首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Andersen-Tawil syndrome is characterized by periodic paralysis, ventricular ectopy, and dysmorphic features. Approximately 60% of patients exhibit loss-of-function mutations in KCNJ2, which encodes the inwardly rectifying K+ channel pore forming subunit Kir2.1. Here, we report the identification of a novel KCNJ2 mutation (G211T), resulting in the amino acid substitution D71Y, in a patient presenting with signs and symptoms of Andersen-Tawil syndrome. The functional properties of the mutant subunit were characterized using voltage-clamp experiments on transiently transfected HEK-293 cells and neonatal mouse ventricular myocytes. Whole-cell current recordings of transfected HEK-293 cells demonstrated that the mutant protein Kir2.1-D71Y fails to form functional ion channels when expressed alone, but co-assembles with wild-type Kir2.1 subunits and suppresses wild-type subunit function. Further analysis revealed that current suppression requires at least two mutant subunits per channel. The D71Y mutation does not measurably affect the membrane trafficking of either the mutant or the wild-type subunit or alter the kinetic properties of the currents. Additional experiments revealed that expression of the mutant subunit suppresses native IK1 in neonatal mouse ventricular myocytes. Simulations predict that the D71Y mutation in human ventricular myocytes will result in a mild prolongation of the action potential and potentially increase cell excitability. These experiments indicate that the Kir2.1-D71Y mutant protein functions as a dominant negative subunit resulting in reduced inwardly rectifying K+ current amplitudes and altered cellular excitability in patients with Andersen-Tawil syndrome.  相似文献   

3.
Andersen-Tawil syndrome is characterized by periodic paralysis, ventricular ectopy, and dysmorphic features. Approximately 60% of patients exhibit loss-of-function mutations in KCNJ2, which encodes the inwardly rectifying K(+) channel pore forming subunit Kir2.1. Here, we report the identification of a novel KCNJ2 mutation (G211T), resulting in the amino acid substitution D71Y, in a patient presenting with signs and symptoms of Andersen-Tawil syndrome. The functional properties of the mutant subunit were characterized using voltage-clamp experiments on transiently transfected HEK-293 cells and neonatal mouse ventricular myocytes. Whole-cell current recordings of transfected HEK-293 cells demonstrated that the mutant protein Kir2.1-D71Y fails to form functional ion channels when expressed alone, but co-assembles with wild-type Kir2.1 subunits and suppresses wild-type subunit function. Further analysis revealed that current suppression requires at least two mutant subunits per channel. The D71Y mutation does not measurably affect the membrane trafficking of either the mutant or the wild-type subunit or alter the kinetic properties of the currents. Additional experiments revealed that expression of the mutant subunit suppresses native I(K1) in neonatal mouse ventricular myocytes. Simulations predict that the D71Y mutation in human ventricular myocytes will result in a mild prolongation of the action potential and potentially increase cell excitability. These experiments indicate that the Kir2.1-D71Y mutant protein functions as a dominant negative subunit resulting in reduced inwardly rectifying K(+) current amplitudes and altered cellular excitability in patients with Andersen-Tawil syndrome.  相似文献   

4.
5.
6.
7.
The ATP-sensitive potassium channel (KATP) functions as a metabo-electric transducer in regulating insulin secretion from pancreatic β-cells. The pancreatic KATP channel is composed of a pore-forming inwardly-rectifying potassium channel, Kir6.2, and a regulatory subunit, sulphonylurea receptor 1 (SUR1). Loss-of-function mutations in either subunit often lead to the development of persistent hyperinsulinemic hypoglycemia of infancy (PHHI). PHHI is a rare genetic disease and most patients present with immediate onset within the first few days after birth. In this study, we report an unusual form of PHHI, in which the index patient developed hyperinsulinemic hypoglycemia after 1 year of age. The patient failed to respond to routine medication for PHHI and underwent a complete pancreatectomy. Genotyping of the index patient and his immediate family members showed that the patient and other family members with hypoglycemic episodes carried a heterozygous novel mutation in KCNJ11 (C83T), which encodes Kir6.2 (A28V). Electrophysiological and cell biological experiments revealed that A28V hKir6.2 is a dominant-negative, loss-of-function mutation and that KATP channels carrying this mutation failed to reach the cell surface. De novo protein structure prediction indicated that this A28V mutation reoriented the ER retention motif located at the C-terminal of the hKir6.2, and this result may explain the trafficking defect caused by this point mutation. Our study is the first report of a novel form of late-onset PHHI that is caused by a dominant mutation in KCNJ11 and exhibits a defect in proper surface expression of Kir6.2.  相似文献   

