首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell homogenate of Entamoeba histolytica trophozoites was investigated for amylolytic activity against various biogenic and synthetic substrates. After gel filtration of the cell homogenate on Sephadex G-150, six partly separated amylases (I to VI) differing in their substrate specificities were detected using maltose, amylose, amylopectin, 4-nitrophenyl alpha-glucoside and 4-nitrophenyl alpha-maltotetraoside. All enzymes are able to degrade amylose, amylopectin, glycogen and biogenic malto-oligosaccharides. Since amylase I and II, which accepted maltose as substrate, were found in fresh (cell-free) medium containing calf serum, the possibility cannot be excluded that these enzymes originate from the medium and therefore are not associated with E. histolytica trophozoites. Amylases III to VI, which were not found in fresh medium, were further purified by isoelectric focusing and chromatographic procedures using DEAE, CM ion exchange materials and Con A Sepharose 4B. pH, temperature optima and relative molecular masses were determined.  相似文献   

2.
The physiological and/or clinical significance of sugar chains in human salivary alpha-amylase was investigated in terms of substrate-specificity for synthesized malto-oligosaccharides. Glycosylated and non-glycosylated alpha-amylases were prepared on a Sephacryl S-200 column, in which the amylases were separated into four fractions from the different affinities for Sephacryl: fraction I, amylases bearing sugar chains with sialic acid; fraction II, amylases bearing sugar chains without sialic acid; fractions III and IV, non-glycosylated amylases. These were classified according to the differences in their affinities for lectins, molecular sizes and isoelectric points. The inhibitory effect of maltotriose (G3) on starch hydrolysis of the amylase fraction, suggests that starch and G3 can be the substrate for glycosylated amylase, and that the glycosylated amylases are capable of G3 hydrolysis for conversion into maltose and glucose. Using malto-oligosaccharides, G3, G4, G5 and G7, as substrates, the substrate-specificities and G3/G5 ratio of amylase activities in the four fractions were examined. Maltopentaose, G5, is routinely used as a substrate for alpha-amylase, and then we assumed that both glycosylated and non-glycosylated amylases react with G5. Moreover, the results indicate that the glycosylated amylases clearly had a higher capacity for G3 hydrolysis than the non-glycosylated amylases, although no substrate preference of either type of amylase was observed among G4, G5 and G7. Glycosylated amylases have the capacity for glucose formation from malto-oligosaccharides.  相似文献   

3.
Hog pancreas alpha-amylase (alpha-1-4-glucan-glucan hydrolase, E.C. 3.2.1.1) lost its structural calcium by action of EDTA at 20 degrees C. Enzymatic activity experimented a decrease whereas a big increase in proteolytic susceptibility to bovine pancreas trypsin (E.C. 3.4.4.4) was shown. Native alpha-amylase had an activity of 2,730 mg maltose/min X mg enzyme and a Km of 0.222% amylose, the activity of calcium depleted amylase being of 1,640 mg maltose/min X mg enzyme and Km 0.571% amylose. Simple methods for evaluating proteolytic susceptibility of alpha-amylase micro-amounts against trypsin action, and for the measurement of alpha-amylase activity in polyacrylamide rod gels were also described.  相似文献   

4.
Amylases from adults of Sitophilus oryzae (L.) and S. granarius (L.) were purified by using a sequential procedure of ammonium sulfate precipitation, glycogen-complex formation, and ion exchange chromatography. Amylase of S. oryaze was purified 47.4-fold to a specific activity of 478 units/mg protein. One amylase unit equals 1 mg maltose hydrate produced/min at 30°C. Amylase of S. granarius was purified 85.4-fold to a specific activity of 453 units/mg protein. Amylase of S. oryzae had a Km of 0.173% for soluble starch and consisted of two anionic isozyrnes with isoelectric points of pH 3.70 and pH 3.76. Amylase of S. granarius had a Km of 0.078% for starch and was a single protein with an isoelectric point of pH 3.76. Purified amylases of both species had molecular weights of 56,000 estimated by sodium dodecyl sulfatepolyacrylamide gel electrophoresis, were activated by chloride, and had double energies of activation calculated from Arrhenius plots. Based on fresh weights of adults feeding on whole wheat through 10 weeks of age, S. oryzae contained three-fold and eight-fold more amylase than S. granarius and S. zeamais Motschulsky, respectively. High amylase levels in S. oryzae may provide this species with an adaptive advantage when feeding on cereals containing naturally occurring amylase inhibitors.  相似文献   

