pronounced than in the WP, particularly the hypertrophy of IIx and IIb myofibers. To summarize, the comparison between growing DP with wild ancestors showed that genetic selection and rearing conditions lead to substantial changes in the direction and intensity of postnatal MyHC transformation as evidenced by different proportion of individual myofiber types and differences in their hypertrophic potential.  相似文献   

8.
In order to explain the mechanism of high meat quality in Laiwu pigs and investigate the relation between myosin heavy chains (MyHC) composition and meat quality, meat quality analysis was conducted and mRNA expression of MyHC I, IIa, IIx, IIb was quantified by real-time fluorescence PCR in longissimus muscle (LM) and semimembranous muscle of Laiwu pigs and Duroc. The result indicated that, compared with Duroc, mRNA expression of MyHC IIa, IIx in LM and semimembranous muscle of Laiwu pigs was significantly increased, mRNA expression of MyHC IIb was dramatically decreased. However, the expression of MyHC I was not significantly affected by breeds. The correlation between mRNA expression of MyHC I, IIa, IIx in LM and meat color, pH value, marbling, intramuscular fat content was positive, but shear value of LM was negative. The relation between MyHC IIb mRNA expression and marbling, intramuscular fat content was dramatically negative, whereas shear value was strikingly positive, as well as fiber diameter, but without reaching statistical significance. Therefore, the composition of MyHC I, IIa, IIx, IIb affected meat quality, furthermore, expression of MyHC I, IIa, IIx, IIb mRNA prominently influenced meat characteristics, especially edible quality of muscle, suggesting that mRNA expression level of MyHC I, IIa, IIx, IIb can exactly and impersonally estimate meat quality.  相似文献   

9.
Summary Glucose-6-phosphate dehydrogenase activity increases following denervation of rat skeletal muscle. The specificity of this effect to muscle fibre type was studied. Basal activity of the dehydrogenase was higher in soleus, a muscle composed predominantly of type I fibres, than in extensor digitorum longus, a muscle composed predominantly of type IIa and b fibres. The enzymatic activity of the soleus was also greater than that of the red (RQ) and white (WQ) portions of quadriceps muscle (predominantly type IIa and type IIb fibres, respectively). Following denervation, glucose-6-phosphate dehydrogenase increased in extensor digitorum longus and RQ, but not in WQ or the soleus. Following chronic treatment of rats with 3,3,5-triiodothyronine, which converts type I muscle fibres to type II, the dehydrogenase activity increased in both denervated soleus and extensor digitorum longus. It is concluded that the effect of denervation on glucose-6-phosphate dehydrogenase activity is selective for type IIa (fast oxidative-glycolytic) muscle fibres.  相似文献   

10.

Background

Cancer-cachexia induces a variety of metabolic disorders of protein turnover and is more pronounced when associated with pregnancy. Tumour-bearing pregnant rats have impaired protein balance, which decreases protein synthesis and increases muscle breakdown. Because branched-chain amino acids, especially leucine, stimulate protein synthesis, we investigated the effect of a leucine-rich diet on protein metabolism in the foetal gastrocnemius muscles of tumour-bearing pregnant rats.

Methods

Foetuses of pregnant rats with or without Walker 256 tumours were divided into six groups. During the 20 days of the experiment, the pregnant groups were fed with either a control diet (C, control rats; W, tumour-bearing rats; Cp, rats pair-fed the same normoprotein-diet as the W group) or with a leucine-rich diet (L, leucine rats; LW, leucine tumour-bearing rats; and Lp, rats pair-fed the same leucine-rich diet as the LW group). After the mothers were sacrificed, the foetal gastrocnemius muscle samples were resected, and the protein synthesis and degradation and tissue chymotrypsin-like, cathepsin and calpain enzyme activities were assayed. The muscle oxidative enzymes (catalase, glutathione-S-transferase and superoxide dismutase), alkaline phosphatase enzyme activities and lipid peroxidation (malondialdehyde) were also measured.

