首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Foreign DNA can be readily integrated into the genomes of mammalian embryonic cells by retroviral infection, DNA microinjection, and transfection protocols. However, the transgenic DNA is frequently not expressed or is expressed at levels far below expectation. In a number of organisms such as yeast, plants, Drosophila, and nematodes, silencing of transfected genes is triggered by the interaction between adjacent or dispersed copies of genes of identical sequence. We set out to determine whether a mechanism similar to repeat-induced gene silencing (RIGS) is responsible for the silencing of transgenes in murine embryonal carcinoma stem cells. We compared the expression of identical reporter gene constructs in cells carrying single or multiple copies and found that the level of expression per integrated copy was more than 10-fold higher in single-copy integrants. In cells carrying tandem copies of the transgene, many copies were methylated and clones frequently failed to express both copies of near-identical integrated alleles. Addition of extra copies of the reporter gene coding sequence reduced the level of expression from the same reporter driven by a eukaryotic promoter. We also found that inhibitors of histone deacetylase such as trichostatin A forestall the silencing of multicopy transgenes, suggesting that chromatin mediates the silencing of transfected genes. This evidence is consistent with the idea that RIGS does occur in mammalian embryonic stem cells although silencing of single-copy transgenes also occurs, suggesting that RIGS is only one of the mechanisms responsible for triggering transgene silencing.  相似文献   

7.
In contrast to many other genes containing a CpG island, the testis-specific H2B (TH2B) histone gene exhibits tissue-specific methylation patterns in correlation with gene activity. Characterization of the methylation patterns within a 20-kb segment containing the TH2A and TH2B genes in comparison with that in a somatic histone cluster revealed that: (i) the germ cell-specific unmethylated domain of the TH2A and TH2B genes is defined as a small region surrounding the CpG islands of the TH2A and TH2B genes and (ii) somatic histone genes are unmethylated in both liver and germ cells, like other genes containing CpG islands, whereas flanking sequences are methylated. Transfection of in vitro-methylated TH2B, somatic H2B, and mouse metallothionein I constructs into F9 embryonal carcinoma cells revealed that the CpG islands of the TH2A and TH2B genes were demethylated like those of the somatic H2A and H2B genes and the metallothionein I gene. The demethylation of those CpG islands became significantly inefficient at a high number of integrated copies and a high density of methylated CpG dinucleotides. In contrast, three sites in the somatic histone cluster, of which two sites are located in the long terminal repeat of an endogenous retrovirus-like sequence, were efficiently demethylated even at a high copy number and a high density of methylated CpG dinucleotides. These results suggest two possible mechanisms for demethylation in F9 cells and methylation of CpG islands of the TH2A and TH2B genes at the postblastula stage during embryogenesis.  相似文献   

8.
9.
10.
11.
A cis-acting methylation center that signals de novo DNA methylation is located upstream of the mouse Aprt gene. In the current study, two approaches were taken to determine if tandem B1 repetitive elements found at the 3' end of the methylation center contribute to the methylation signal. First, bisulfite genomic sequencing demonstrated that CpG sites within the B1 elements were methylated at relative levels of 43% in embryonal stem cells deficient for the maintenance DNA methyltransferase when compared with wild type embryonal stem cells. Second, the ability of the B1 elements to signal de novo methylation upon stable transfection into mouse embryonal carcinoma cells was examined. This approach demonstrated that the B1 elements were methylated de novo to a high level in the embryonal carcinoma cells and that the B1 elements acted synergistically. The results from these experiments provide strong evidence that the tandem B1 repetitive elements provide a significant fraction of the methylation center signal. By extension, they also support the hypothesis that one role for DNA methylation in mammals is to protect the genome from expression and transposition of parasitic elements.  相似文献   

12.
13.
The transforming activity of cloned Moloney sarcoma virus (MSV) proviral DNA was inhibited by in vitro methylation of the DNA at cytosine residues, using HpaII and HhaI methylases before transfection into NIH 3T3 cells. The inhibition of transforming activity due to HpaII methylation was reversed by treatment of the transfected cells with 5-azacytidine, a specific inhibitor of methylation. Analysis of the genomic DNA from the transformed cells which resulted from the transfection of methylated MSV DNA revealed that the integrated MSV proviral DNA was sensitive to HpaII digestion in all cell lines examined, suggesting that loss of methyl groups was necessary for transformation. When cells were infected with Moloney murine leukemia virus at various times after transfection with methylated MSV DNA, the amount of transforming virus produced indicated that the loss of methyl groups occurred within 24 h. Methylation of MSV DNA at HhaI sites was as inhibitory to transforming activity as methylation at HpaII sites. In addition, methylation at both HpaII and HhaI sites did not further reduce the transforming activity of the DNA. These results suggested that; whereas methylation of specific sites on the provirus may not be essential for inhibiting the transforming activity of MSV DNA, methylation of specific regions may be necessary. Thus, by cotransfection of plasmids containing only specific regions of the MSV provirus, it was determined that methylation of the v-mos gene was more inhibitory to transformation than methylation of the viral long terminal repeat.  相似文献   

