首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Behavioral responses by three acarine predators, Phytoseiulus persimilis, Typhlodromus occidentalis, and Amblyseius andersoni (Acari: Phytoseiidae), to different egg and webbing densities of the spider mite Tetranychus urticae (Acari: Tetranychidae) on rose leaflets were studied in the laboratory. Prey patches were delineated by T. urticae webbing and associated kairomones, which elicit turning back responses in predators near the patch edge. Only the presence of webbing affected predator behavior; increased webbing density did not increase patch time. Patch time increased with increased T. urticae egg density in the oligophagous P. persimilis, but was density independent in the polyphagous species T. occidentalis and A. andersoni. Patch time in all three species was more strongly correlated with the number of prey encounters and attacks than with the actual prey number present in the patch. Patch time was determined by (a) the turning back response near the patch edge; this response decayed through time and eventually led to the abandonment of the patch, and (b) encounters with, and attacks upon, prey eggs; these prolonged patch time by both an increment of time spent in handling or rejecting prey and an increment of time spent searching between two successive prey encounters or attacks. Although searching efficiency was independent of prey density in all three species, the predation rate by P. persimilis decreased with prey density because its searching activity (i.e. proportion of total patch time spent in searching) decreased with prey density. Predation rates by T. occidentalis and A. andersoni decreased with prey density because their searching activity and success ratio both decreased with prey density. The data were tested against models of predator foraging responses to prey density. The effects of the degree of polyphagy on predator foraging behavior were also discussed.  相似文献   

2.
Summary Responses of the predaceous mites Phytoseiulus persimilis, Typhlodromus (=Metaseiulus) occidentalis, and Amblyseius andersoni to spatial variation in egg density of the phytophagous mite, Tetranychus urticae, were studied in the laboratory.The oligophagous predator P. persimilis showed initially a direct density dependent foraging time allocation and variation in foraging time increased with prey density. With changes in prey density due to predation, predator foraging rates (per hour) decreased with time and density dependent foraging gradually became density independence, because P. persimilis continued to respond to initial prey density, instead of the changing prey density and distribution. The consequent spatial pattern of predation by P. persimilis was density independent, although slopes of predation rate-prey density regressions increased with time.Compared with P. persimilis, the narrowly polyphagous predator T. occidentalis responded relatively slowly to the the presence or absence of prey eggs but not to prey density: the mean and variation of foraging time spent in patches with prey did not differ with prey density, but was significantly greater in patches with prey eggs than in patches without eggs. Prey density and distribution changed only slightly due to predation and overall foraging rates remained more or less constant. The consequent spatial pattern of predation by T. occidentalis was inversely density dependent. As with P. persimilis, slopes of predation rate-prey density regressions increased with time (i.e. the inverse density dependence in T. occidentalis became weaker through time).The broadly polyphagous predator A. andersoni showed density independent foraging time allocation with variation independent of prey density. With changes in prey density over time due to prey depletion, overall foraging rates decreased. The consequent spatial pattern of predation by A. andersoni also changed through time; it initially was inversely density dependent, but soon became density independent.Overall, P. persimilis and T. occidentalis spent more time in prey patches than A. andersoni, suggesting that A. andersoni tended to spend more time moving outside patches. The overall predation rates and searching efficiency were higher in P. persimilis than in A. andersoni and T. occidentalis. Predator reproduction was highest in P. persimilis, lower in T. occidentalis and the lowest A. andersoni.The differences in response to prey distribution among the three predaceous species probably reflect the evolution of these species in environments with different patterns of prey distribution. The degree of polyphagy is a major determinant of the aggregative response, but other attributes such as handling time are also important in other aspects of phytoseiid foraging behavior (e.g. searching efficiency or predation rate).  相似文献   