5.
Thermotoga maritima MSB8 has a chromosomal alpha-amylase gene, designated amyA, that is predicted to code for a 553-amino-acid preprotein with significant amino acid sequence similarity to the 4-alpha-glucanotransferase of the same strain and to alpha-amylase primary structures of other organisms. Upstream of the amylase gene, a divergently oriented open reading frame which can be translated into a polypeptide with similarity to the maltose-binding protein MalE of Escherichia coli was found. The T. maritima alpha-amylase appears to be the first known example of a lipoprotein alpha-amylase. This is in agreement with observations pointing to the membrane localization of this enzyme in T. maritima. Following the signal peptide, a 25-residue putative linker sequence rich in serine and threonine was found. The amylase gene was expressed in E. coli, and the recombinant enzyme was purified and characterized. The molecular mass of the recombinant enzyme was estimated at 61 kDa by denaturing gel electrophoresis (63 kDa by gel permeation chromatography). In a 10-min assay at the optimum pH of 7.0, the optimum temperature of amylase activity was 85 to 90 degrees C. Like the alpha-amylases of many other organisms, the activity of the T. maritima alpha-amylase was dependent on Ca2+. The final products of hydrolysis of soluble starch and amylose were mainly glucose and maltose. The extraordinarily high specific activity of the T. maritima alpha-amylase (about 5.6 x 10(3) U/mg of protein at 80 degrees C, pH 7, with amylose as the substrate) together with its extreme thermal stability makes this enzyme an interesting candidate for biotechnological applications in the starch processing industry.  相似文献   

6.
Sirishinha, Stitaya (University of Rochester School of Medicine and Dentistry, Rochester, N.Y.), and Peter Z. Allen. Immunochemical studies on alpha-amylase. III. Immunochemical relationships among amylases from various microorganisms. J. Bacteriol. 90:1120-1128. 1965.-Immunochemical relationships among amylases obtained from a selected group of microorganisms were examined, and a cross-reaction was detected between the alpha-amylases of Bacillus stearothermophilus and B. subtilis. Immunodiffusion and quantitative precipitin studies, as well as cross-neutralization tests, indicate that B. stearothermophilus alpha-amylase reacts with a portion of antibody present in antisera to crystalline B. subtilis alpha-amylase. Amylases from these two species thus have some aspects of structure in common. Limited data obtained by immunodiffusion suggest that groupings which confer cross-reactivity to the B. stearothermophilus enzyme are lost after exposure to mercaptoethanol in the presence of ethylenediamine-tetraacetate, followed by treatment with iodoacetamide. With the antisera employed and within the concentration range examined, no immunochemical cross-reaction was observed among amylases from Aspergillus oryzae, B. subtilis, B. polymyxa, B. macerans, Pseudomonas saccharophila, and Euglena sanguinis. Immunoelectrophoresis of partially purified B. stearothermophilus alpha-amylase by use of antiserum to the crude enzyme, together with localization of amylase activity in immunoelectrophoretic plates, suggests that B. stearothermophilus alpha-amylase is antigenic in the rabbit.  相似文献   