8.
The aim of this study was to ascertain the polymorphic markers profile of ADIPOQ, KCNJ11 and TCF7L2 genes in Kyrgyz population and to analyze the association of polymorphic markers and combinations of ADIPOQ gene's G276T locus, KCNJ11 gene's Glu23Lys locus and TCF7L2 gene's VS3C>T locus with type two diabetes (T2D) in Kyrgyz population. In this case‐control study, 114 T2D patients 109 non‐diabetic participants were genotyped using polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP). Two individual polymorphisms (ADIPOQ rs1501299, KCNJ11 rs5219) were found to be associated with T2D. We found two (Lys23Lys/CC and Glu23Lys/CT) of the overall nine combinations, which were more prevalent in T2D group compared to controls (χ2 = 4.21, P = 0.04). Lys23Lys/CC combination was associated with a 2.65‐fold increased likelihood of T2D (OR = 2.65, 95% CI 1.12‐6.28), whereas the Glu23Lys/CT combination also increased such likelihood (OR = 3.88, 95% CI 1.27‐11.91). This study demonstrated some association of 276T allele and ADIPOQ gene G276T heterozygous genotype as well as KCNJ11 gene 23Lys allele with T2D in ethnic Kyrgyz, but study results should be interpreted with caution because of the limited statistical power.  相似文献   

9.
In clinic, the patients with acute myocardial infarction (AMI) are at high risk to develop ischemia-induced ventricular arrhythmias leading to sudden cardiac death (SCD). Some studies suggest that individual susceptibility to ischemia-induced arrhythmia may be related to the genes encoding ion channels. One of them is the cardiac ATP-sensitive potassium channel (K(ATP)), which is an octamer composed of four pore-forming inwardly rectifying potassium-channel subunits (Kir6.2) and four regulatory sulfonylurea-receptor subunits (SUR2A). They play important roles in the physiology and pathophysiology of cardiovascular system by coupling the metabolic state of the cells to cellular electrical activity. So far, some mutations and polymorphisms of Kir6.2/KCNJ11 gene showed significant correlation with type 2 diabetes. But it was not sure whether it was associated with acute myocardial diseases. Hence a complete mutational analysis of Kir6.2/KCNJ11 gene was performed in a pedigree of sudden cardiac death. The complete coding region and the intron-exon boundaries of KCNJ11 were amplified from genomic DNA using polymerase chain reaction (PCR). Direct sequencing was done to identify any mutations and then further confirmed by restriction site polymorphism (RSP) approach. No mutation was detected in the samples analyzed, a common polymorphism K23E (A>G) was noticed in this pedigree and the proband showed a homozygote genotype (G/G). The result suggests that the Kir6.2/KCNJ11 gene is not related to sudden cardiac death in this family.  相似文献   

10.

Background

Nonsyndromic enlargement of vestibular aqueduct (NSEVA) is an autosomal recessive hearing loss disorder that is associated with mutations in SLC26A4. However, not all patients with NSEVA carry biallelic mutations in SLC26A4. A recent study proposed that single mutations in both SLC26A4 and KCNJ10 lead to digenic NSEVA. We examined whether KCNJ10 excert a role in the pathogenesis of NSEVA in Chinese patients.

Methods

SLC26A4 was sequenced in 1056 Chinese patients with NSEVA. KCNJ10 was screened in 131 patients who lacked mutations in either one or both alleles of SLC26A4. Additionally, KCNJ10 was screened in 840 controls, including 563 patients diagnosed with NSEVA who carried biallelic SLC26A4 mutations, 48 patients with nonsyndromic hearing loss due to inner ear malformations that did not involve enlargement of the vestibular aqueduct (EVA), 96 patients with conductive hearing loss due to various causes, and 133 normal-hearing individuals with no family history of hereditary hearing loss.