3.
Interspecific competition and predation in immature Amblyseius fallacis (Garman), Amblyseius andersoni Chant, Typhlodromus occidentalis (Nesbitt) and Typhlodromus pyri Scheuten were examined in small cages at three egg densities (0, 20 and 80) of two-spotted spider mite, Tetranychus urticae Koch, in the laboratory at 25±1°C,80% RH and 16L: 8D photoperiod. For the six possible between-species comparisons, the large polyphagous A. andersoni always outcompeted the other three predator species, which were either smaller and/or less polyphagous; the small oligophagous T. occidentalis was always eliminated by the other three predator species, which were either larger and/or more polyphagous. The small and polyphagous T. pyri tied with the large and oligophagous A. fallacis. The outcome of the interaction was generally similar at the three prey densities except in (1) the A. fallacis-A. andersoni system where the advantage of A. andersoni over A. fallacis was reduced when 20 or 80 eggs per cage were present at the start of the interaction and (2) the A. fallacis-T. occidentalis system where the advantage of A. fallacis over T. occidentalis increased with prey density. This study indicates that predator size, predator degree of polyphagy and prey density can affect the competitiveness of immature phytoseiids.  相似文献   

4.
The arrangement, number, and size of plant parts may influence predator foraging behavior, either directly, by altering the rate or pattern of predator movement, or, indirectly, by affecting the distribution and abundance of prey. We report on the effects of both plant architecture and prey distribution on foraging by the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae), on cucumber (Cucumis sativus L.). Plants differed in leaf number (2- or 6-leafed), and there were associated differences in leaf size, plant height, and relative proportions of plant parts; but all had the same total surface area. The prey, the twospotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae), were distributed either on the basal leaf or on all leaves. The effect of plant architecture on predator foraging behavior varied depending on prey distribution. The dimensions of individual plant parts affected time allocated to moving and feeding, but they did not appear to influence the frequency with which predators moved among different plant parts. Overall, P. persimilis moved less, and fed upon prey longer, on 6-leafed plants with prey on all leaves than on plants representing other treatment combinations. Our findings suggest that both plant architecture and pattern of prey distribution should be considered, along with other factors such as herbivore-induced plant volatiles, in augmentative biological control programs.  相似文献   

5.
Survival, developmental time, activity, feeding rates, and other biological aspects of immatures of Amblyseius fallacis, Amblyseius andersoni, Typhlodromus occidentalis and Typhlodromus pyri were examined in the laboratory in small arenas (2×2 cm) with different egg densities (0, 5, 10, 20 per 12 h) of the twospotted spider mite, Tetranychus urticae (Koch), at 25±1°C, ≈80% RH, and 16L: 8D photoperiod. Egg survival was high (86–100%) in all four species. Larval survival was similarly high except for T. occidentalis which all died in the absence of food. Survival rates of protonymphs and deutonymphs were also high except that up to 50% of A. andersoni died at 5 prey eggs per 1/2 day. Developmental time did not vary significantly with prey density and was similar for males and females in the oligophagous predators (A. fallacis and T. occidentalis), but was longer at lower prey densities and in females than males in the polyphagous predators (A. andersoni and T. pyri). In general, the time allocated to three active instars (=stases) decreased in the order: A. andersoni (81%), T. pyri (78%), A. fallacis (69%), and T. occidentalis (64%). The polyphagous predator species had a shorter larval stage and much longer deutonymphal stage than the oligophagous species. The proportion of time allocated to the protonymphal stage was the least variable among the four species. The interspecific differences in walking activities also appeared greater in larval and deutonymphal stages than in the protonymphal stage. The larvae of the two oligophagous predators (A. fallacis and T. occidentalis, walking activity averaging 36–49%) were more active than the two polyphagous predators (A. andersoni and T. pyri), which spent 80% or more time resting. In deutonymphs, walking activity increased in the order: T. occidentalis (14%), A. andersoni (27%), A. fallacis (43%) and T. pyri (59%). Larvae were more active during the first half of their life than the latter half. In general, most life history traits of immature A. andersoni, T. pyri, A. fallacis, and T. occidentalis are not associated with their phylogenetic relatedness or size, but with the feeding specialization of the predator species. Larval feeding patterns in Phytoseiidae are reviewed and a hypothesis about the evolution of larval feeding behavior in Phytoseiidae is proposed.  相似文献   