7.
Production of α-amylase by Myxococcus coralloides D   总被引:3,自引:2,他引:1  
M.E. FÁREZ-VIDAL, A. FERNANDEZ-VIVAS AND J.M. ARIAS. 1992. Myxococcus coralloides D secreted amylase into a liquid growth medium containing 1% starch. Amylase activity was highest at the end of the exponential growth phase. Of the nitrogen sources tested, the greatest growth and amylase production were obtained with trypticase peptone, casitone, probion L and probion F. When starch was replaced by other carbon sources, amylase production was reduced; trisaccharide produced better results than disaccharide while monosaccharide reduced amylase production to basal levels. Maltose repressed amylase production. Amylase production was greater in stirred flasks, at pH between 6.5 and 7.5, and at temperatures from 28C to 33C. The activity of partially purified M. coralloides D amylase was used to determine the products released from the hydrolysis of starch with thin-layer chromatography, paper chromatography and nuclear magnetic resonance. These products were maltose and glucose and limit dextrins.  相似文献   

8.
The action patterns of glucoamylase (amyloglucosidase) and glucosyltransferase (transglucosylase) on D-[1-14C]glucose, [1-14C]maltose, and [1-14C]malto-oligosaccharides (labeled at position 1 of the D-glucose group at the reducing end) have been investigated by paper-chromatographic and oligosaccharide-mapping techniques. Under the conditions of the experiments, the extent of conversion of D-glucose and of maltose into new oligosaccharides was 2.2 and 1.9% with glucoamylase, and 5.7 and 33% with glucosyltransferase. The major oligosaccharides produced by both enzymes were isomaltose (6-O-alpha-D-glucopyranosyl-alpha-D-glucose), panose (O-alpha-D-glucopyranosyl (1 leads to 6)-O-alpha-D-glucopyranosyl-(1 leads to 4)-alpha-D-glucose), and nigerose (3-O-alpha-D-glucopyranosyl-alpha-D-glucose). The glucosyltransferase also synthesized oligosaccharides from malto-oligosaccharides of higher molecular weight to yield compounds having alpha-(1 leads to 6)-linked D-glucosyl groups at the non-reducing ends. Glucoamylase exhibited little, if any, such activity on malto-oligosaccharides.  相似文献   

9.
Three amylolytic Lactobacillus strains designated LEM 220, LEM 207 and LEM 202 were isolated from the chicken crop. They belonged to the subgenus Thermobacterium. Strain LEM 220 resembled Lact. acidophilus. Amylase production was more abundant in cells grown in media containing amylopectin or starch than in media containing glucose or maltose. Optimum pH and temperature of the amylase were 5.5 and 55°C respectively. Hydrolysis of amylopectin gave maltose, maltotriose and small amounts of glucose. Strain LEM 207 also resembled Lact. acidophilus , but differed from strain 220. It had a lower amylase activity. Optimum pH and temperature of the amylase were 6.4 and 40°C, respectively, and hydrolysis of amylopectin gave maltose, maltotriose and carbohydrates higher than maltopentaose. Strain LEM 202 was similar to Lact. vitelinus. It had the lowest amylase activity which was increased only in presence of maltose. Amylase properties were similar to those of LEM 220.  相似文献   

10.
Three amylolytic Lactobacillus strains designated LEM 220, LEM 207 and LEM 202 were isolated from the chicken crop. They belonged to the subgenus Thermobacterium. Strain LEM 220 resembled Lact. acidophilus. Amylase production was more abundant in cells grown in media containing amylopectin or starch than in media containing glucose or maltose. Optimum pH and temperature of the amylase were 5.5 and 55 degrees C respectively. Hydrolysis of amylopectin gave maltose, maltotriose and small amounts of glucose. Stain LEM 207 also resembled Lact. acidophilus, but differed from strain 220. It had a lower amylase activity. Optimum pH and temperature of the amylase were 6.4 and 40 degrees C, respectively, and hydrolysis of amylopectin gave maltose, maltotriose and carbohydrates higher than maltopentaose. Strain LEM 202 was similar to Lact. vitelinus. It had the lowest amylase activity which was increased only in presence of maltose. Amylase properties were similar to those of LEM 220.  相似文献   