Results

925 NSEVA patients were found carrying two-allele pathogenic SLC26A4 mutations. The most frequently detected KCNJ10 mutation was c.812G>A (p.R271H). Compared with the normal-hearing control subjects, the occurrence rate of c.812G>A in NSEVA patients with lacking mutations in one or both alleles of SLC26A4 had no significant difference(1.53% vs. 5.30%, χ2 = 2.798, p = 0.172), which suggested that it is probably a nonpathogenic benign variant. KCNJ10 c.1042C>T (p.R348C), the reported EVA-related mutation, was not found in patients with NSEVA who lacked mutations in either one or both alleles of SLC26A4. Furthermore, the normal-hearing parents of patients with NSEVA having two SLC26A4 mutations carried the KCNJ10 c.1042C>T or c.812G>A mutation and a SLC26A4 pathogenic mutation.

Conclusion

SLC26A4 is the major genetic cause in Chinese NSEVA patients, accounting for 87.59%. KCNJ10 may not be a contributor to NSEVA in Chinese population. Other genetic or environmental factors are possibly play a role in the etiology of Chinese EVA patients with zero or monoallelic SLC26A4 mutation.  相似文献   

11.

Background

Primary aldosteronism (PA) is the most common endocrine form of secondary hypertension, and one of the most common subtypes of sporadic PA is aldosterone-producing adenoma (APA). Recently, two somatic mutations of the KCNJ5 gene were implicated in APA, and two germline mutations were associated with familial hyperaldosteronism III.

Objectives

This case-control study was designed to investigate the relationship between genetic variations in the KCNJ5 gene and sporadic PA patients in Xinjiang, China.

Methods

Five common single nucleotide polymorphisms (SNPs) of the KCNJ5 gene (rs6590357, rs4937391, rs3740835, rs2604204, and rs11221497) were detected in patients with sporadic PA (n = 235) and essential hypertension (EH; n = 913) by the TaqMan polymerase chain reaction method.

Results

The EH group and the PA group showed significant differences in the distributions of genotypes and alleles of rs4937391 and rs2604204 in total and male subjects (P<0.05), as well as rs3740835 in male subjects (P<0.05). However, only the association between the rs2604204 genotype and male sporadic PA remained significant after Bonferroni’s correction (P<0.01). Furthermore, logistic regression analysis demonstrated that the CC genotype of rs2604204 was a risk factor for male patients with sporadic PA, after adjusting for age and body mass index (odds ratio = 2.228, 95% CI: 1.300–3.819, P = 0.004).

Conclusion

The genetic variant rs2604204 of KCNJ5 is associated with sporadic PA in Chinese males, suggesting that KCNJ5 may be involved in the pathogenesis of sporadic PA in these particular patients.  相似文献   

12.
Snowflake vitreoretinal degeneration (SVD, MIM 193230) is a developmental and progressive hereditary eye disorder that affects multiple tissues within the eye. Diagnostic features of SVD include fibrillar degeneration of the vitreous humor, early-onset cataract, minute crystalline deposits in the neurosensory retina, and retinal detachment. A genome-wide scan previously localized the genetic locus for SVD to a 20 Mb region flanked by D2S2158 and D2S2202. This region contains 59 genes, of which 20 were sequenced, disclosing a heterozygous mutation (484C > T, R162W) in KCNJ13, member 13 of subfamily J of the potassium inwardly rectifying channel family in all affected individuals. The mutation in KCNJ13, the gene encoding Kir7.1, was not present in unaffected family members and 210 control individuals. Kir7.1 localized to human retina and retinal pigment epithelium and was especially prevalent in the internal limiting membrane adjacent to the vitreous body. Molecular modeling of this mutation predicted disruption of the structure of the potassium channel in the closed state located immediately adjacent to the cell-membrane inner boundary. Functionally, unlike wild-type Kir7.1 whose overexpression in CHO-K1 cells line produces highly selective potassium current, overexpression of R162W mutant Kir7.1 produces a nonselective cation current that depolarizes transfected cells and increases their fragility. These results indicate that the KCNJ13 R162W mutation can cause SVD and further show that vitreoretinal degeneration can arise through mutations in genes whose products are not structural components of the vitreous.  相似文献   

13.