6.
Intraspecific competition in immature Amblyseius fallacis, Amblyseius andersoni, Typhlodromus occidentalis and Typhlodromus pyri was examined in the laboratory using small cages at five different predator densities (two, four, eight, 16 and 32) in the absence and presence of prey 100 eggs of two-spotted spider mite, Tetranychus urticae (Koch), at 25 ± 1°C, 80% RH and 16L:8D photoperiod. In the absence of spider mite prey, some individuals of immature phytoseiids showed increased development and surival with increasing predator densities up to certain limits, but none survived to the adult stage, except for a single male each of A. andersoni and A. fallacis who completed development by cannibalizing on conspecifics at a density of 32 predators per cage. In the absence of spider mite prey, the mean immature survival time was independent of the initial predator density, but the variance of survival time increased with predator density. In the presence of prey, the proportion of immatures surviving to adulthood generally decreased with initial predator density and dropped sharply to almost none at the predator density of 32 for A. fallacis, eight for A. andersoni, 16 for T. occidentalis and four for T. pyri. The number of prey consumed per predator during the first day generally decreased with predator density in all four species, as prey available per predator decreased and the competition for food increased with predator density. Our data indicate that scramble competition is operating in these four species. Although cannibalism was occasionally observed, especially after the exhaustion of prey and in the generalist predators such as A. andersoni, the immatures of these phytoseiids were less influenced by the interference of conspecifics than by the increasing difficulty of finding food at high predator densities. The implications of this study for understanding phytoseiid population dynamics and their use in biological control are discussed.  相似文献   

7.
Intraguild predation (IGP) is defined as the killing and eating of prey species by a predator that also can utilize the resources of the prey. It is mainly reported among carnivores that share common herbivorous prey. However, a large chewing herbivore could prey upon sedentary and/or micro herbivores in addition to utilizing a host plant. To investigate such coincidental IGP, we observed the behavioral responses of the polyphagous mite Tetranychus kanzawai Kishida (Acari: Tetranychidae) when its host plant Cayratia japonica (Thunb.) Gagnep. (Vitaceae) was attacked by hornworms, Theretra japonica Boisduval (Sphingidae) and T. oldenlandiae Fabricius (Sphingidae). We also examined an interaction between the oligophagous mite Panonychus citri McGregor (Acari: Tetranychidae) and caterpillars of the swallowtail Papilio xuthus L. (Papilionidae) that share citrus plants as their main food source. Although all T. kanzawai and some active stage P. citri tried to escape from the coincidental IGP, some were consumed together with eggs, quiescent mites, and host plant leaves, suggesting that coincidental IGP occurs on spider mites in the wild. Moreover, neither hornworms nor swallowtail caterpillars distinguished between spider mite-infested and uninfested leaves, suggesting that the mite-infested leaves do not discourage caterpillar feeding. The reasons that the mites have no effective defense against coincidental IGP other than escaping are discussed.  相似文献   

8.
Predator–predator, predator–prey, and prey–prey associations among nine species of mites were studied in a plot of 100 Red Delicious apple (Malus pumila Miller) trees from 1990 to 1997. In 1990, seven-year-old trees were inoculated with Panonychus ulmi (Koch), Tetranychus urticae Koch (Acari: Tetranychidae) or both, and sprayed with azinphosmethyl (alone or plus endosulfan), or nothing. The species Zetzellia mali (Ewing) (Acari: Stigmaeidae), Amblyseius andersoni Chant (Acari: Phytoseiidae), Eotetranychus sp., Bryobia rubrioculus (Scheuten) (Acari: Tetranychidae), and Aculus schlechtendali Nalepa (Acari: Eriophyidae) were already present or immigrated into plots, and Galendromus occidentalis (Nesbitt) and Typhlodromus pyri Scheuten (Acari: Phytoseiidae) were introduced. Yule's V association index was used to measure positive, neutral, or negative interspecific associations for each species pair, because of its robustness with spatially autocorrelated data. We found that pesticide and release treatments did not greatly affect the association results, but there were strong seasonal differences. Predator–predator associations were the strongest and most consistent, showing negative associations in the early and mid seasons, and neutral ones in late season. Negative associations of T. pyri with other predators were the strongest, which is consistent with evidence that this mite can detect other predators on a leaf. Predator–prey seasonal associations were mixed, with some positive and others negative, with most significant associations occurring in the mid season. One prey–prey interaction was positive, again in mid season, most likely because of similar habitat preferences.  相似文献   