11.
Amylase has a lower activity in carnivorous fish species, particularly in Atlantic salmon. We report the first cloning of a salmonid alpha-amylase cDNA from Atlantic salmon, a major species in aquaculture. By amino acid alignment of several species, we identified a seven amino acid deletion in one of the large loops of the enzyme in relatively close proximity to the active site, that could impair substrate binding. We also found the signal peptide to be less hydrophobic compared to other species. This may affect import into ER during protein synthesis. Active site residues were shown to be conserved. Amylase mRNA expression was shown in pancreatic tissue, liver, and in the heart. Using blocked p-nitrophenyl-maltoheptaoside as a substrate, we measured a low amylase activity in Atlantic salmon intestinal content, which was about half of the activity measured in Atlantic cod, whereas activity measured in rainbow trout was fourteen times higher. Amylase activities in all three species showed similar degree of reduction in hydrolytic activity in a dose-response trial with a wheat amylase inhibitor preparation. This indicates similar specific activity per amylase molecule.  相似文献   

12.
An alpha-amylase gene from Bacillus coagulans has previously been cloned in Escherichia coli and shown to direct the synthesis of an enzymically active protein of 60,000 Dal (Cornelis et al., 1982). In one particular E. coli host, strain HB101, amylase was found to accumulate in the periplasmic space. To study the processing and the location of the amylase, plasmid pAMY2 was introduced into E. coli 188 which is a strain constitutive for alkaline phosphatase, a periplasmic marker, and for beta-galactosidase, a cytoplasmic marker. Abnormally large amounts of both alpha-amylase and beta-galactosidase were found in the culture fluid of cells grown in rich medium. Furthermore a severe growth defect was found when cells containing pAMY2 were grown in maltose and glycerol media, while the ability to grow on glucose remained normal. This defect could be reversed by two types of spontaneous mutations. Mutations in the first class are located on the plasmid and correspond to the insertional inactivation of the amylase gene by IS1. Mutations in the second class are located on the host chromosome. These results suggest that the synthesis and export of B. coagulans alpha-amylase is deleterious to E. coli, especially in media containing maltose or glycerol as sole carbon source.  相似文献   

13.
Total progeny of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) reared on 10 wheat, Triticum aestivum L., varieties was evaluated. Higher amylase activities were detected in populations with few individuals, whereas the opposite was observed in higher populations. As protein ingested increased, reproductive success increased. However, consumption of wheat protein was inversely correlated with amylase activity levels (r = -0.66). Amylase activity in homogenates of R. dominica populations showed variable inhibition by wheat extracts prepared from wheat varieties on which they were reared. Insect populations with lowest amylase activities were inhibited more by wheat extracts than those with higher amylase activity (r = -0.77). An electrophoretic analysis revealed four phenotypes showing combinations of three isoamylases (Rm 0.70, 0.79, and 0.90) in different populations of R. dominica. Some of the insect progeny that emerged from resistant wheat varieties contained the three isoamylases, whereas progeny that emerged from the most susceptible varieties showed reduced activity of isoamylases 0.70 or 0.90. These results suggest that the alpha-amylase activity levels and the composition of isoamylases in R. dominica populations are modulated by diet and that the alpha-amylase inhibitory activity of the wheat kernels influences these variations.  相似文献   

14.
In the logarithmic phase of growth,Candida japonica produced into media containing soluble starch, maltose or glucose, an amylase hydrolysing starch to glucose, oligosaccharides of the maltose series and dextrins which coloured red with iodine. The presence of calcium carbonate in the medium promoted growth of the culture, but markedly lowered the amylolytic activity of the culture fluid. Paper electrophoretic separation, ionex chromatography on DEAE cellulose and study of substrate specificity and the relationship of activity to the temperature and pH of the medium showed only one enzyme in the crude enzyme preparation. This was a dextrinogenic amylase of the α-amylase type, with greater capacity for breaking down lower homologues of substances of the amylose series, including maltose, than other known α-amylases. The optimum temperature was 55°C, with 20 minutes’ incubation, and the optimal pH was between 5 and 6. The reaction rate of hydrolytic reactions rose with the length of the chain of the substrate. Isomaltotetraose was hydrolysed about 20 times more slowly than maltotetraose. No formation of isomaltose or panose transglucosidation products was found.  相似文献   