Results

Tumour growth led to a reduction in foetal weight associated with decreased serum protein, albumin and glucose levels and low haematocrit in the foetuses of the W group, whereas in the LW foetuses, these changes were less pronounced. Muscle protein synthesis (measured by L-[3H]-phenylalanine incorporation) was reduced in the W foetuses but was restored in the LW group. Protein breakdown (as assessed by tyrosine release) was enhanced in the L and W groups, but chymotrypsin-like activity increased only in group W and tended toward an increase in the LW foetuses. The activity of cathepsin H was significantly higher in the W group foetuses, but the proteolytic calcium-dependent pathway showed similar enzyme activity. In parallel, an intense oxidative stress process was observed only in the group W foetuses.

Conclusions

These data suggested that the proteasomal and lysosomal proteolytic pathways and oxidative stress are likely to participate in the process of foetal muscle catabolism of Walker’s tumour-bearing pregnant rats. The present work shows that foetal muscle can be protected by supplementation with a leucine-rich diet.  相似文献   

11.
The potential for muscle growth depends on myoblast proliferation, which occurs essentially during the first two thirds of the foetal period in cattle. Thereafter, myofibres acquire their contractile and metabolic properties. Proliferation is regulated by molecular growth factors and by the tissue oxidative activity. The aim of this study was the quantification by immunochemistry of basic fibroblast growth factor (bFGF) and transforming growth factor beta 1 (TGF-beta1) and also of enzyme catalase (CAT) activity in rectus abdominis muscle. Samples were collected from cattle foetuses of different growth potential at 180 and 260 days post-conception (dpc). One major conclusion from this work is that protein contents of the muscle tissue bFGF and, to a lower extent, CAT activity decreased with increasing age during the foetal life. No differences were found between the different genotypes of cattle. However, the CAT to bFGF ratio tended to be lower in fast-growing cattle and increased with foetal age. TGF-beta1 did not change with age and was localised mostly at the vascular bed. CAT was detected in smooth and rough reticulum in striated muscles at 180dpc, and additionally in mitochondria at 260dpc. In conclusion, the balance between intracellular growth factors (bFGF and TGF-beta1) and the activity of antioxidant enzyme CAT may participate in the regulation of the transition from myoblast proliferation to differentiation. Thus, increased ratio of CAT to bFGF might be a good index indicating initiation of muscle maturation in cattle foetus prior to birth.  相似文献   

12.
Single-fiber(n = 3,818 fibers) electrophoreticanalyses were used to delineate the separate and combined effects ofhyperthyroidism (T3) andhindlimb suspension (HS) on the myosin heavy chain (MHC) isoformcomposition (1-, 2-, and 4-wk time points) of the rat soleus muscle.The key findings of this study are as follows. First,T3 and HS both altered thedistribution of MHC isoforms at the single-fiber level; however, thepopulations of fibers produced by these two interventions were clearlydifferent from one another. Second,T3 + HS rapidly converted thesoleus into a fast muscle, producing large increases in the relativecontents of the fast type IIx and IIb MHC isoforms which were primarily expressed in several populations of hybrid fibers (e.g., types I/IIa/IIx, I/IIx/IIb, I/IIa/IIx/IIb). Finally,T3 + HS produced uniquepopulations of hybrid fibers that did not adhere to the IIIaIIxIIb sequential scheme of MHC plasticity. Collectively, the findings of this study demonstrate that the intervention of T3 + HS is a powerful model formanipulating and studying MHC isoform plasticity in slow skeletal muscle.

  相似文献   

13.
Talmadge, Robert J., Roland R. Roy, and V. Reggie Edgerton.Distribution of myosin heavy chain isoforms in non-weight-bearing rat soleus muscle fibers. J. Appl.Physiol. 81(6): 2540-2546, 1996.The effects of14 days of spaceflight (SF) or hindlimb suspension (HS) (Cosmos 2044)on myosin heavy chain (MHC) isoform content of the rat soleus muscleand single muscle fibers were determined. On the basis ofelectrophoretic analyses, there was a de novo synthesis of type IIx MHCbut no change in either type I or IIa MHC isoform proportions aftereither SF or HS compared with controls. The percentage of fiberscontaining only type I MHC decreased by 26 and 23%, and the percentageof fibers with multiple MHCs increased from 6% in controls to 32% inHS and 34% in SF rats. Type IIx MHC was always found in combinationwith another MHC or combination of MHCs; i.e., no fibers contained typeIIx MHC exclusively. These data suggest that the expression of thenormal complement of MHC isoforms in the adult rat soleus muscle isdependent, in part, on normal weight bearing and that the absence ofweight bearing induces a shift toward type IIx MHC protein expression in the preexisting type I and IIa fibers of the soleus.