9.
While searching for food, predators may use volatiles associated with their prey, but also with their competitors for prey. This was tested for the case of Zetzellia mali (Ewing) (Acari: Stigmaeidae), an important predator of the hawthorn spider mite, Amphitetranychus viennensis (Zacher) (Acari: Tetranychidae), in black-cherry orchards in Baraghan, Iran. Using a Y-tube olfactometer, the response of this predatory mite was tested to odour from black-cherry leaves with a conspecific female predatory mite, either with or without a female of the hawthorn spider mite when the alternative odour came from black-cherry leaves with the hawthorn spider mite only. Female predators avoided odours from leaves with both a hawthorn spider mite and a conspecific predator, as well as leaves with a conspecific predator only. We discuss whether avoidance emerges in response to cues from the competitor/predator, the herbivore/prey or the herbivore-damaged plant.  相似文献   

10.
Larvae of Metaseiulus occidentalis (Nesbitt), Typhlodromus pyri Scheuten, Neoseiulus fallacis (Garman) and Amblyseius andersoni Chant exhibited different activity levels when held on apple leaf or on tile arenas and given or not given eggs of Tetranychus urticae Koch and water (tiles only). M. occidentalis larvae held without prey exhibited high levels of walking (includes searching) during 24 hours of evaluation, whereas M. occidentalis larvae held with prey fed quickly and then became less active. Fed larvae of M. occidentalis were less active on leaves than tile. Larvae of T. pyri on leaves had a very low frequency of walking, almost never fed and quickly assumed a resting position during development. While much less active than M. occidentalis, fed and unfed T. pyri larvae walked more on tiles than leaves before resting. Larvae of N. fallacis and A. andersoni fed at low rates and were similarly active on tiles and leaves. Free water increased walking by M. occidentalis, A. andersoni and T. pyri on tile but not N. fallacis. M. occidentalis larvae interacted 5–7 times more often than larvae of the other three species. Cannibalism or scavenging was rarely seen and then only for M. occidentalis larvae. Larvae of all four mites walked, fed and interacted much more in the first 12 hours than the second 12 hours of tests, except unfed M. occidentalis. Unfed M. occidentalis larvae did not molt to protonymphs but unfed larvae of the other three species did. Unfed and fed protonymphs of all four species walked more at 4 hours after molting than larvae at 12–24 hours. Unfed and fed protonymphs of T. pyri or A. andersoni had similar walking frequencies, but unfed protonymphs of N. fallacis were more active than fed ones. Trends in larval activities are discussed relative to the life history of each species.  相似文献   

11.
Tetranychus urticae distribution on spatial scale both within leaf and within plant was assessed by the index of dispersion (Id), Lloyd's mean crowding index (Imc), Lloyd's patchiness index (Ip) and Morisita's index (I δ). Id values in all leaves and leaf parts promised aggregated distribution regardless of leaf position and leaf areas. The values of Imc estimated were all larger than the mean. The value of Ip and I δ  also indicated increased degree of aggregation and clumping in all leaves and leaf areas. While pattern of distribution is same in all the leaves and leaf parts, population estimated is high in young fully opened top leaves than the grown-up middle and bottom leaves. Within the young leaf, top area of upper side of the leaf housed relatively increased number of T. urticae than bottom area of upper side of the leaf. Because young fully opened leaves consistently contained major proportion of mites (48.33%), particularly the top leaf area (79.62%), these leaves and leaf areas can be used as sampling unit for population estimation to minimise the time spent on sampling. However, it warrants future research for predictive models to associate a number of mites of top leaf to other leaves and top area to other areas. Further, releasing predators in young fully opened leaves may increase predator efficiency if supplementary studies on predator–prey relationship on spatial scale are triggered.  相似文献   