15.
Eleven pigs were fitted with pancreatic and duodenal fistulae, and pancreatic juice collected permanently. Amylase, chymotrypsin, lipase and total proteins were determined in juice collected within 2 and 6 hours after different test-meals or intraduodenal loads of glucose and maltose. In the pancreatic juice of pigs adapted to a high-lipid diet and submitted to a high-carbohydrate test-meal the activity of amylase was increased by 50%. When the consumption of the high-lipid meal was associated with an intraduodenal load of 100 g of glucose all the enzyme activities were stimulated when compared to the effect of meal alone, but only the activity of amylase was significantly increased (+ 82%). In the juice of pigs adapted to a balanced diet and submitted to intraduodenal loads of 150 ml of water, 50 g of glucose, 50 g of maltose and 150 g of maltose, the enzyme activities remained almost constant with the load of water and 50 g of maltose but with 50 g of glucose and 150 g of maltose loads, amylase activity was increased by 20% and 30% respectively. It is suggested, that the exocrine pancreas of the pig adapts itself rapidly to the changes in the size of the intestinal pool of starch hydrolysis products.  相似文献   

16.
Porcine pancreatic alpha-amylase (1,4-alpha-D-glucan glucanohydrolase) [EC 3.2.1.1] has both amylase activity (hydrolysis of alpha-1,4-D-glucoside bond of starch) and maltosidase activity (hydrolysis of p-nitrophenyl-alpha-D-maltoside to p-nitrophenol and maltose). By the modification of histidine residues of porcine pancreatic alpha-amylase with diethylpyrocarbonate (DEP), both amylase and maltosidase activities were decreased in the absence of chloride ion. In the presence of chloride ion, however, maltosidase activity of the modified enzyme was increased to more than 260% of that of the native enzyme, whereas amylase activity was decreased to less than 15% of the native enzyme. Since the chloride ion binding site is part of the active site loop [Buisson et al. (1987) Food Hydrocolloids 1,399-406 and Buisson et al. (1987) EMBO J. 6, 3909-3916], the special arrangements of both catalytic and modified histidine residues induced by the chloride ion binding would enhance only the maltosidase activity of the histidine-modified enzyme.  相似文献   

17.
An endophytic fungus, Fusicoccum sp. BCC4124, showed strong amylolytic activity when cultivated on multi-enzyme induction enriched medium and agro-industry substrates. alpha-Amylase and alpha-glucosidase activities were highly induced in the presence of maltose and starch. The purified target alpha-amylase, Amy-FC1, showed strong hydrolytic activity on soluble starch (kcat/Km=6.47 x 10(3) min(-1)(ml/mg)) and selective activity on gamma- and beta-cyclodextrins, but not on alpha-cyclodextrin. The enzyme worked optimally at 70 degrees C in a neutral pH range with t(1/2) of 240 min in the presence of Ca(2+) and starch. Maltose, matotriose, and maltotetraose were the major products from starch hydrolysis but prolonged reaction led to the production of glucose, maltose, and maltotriose from starch, cyclodextrins, and maltooligosaccharides (G3-G7). The amylase showed remarkable glucose tolerance up to 1 M, but was more sensitive to inhibition by maltose. The deduced protein primary structure from the putative gene revealed that the enzyme shared moderate homology between alpha-amylases from Aspergilli and Lipomyces sp. This thermotolerant, glucose tolerant maltooligosaccharide-forming alpha-amylase is potent for biotechnological application.  相似文献   