  相似文献   

14.
Muscle fibre ontogenesis in farm animal species   总被引:17,自引:0,他引:17  
In farm animals (bovine, ovine, swine, rabbit and poultry), muscle fibre characteristics play a key role in meat quality. The present review summarises the knowledge on muscle fibre characteristics and ontogenesis in these species. Myofibre ontogenesis begins very early during embryonic life, with the appearance of two or three successive waves of myoblasts which constitute the origin of the different types of muscle fibres. In small animals (rodents and poultry), a primary and a secondary generation of fibres arise respectively during the embryonic and foetal stages of development. In the largest species (bovines, sheep, pigs) a third generation arises in the late foetal or early postnatal period. Following these two or three waves of myogenesis, the total number of fibres is fixed. This occurs during foetal life (bovines, ovines, pigs and poultry) or during the first postnatal month in rabbits. Contractile and metabolic differentiation proceed by steps in parallel to myogenesis and are partially linked to each other. In bovines and ovines, the main events occur during foetal life, whereas they occur soon after birth in the pig, poultry and rabbit, but some plasticity remains later in life in all species. This comparative survey shows that the cellular processes of differentiation are comparable between species, while their timing is usually species specific.  相似文献   

15.
The potential for muscle growth depends on myoblast proliferation, which occurs essentially during the first two thirds of the foetal period in cattle. Thereafter, myofibres acquire their contractile and metabolic properties. Proliferation is regulated by molecular growth factors and by the tissue oxidative activity. The aim of this study was the quantification by immunochemistry of basic fibroblast growth factor (bFGF) and transforming growth factor beta 1 (TGF-β1) and also of enzyme catalase (CAT) activity in rectus abdominis muscle. Samples were collected from cattle foetuses of different growth potential at 180 and 260 days post-conception (dpc). One major conclusion from this work is that protein contents of the muscle tissue bFGF and, to a lower extent, CAT activity decreased with increasing age during the foetal life. No differences were found between the different genotypes of cattle. However, the CAT to bFGF ratio tended to be lower in fast-growing cattle and increased with foetal age. TGF-β1 did not change with age and was localised mostly at the vascular bed. CAT was detected in smooth and rough reticulum in striated muscles at 180 dpc, and additionally in mitochondria at 260 dpc. In conclusion, the balance between intracellular growth factors (bFGF and TGF-β1) and the activity of antioxidant enzyme CAT may participate in the regulation of the transition from myoblast proliferation to differentiation. Thus, increased ratio of CAT to bFGF might be a good index indicating initiation of muscle maturation in cattle foetus prior to birth.  相似文献   

16.
Summary Glare-corrected, scanning Feulgen microdensitometry and 3H-thymidine autoradiography were applied to squash preparations of rat 18-day foetal and maternal liver cells, and to smears of maternal blood. No significant differences were found between the mean Feulgen-DNA contents of autoradiographically unlabelled diploid foetal and maternal hepatocytes. The Feulgen-DNA contents of other unlabelled foetal and maternal hepatocytes were also as predicted by the DNA-constancy hypothesis, i.e. were twice or four times that of diploid cells. Small (less than about 4%) but statistically significant discrepancies in the mean Feulgen-DNA contents of foetal haemopoietic cells and adult leucocytes were attributable to uncorrected residual distribution and chromatic errors in the microdensitometry.None of the 371 maternal nuclei measured had Feulgen-DNA contents substantially (i.e. more than ±10%) different from a modal value. About 12% of these nuclei were classified as labelled. Evidence was found suggesting a significantly non-random distribution of background grains in the autoradiographs, which would materially affect the proportion of cells incorrectly classified. After taking this factor into account there seems no reason to suppose that the apparently labelled adult nuclei were in fact synthesising DNA.Of 376 foetal cells measured, 107 had inter-modal Feulgen-DNA contents. Eleven of these were classified as unlabelled. All the inter-modal cells were however probably in the S-phase of the cell cycle, statistical variation in autoradiographic grain distribution accounting for those appearing to be unlabelled.Our results are consistent with the DNA-constancy hypothesis, and are at variance with previous claims for the existence of metabolic DNA in adult and/or foetal rat hepatocytes.  相似文献   