12.
The spatial distribution of polyphagous predators may often reflect the integration of aggregative responses to local densities of multiple species of prey, and as such may have consequences for the indirect linkages among the prey sharing these predators. In a factorial field experiment in which we manipulated local prey densities within a field of alfalfa in Utah (USA), we tested whether aphidophagous ladybirds would aggregate not only in response to their primary aphid prey, but also in response to an abundant alternative prey, the alfalfa weevil (Hypera postica [Gyllenhal]). Native North American ladybirds (primarily Hippodamia convergens Guerin and H. quinquesignata quinquesignata [Kirby]) responded only to spatial variation in aphid density. In contrast, the introduced ladybird, Coccinella septempunctata L., aggregated also at local concentrations of the weevil late in the experiment when weevil density was high and aphid density was relatively low throughout all experimental plots. The results support the hypothesis that C. septempunctata is more responsive than are native ladybirds to the availability of alternative prey in alfalfa, which may account in part for the displacement of native ladybirds from alfalfa by the introduced species as aphid numbers have declined. The differing responses of the native and introduced ladybirds to spatial patterns of the alternative prey underscore the importance of extending the study of predator aggregation to understand better how polyphagous predators distribute themselves in response to spatial patterns of multiple species of potential prey.  相似文献   

13.
The predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae), uses plant volatiles (i.e., airborne chemicals) triggered by feeding of their herbivorous prey, Tetranychus urticae (Acari: Tetranychidae), to help locate prey patches. The olfactory response of P. persimilis to prey-infested plants varies in direct relation to the population growth pattern of T. urticae on the plant; P. persimilis responds to plants until the spider mite population feeding on a plant collapses, after which infested plants do not attract predators. It has been suggested that this represents an early enemy-free period for T. urticae before the next generation of females is produced. We hypothesize that the mechanism behind the diminished response of predators is due to extensive leaf damage caused by T. urticae feeding, which reduces the production of volatiles irrespective of the collapse of T. urticae population on the plant. To test this hypothesis we investigated how the response of P. persimilis to prey-infested plants is affected by: 1) initial density of T. urticae, 2) duration of infestation, and 3) corresponding leaf damage due to T. urticae feeding. Specifically, we assessed the response of P. persimilis to plants infested with two T. urticae densities (20 or 40 per plant) after 2, 4, 6, 8, 10, 12 or 14 days. We also measured leaf damage on these plants. We found that predator response to T. urticae-infested plants can be quantified as a function of mite-days, which is a cumulative measure of the standing adult female mite population sampled and summed over time. That is, response to volatiles increased with increasing numbers of T. urticae per plant or with the length of time plant was infested by T. urticae, at least as long at the leaves were green. Predatory mites were significantly attracted to plants that were infested for 2 days with only 20 spider mites. This suggests that the enemy-free period might only provide a limited window of opportunity for T. urticae because relatively low numbers of T. urticae per plant can attract predators. Leaf damage also increased as a function of mite-days until the entire leaf was blanched. T. urticae populations decreased at this time, but predator response to volatiles dropped before the entire leaf was blanched and before the T. urticae population decreased. This result supports our hypothesis that predator response to plant volatiles is linked to and limited by the degree of leaf damage, and that the quantitative response to T. urticae populations occurs only within a range when plant quality has not been severely compromised.  相似文献   

14.
Components of search effort were determined for adult females of Orius tristicolor (White) (Hemiptera: Anthocoridae) on bean, Phaseolus vulgaris L., leaves with either western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) or twospotted spider mites, Tetranychus urticae (Koch) (Acari: Tetranychidae) as prey. In the absence of prey, females of O. tristicolor allocated significantly more search time to leaves damaged by western flower thrips than to leaves damaged by twospotted spider mites, artificially damaged leaves or undamaged leaves. In the presence of prey, search time increased with increasing amounts of leaf damage for both prey species, but was not affected by prey species. Amounts of leaf damage or type of prey did not affect giving-up-time. The proportion of predators that successfully located thrips increased with increasing amounts of thrips damage on leaves. Females of O. tristicolor appeared to follow some simple, behavioural rules-of-thumb for allocation of search effort. The presence and type of damage determined the initial effort allocated to searching a leaf. Subsequent effort was determined by successful capture of prey, regardless of species. The implications of these results for application of Orius spp. for biological control are discussed.  相似文献   