18.
A simple method of preparing a chitin-immobilized alpha-amylase and glucoamylase from the protease- and glycosidase-less Mutant HF-15 of Aspergillus awamori var. kawachi was developed and used for the production of high-glucose syrup. The glucoamylase was tightly bound onto chitin without the aid of a crosslinking agent because the enzyme contained a specific binding site for chitin. Continuous production of high glucose concentrate from a highly concentrated alpha-amylasetreated gelatinized starch substrate (about 45% total solids) was undertaken successfully with the use of a column-packed chitin-immobilized amylase. The activity of the column was stable for more than 20 days of continuous operation and the product was found to be only glucose with an average dextrose equivalent value of more than 97%. The final product showed no isomaltose or panose contamination, indicating that the immobilized amylase had no transglucosidation activity. The immobilized amylase was most active in the conversion of gelatinized starch to glucose at 55 degrees C and pH 2.5 to 5.0. Drying the chitin-immobilized amylase resulted in the decrease of activity and shortening of storage life, whereas a storage life of up to 80 days was attained without affecting its original activity when kept under moist condition at 4 degrees C.  相似文献   

19.
The physiological and/or clinical significance of sugar chains in human salivary αamylase was investigated in terms of substrate-specificity for synthesized malto-oligosaccharides. Glycosylated and non-glycosylated α-amylases were prepared on a Sephacryl S-200 column, in which the amylases were separated into four fractions from the different affinities for Sephacryl: fraction I, amylases bearing sugar chains with sialic acid; fraction II, amylases bearing sugar chains without sialic acid; fractions III and IV, non-glycosylated amylases. These were classified according to the differences in their affinities for lectins, molecular sizes and isoelectric points. The inhibitory effect of maltotriose (G3) on starch hydrolysis of the amylase fraction, suggests that starch and G3 can be the substrate for glycosylated amylase, and that the glycosylated amylases are capable of G3 hydrolysis for conversion into maltose and glucose. Using malto-oligosaccharides, G3, G4, G5 and G7, as substrates, the substrate-specificities and G3/G5 ratio of amylase activities in the four fractions were examined. Maltopentaose, G5, is routinely used as a substrate for α-amylase, and then we assumed that both glycosylated and non-glycosylated amylases react with G5. Moreover, the results indicate that the glycosylated amylases clearly had a higher capacity for G3 hydrolysis than the non-glycosylated amylases, although no substrate preference of either type of amylase was observed among G4, G5 and G7. Glycosylated amylases have the capacity for glucose formation from malto-oligosaccharides.  相似文献   

20.
AIM: Statistical optimization for maximum production of a hyperthermostable, Ca2+-independent and high maltose-forming alpha-amylase by Geobacillus thermoleovorans. METHODS AND RESULTS: G. thermoleovorans was cultivated in 250 ml flasks containing 50 ml of chemically defined glucose-arginine medium (g l(-1): glucose 20; arginine 1.2; riboflavin 150 microg ml(-1); MgSO4. 7H2O 0.2; NaCl 1.0; pH 7.0). The medium was inoculated with 5 h-old bacterial inoculum (1.8x10(8) CFU ml(-1)), and incubated in an incubator shaker at 70 degrees C for 12 h at 200 rev min(-1). The fermentation variables optimized by 'one variable at a time' approach were further optimized by response surface methodology (RSM). The statistical model was obtained using central composite design (CCD) with three variables: glucose, riboflavin and inoculum density. An over all 24 and 70% increase in enzyme production was attained in shake flasks and fermenter because of optimization by RSM, respectively. A good coverage of interactions could also be explained by RSM. The end products of the action of alpha-amylase on starch were maltose (62%), maltotriose (31%) and malto-oligosaccharides (7%). CONCLUSIONS: RSM allowed optimization of medium components and cultural parameters for attaining high yields of alpha-amylase, and further, a good coverage of interactions could be explained. The yield of maltose was higher than maltotriose and malto-oligosaccharides in the starch hydrolysate. SIGNIFICANCE AND IMPACT OF THE STUDY: By applying RSM, critical fermentation variables were optimized rapidly. The starch hydrolysate contained a high proportion of maltose, and therefore, the enzyme can find application in starch saccharification process for the manufacture of high maltose syrups. The use of this enzyme in starch saccharification eliminates the addition of Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号