17.
Antibodies directed against purified Ca-ATPase from sarcoplasmic reticulum, calsequestrin and parvalbumin from rabbit fast-twitch muscle were raised in sheep. The specificity of the antibodies was shown by immunoblot analysis and by enzyme-linked immunoadsorbent assays (ELISAs). IgG against the sarcoplasmic reticulum Ca-ATPase inhibited the catalytic activities of Ca-ATPase from fast-twitch (psoas, tibialis anterior) and slow-twitch (soleus) muscles to the same degree. In non-equilibrium competitive ELISAs the anti(Ca-ATPase) IgG displayed a slightly higher affinity for the Ca-ATPase from fast-twitch muscle than for that from slow-twitch muscle. This suggests a fiber-type-specific polymorphism of the sarcoplasmic reticulum Ca-ATPase. Quantification of Ca-ATPase, calsequestrin and parvalbumin in various rabbit skeletal muscles of histochemically determined fiber composition was achieved by sandwich ELISA. Ca-ATPase was found to be 6-7 times higher in fast than in slow-twitch muscles. A slightly higher concentration was found in fast-twitch muscles with a higher percentage of IIb fibers when compared with fast-twitch muscles with a higher percentage of IIa fibers. Thus Ca-ATPase is distributed as follows, IIb greater than or equal to IIa much greater than I. Calsequestrin was uniformly distributed in fast-twitch muscles independently of their IIa/IIb fiber ratio and displayed 50% lower concentrations in slow than in fast-twitch muscles (IIb = IIa greater than I). Parvalbumin contents were 200-300-fold higher in fast than in slow-twitch muscles. Significantly lower parvalbumin concentrations were found in fast-twitch muscles with a higher percentage of IIa fibers than in fast-twitch muscles with a higher percentage of IIb fibers (IIb greater than IIa much greater than I).  相似文献   

18.
The effects of 10 wk of functional overload (FO), with and without daily treadmill endurance training, on the cross-sectional area, myonuclear number, and myonuclear domain size of mechanically isolated single fiber segments of the adult rat plantaris were determined. The fibers were typed on the basis of high-resolution gel electrophoresis for separation of specific myosin heavy chain (MHC) isoforms and grouped as type I(+) (containing some type I MHC with or without any combination of fast MHCs), type IIa(+) (containing some type IIa with or without some type IIx and/or IIb but no type I MHC), and type IIx/b (containing only type IIx and/or IIb MHCs). Type I(+) fibers had a higher myonuclear number than did both fast types of fibers in the control and FO, but not in the FO and treadmill trained, rats. All fiber types in both FO groups had a significantly larger (36-90%) cross-sectional area and a significantly higher (61-109%) myonuclear number than did control. The average myonuclear domain size of each fiber type was similar among the three groups, except for a smaller domain size in the type IIx/b fibers of the FO compared with control. In general, these data indicate that during hypertrophy the number of myonuclei increase proportionally to the increase in fiber volume. The maintenance of myonuclear domain size near control values suggests that regulatory mechanisms exist that ensure a tight coupling between the quantity of genetic machinery and the protein requirements of a fiber.  相似文献   

19.
20.
Y. Umebachi 《Amino acids》1992,2(1-2):181-187
Summary Papiliochrome II is a pale yellow pigment of butterflies and consists of one molecule each ofL-kynurenine and N--alanyldopamine (NBAD). The aromatic amino nitrogen of kynurenine is bonded to the-carbon of NBAD. There are isomers IIa and IIb which show opposite circular dichroism. The-alanine contents of IIa and IIb were determined and the molar ratio of IIa to IIb has proved to be 1.17. The IIa and IIb were decomposed toL-kynurenine and N--alanylnorepinephrine (NBANE) by being heated in water at 80°C for 30 min. In both IIa and IIb, circular dichroism of the NBANE showed the same positive peak at 280 nm. The NBANE were further decomposed to-alanine and norepinephrine (NE) by being heated in 1 N HC1 at 100°C for 2 hr. The NE was submitted to enantioseparation and has proved to be a racemic mixture in both cases of IIa and IIb. These results are discussed in the light of the enzymic synthesis of IIa and IIb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号