14.
15.
16.
A hallmark of aberrant DNA methylation-associated silencing is reversibility. However, long-term stability of reactivated promoters has not been explored. To examine this issue, spontaneous reactivant clones were isolated from mouse embryonal carcinoma cells bearing aberrantly silenced Aprt alleles and re-silencing frequencies were determined as long as three months after reactivation occurred. Despite continuous selection for expression of the reactivated Aprt alleles, exceptionally high spontaneous re-silencing frequencies were observed. A DNA methylation analysis demonstrated retention of sporadic methylation of CpG sites in a protected region of the Aprt promoter in many reactivant alleles suggesting a role for these methylated sites in the re-silencing process. In contrast, a chromatin immunoprecipitation (ChIP) analysis for methyl-H3K4, acetyl-H3K9, and dimethyl-H3K9 levels failed to reveal a specific histone modification that could explain high frequency re-silencing. These results demonstrate that aberrantly silenced and reactivated promoters retain a persistent memory of having undergone the silencing process and suggest the failure to eliminate all CpG methylation as a potential contributing mechanism.  相似文献   

17.
18.
A series of intercellular signals are involved in the regulation of gene expression during fruiting body formation of Myxococcus xanthus. Mutations which block cell interactions, such as csgA (formerly known as spoC), also prevent expression of certain developmentally regulated promoters. csgA+ cells containing Tn5 lac omega DK4435, a developmentally regulated promoter fused to lacZ, began synthesizing lacZ mRNA 12 to 18 h into the developmental cycle. beta-Galactosidase specific activity increased about 12 h later. Neither lacZ mRNA nor beta-galactosidase activity was detected in a developing csgA mutant containing omega DK4435. The developmental promoter and its fused lacZ reporter gene were cloned into a pBR322-derived plasmid vector containing a portion of bacteriophage Mx8. These plasmids preferentially integrated into the M. xanthus chromosome by site-specific recombination at the bacteriophage Mx8 attachment site and maintained a copy number of 1 per chromosome. The integrated plasmids were relatively stable, segregating at a frequency of 0.0007% per generation in the absence of selection. The cloned and integrated promoter behaved like the native promoter, expressing beta-galactosidase at the proper time during wild-type development and failing to express the enzyme during development of a csgA mutant. The overall level of beta-galactosidase expression in merodiploid cells containing one native promoter and one promoter fused to lacZ was about half that of cells containing a single promoter fused to lacZ. These results suggest that the timing of developmentally regulated gene expression is largely independent of the location of this gene within the chromosome. Furthermore, they show that site-specific recombination can be a useful tool for establishing assays for promoter or gene function in M. xanthus.  相似文献   

19.
The effect of copy number, integration site, and enhancers on the expression of stably integrated exogenous DNA was examined in Chinese hamster cells. Three similar plasmids were constructed with the mouse beta maj-globin promoter fused to the galK gene either with no enhancer or with the SV40 or Harvey sarcoma virus (HaSV) enhancer. Eighteen stable cell lines were obtained and characterized with respect to plasmid copy number and galactokinase activity. At copy numbers of four or less, the enhancers showed detectable activity and a DNase I hypersensitive site was present. Above four copies, gene activity decreased as the copy number increased, the enhancer sequences were apparently inactive, and the DNase I hypersensitive site disappeared. These data suggest that, at least in this model system, when exogenous DNA is integrated as multiple head-to-tail copies, the entire multigene unit expresses poorly and inappropriately. When the same exogenous DNA integrates as a single (or low number) copy, expression appears to be relatively normal as judged by enhancer stimulation and DNase I hypersensitivity.  相似文献   

20.
Eukaryotic DNA methylation: facts and problems   总被引:5,自引:0,他引:5  
Patterns of DNA methylation in complex genomes like those of mammalian cells have been viewed as indicators of different levels of genetic activities. It is as yet unknown how these complicated patterns are generated and maintained during cell replication. There is evidence from many different biological systems that the sequence-specific methylation of promoters in higher eukaryotes is one of the important factors in controlling gene activity at a long-term level. In general, the fifth nucleotide 5-methyldeoxycytidine can be considered as a modulator of protein-DNA interactions. The degree and direction of this modulation has to be assessed experimentally in each individual instance. The establishment of de novo patterns of DNA methylation is characterized by the gradual non-random spreading of DNA methylation by an essentially unknown mechanism. In this review, some of the general concepts of DNA methylation in mammalian systems are presented, and research currently performed in the authors' laboratory has been summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号