15.
1. Intraguild predation and cannibalism are common among predaceous phytoseiid mites (Acari, Phytoseiidae) but the nutritional benefits gained by these processes are poorly understood. 2. The study reported here addressed the questions of whether cannibalism and intraguild predation provide different nutritional benefits and whether the ability to utilise cannibalism and intraguild predation is linked to the diet specialisation of phytoseiid mites. Specialists tested were Phytoseiulus macropilis, Galendromus occidentalis, and Neoseiulus longispinosus; generalists tested were Amblyseius andersoni, Neoseiulus cucumeris, and Neoseiulus fallacis. 3. All generalists and the specialist P. macropilis were able to complete juvenile development with both con‐ and hetero‐specific prey. Juvenile development of generalists was shorter with heterospecific prey than with conspecific prey, whereas development of the specialist P. macropilis did not differ between prey types. Only a few N. longispinosus and G. occidentalis, both specialists, reached adulthood by cannibalism but none reached adulthood by intraguild predation. 4. All generalists were able to sustain oviposition by intraguild predation. Neoseiulus cucumeris and A. andersoni laid more eggs with heterospecific prey than with conspecific prey, whereas N. fallacis had similar oviposition rates with both prey types. No specialist sustained oviposition by intraguild predation or cannibalism. 5. Overall, generalists gained equal or more nutritional benefits by intraguild predation than by cannibalism and were able to utilise phytoseiid intraguild prey as an alternative food source. Specialists gained equal or more nutritional benefits from cannibalism than from intraguild predation. For specialists, con‐ and hetero‐specific phytoseiids may be considered only a supplemental food.  相似文献   

16.
Biological control in ornamental crops is challenging due to the wide diversity of crops and cultivars. In this study, we tested the hypothesis that trichome density on different host plants influences the behavior and performance of the predatory mite Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). Behavioural observations of this predator in the presence or absence of prey (western flower thrips, Frankliniella occidentalis Pergande) (Thysanoptera: Thripidae) were done on leaf squares of ornamental plant species differing in trichome density (rose, chrysanthemum and gerbera) and compared to a smooth surface (plastic). Tomato leaves were used to observe the influence of glandular trichomes. The performance of A. swirskii was assessed by measuring predation and oviposition rate. Behaviour of A. swirskii was influenced by plant species. Up to a certain density of trichomes, trichome number had a negative effect on walking speed. It was highest on plastic, followed by rose. No differences were found among chrysanthemum, gerbera and tomato. Walking speed was slightly higher on disks without prey. Proportion of time spent walking was the same on leaf disks of all plant species, with and without prey. No effect of glandular trichomes on tomato leaves was seen. Most thrips were killed and consumed on gerbera, and least on rose. Predation rates on chrysanthemum and plastic were intermediate. In contrast, no differences in oviposition rate were found among plant species. The results of this study indicate that trichome density can explain some of the variability in efficacy of A. swirskii on different crops. Release rates of A. swirskii may need to be adjusted depending on the crop in which it is used.  相似文献   

17.
The number of eggs oviposited or left in the opisthosomas of dead mites (total eggs) was assessed for Metaseiulus occidentalis (Nesbitt), Neoseiulus fallacis (Garman), Typhlodromus pyri Scheuten or Amblyseius andersoni Chant when each was caged with either (1) no Tetranychus urticae Koch, (2) only odours of T. urticae, (3) ten eggs of M. occidentalis or (4) ten nymphs of M. occidentalis (T. pyri for M. occidentalis). The total eggs for the no prey versus odour tests did not differ within species; the levels were the greatest for N. fallacis > T. pyri > A. andersoni > M. occidentalis. Among treatments, egg means did not differ for M. occidentalis but they did for N. fallacis and T. pyri and similar trends were seen for A. andersoni. Egg means were usually less for mites held with ten predator nymphs than mites held with ten predator eggs or with no prey. Were adult females with nymphs absorbing rather than ovipositing their eggs or dying with them in their opisthosomas? Activity levels (walking) for adult females were no more for mites held with nymphs versus no food. The data indicated that interference by nymphs was not increasing the energy use of females and thus reducing egg levels. However, tests with ten nymphs, one egg and no adult female had egg losses from nymphal predation that could account for fewer eggs in cage tests. Overall, no evidence for absorption was found. If it occurs, it must be among younger eggs or mites exposed to less rapid prey losses than were the mites tested here; in addition, other stimuli may cause absorption. The total eggs in sticky-tape tests were greatest for N. fallacis > M. occidentalis > T. pyri > A. andersoni. Cage versus stick-tape data differed most for M. occidentalis because of cannibalism. All four mites cannibalized eggs but M. occidentalis did most rapidly and extensively. When starved, it laid all of its eggs before the other three species did. Such behaviours may enhance survival of M. occidentalis when prey become scarce.  相似文献   

18.
The effectiveness of the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseidae), as a suppressive agent of the twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), was evaluated on greenhouse ivy geraniums at predator:prey release ratios of 1:60, 1:20, and 1:4. Releases at each predator:prey ratio were made at moderate and high T. urticae densities to determine if initial pest population size influenced the suppressive ability of the predator. At ratios of 1:4 and 1:20, P. persimilis significantly reduced T. urticae populations 1 week after release and kept them at low levels thereafter. Plant damage also was significantly reduced at these densities. After 4 weeks, the P. persimilis that were released at a ratio of 1:4 consistently reduced T. urticae populations from densities as high as 30 T. urticae per leaf to fewer than 0.6 per leaf. We found no interaction between release ratio and T. urticae density, indicating that predator effectiveness remains constant, at least within the range of T. urticae densities used. Our work demonstrates the potential of P. persimilis to provide effective control of T. urticae on a greenhouse-grown floricultural crop at a moderately low predator:prey ratio (1:20) and over a range of initial pest densities. However, we recommend that P. persimilis be released at a ratio of 1:4 for greatest reliability and successful control of T. urticae on ivy geraniums.  相似文献   

19.
The basic components of the predation of Phytoseiulus persimilisAthias-Henriot feeding upon eggs of Tetranychus urticaeKoch were studied in an open system where the predator could disperse freely. The type of the functional response of the predator to the density of its prey was the same as that studied so far in a closed system, i.e.,Holling's Type 2. The search rate of the predator, however, was much lower in comparison with the result from a closed system. The oviposition of the predator per day was only weakly related to prey densities higher than 10 per leaf disc. But the emigration rate was inversely dependent upon the initial prey density up to 60 per leaf disc. The searching behaviour of the predator was influenced by both the web density spun by T. urticae and the density of the prey: the predator searched for its prey intensively only after it had contact with web. Mutual interference was observed in prey consumption, but not in the emigration rate. The emigration rate was largely dependent upon the prey density available per predator.  相似文献   

20.
The life cycle of the Western Flower Thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), one of the most important glasshouse pests, includes a soil passage composed of three instars that deserve more attention in terms of biocontrol strategies. It has been repeatedly reported that two polyphagous predatory mites, Stratiolaelaps miles (Berlese) and Hypoaspis (Geolaelaps) aculeifer (Canestrini) (Acari: Laelapidae), also prey on these thrips stages, in addition to several other soil inhabiting prey species. However, the potential thrips consumption rates have never been quantified for these predatory mites. Therefore, an arena experiment was carried out to investigate the potential predation rates of the two mites on second instar larvae, prepupae, and pupae of F. occidentalis. In addition, the fecundity on the thrips diet was assessed and compared to oviposition rate on a nematode prey. All thrips instars were accepted as prey by each mite species. Females of H. aculeifer preyed on 3.5 (± 0.5) thrips instars and laid 2.5 (± 0.87) eggs per day, whereas females of S. miles preyed on 1.64 (± 0.3) thrips and laid 0.8 (± 0.53) eggs. Males of both species killed 0.6 (± 0.3) thrips per day. The fitness of the two predatory mites on F. occidentalis as prey and their suitability as biocontrol agents are elucidated. Reasons for reduced thrips control in the soil environment, in contrast to the results obtained in arena assays are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号