Background

Recent advance in genetic studies added the confirmed susceptible loci for type 2 diabetes to eighteen. In this study, we attempt to analyze the independent and joint effect of variants from these loci on type 2 diabetes and clinical phenotypes related to glucose metabolism.

Methods/Principal Findings

Twenty-one single nucleotide polymorphisms (SNPs) from fourteen loci were successfully genotyped in 1,849 subjects with type 2 diabetes and 1,785 subjects with normal glucose regulation. We analyzed the allele and genotype distribution between the cases and controls of these SNPs as well as the joint effects of the susceptible loci on type 2 diabetes risk. The associations between SNPs and type 2 diabetes were examined by logistic regression. The associations between SNPs and quantitative traits were examined by linear regression. The discriminative accuracy of the prediction models was assessed by area under the receiver operating characteristic curves. We confirmed the effects of SNPs from PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 on risk for type 2 diabetes, with odds ratios ranging from 1.114 to 1.406 (P value range from 0.0335 to 1.37E-12). But no significant association was detected between SNPs from WFS1, FTO, JAZF1, TSPAN8-LGR5, THADA, ADAMTS9, NOTCH2-ADAM30 and type 2 diabetes. Analyses on the quantitative traits in the control subjects showed that THADA SNP rs7578597 was association with 2-h insulin during oral glucose tolerance tests (P = 0.0005, empirical P = 0.0090). The joint effect analysis of SNPs from eleven loci showed the individual carrying more risk alleles had a significantly higher risk for type 2 diabetes. And the type 2 diabetes patients with more risk allele tended to have earlier diagnostic ages (P = 0.0006).

Conclusions/Significance

The current study confirmed the association between PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 and type 2 diabetes. These type 2 diabetes risk loci contributed to the disease additively.  相似文献   

14.
Potassium ions are required for gastric acid secretion. Several potassium channels have been implicated in providing K(+) at the apical membrane of parietal cells. In examining the mRNA expression levels between gastric mucosa and liver tissue, KCNJ15 stood out as the most highly specific K(+) channel in the gastric mucosa. Western blot analysis confirmed that KCNJ15 is abundant in the stomach. Immunofluorescence staining of isolated gastric glands indicated that KCNJ15 was expressed in parietal cells and chief cells, but not in mucous neck cells. In resting parietal cells, KCNJ15 was mainly found in puncta throughout the cytoplasm but was distinct from H(+)-K(+)-ATPase. Upon stimulation, KCNJ15 and H(+)-K(+)-ATPase become colocalized on the apical membranes, as suggested by immunofluorescence staining. Western blot analysis of the resting and the stimulated membrane fractions confirmed this observation. From nonsecreting preparations, KCNJ15-containing vesicles sedimented after a 4-h centrifugation at 100,000 g, but not after a 30-min spin, which did sediment most of the H(+)-K(+)-ATPase-containing tubulovesicles. Most of the KCNJ15 containing small vesicle population was depleted upon stimulation of parietal cells, as indicated by the fact that the KCNJ15 signal was shifted to a large membrane fraction that sedimented at 4,000 g. Our results demonstrate that, in nonsecreting parietal cells, KCNJ15 is stored in vesicles distinct from the H(+)-K(+)-ATPase-enriched tubulovesicles. Furthermore, upon stimulation, KCNJ15 and H(+)-K(+)-ATPase both translocate to the apical membrane for active acid secretion. Thus KCNJ15 can be added to the family of apical K(+) channels in gastric parietal cells.  相似文献   

15.
16.
KCNJ11-encoded Kir6.2 assembles with ATP-binding cassette sulphonylurea receptors to generate ATP-sensitive K+ (KATP) channel complexes. Expressed in tissues with dynamic metabolic flux, these evolutionarily conserved yet structurally and functionally unique heteromultimers serve as high-fidelity rheostats that adjust membrane potential-dependent cell functions to match energetic demand. Genetic defects in channel subunits disrupt the cellular homeostatic response to environmental stress, compromising organ tolerance in the adult. As maladaptation characterizes malignant KATP channelopathies, establishment of platforms to examine progression of KATP channel-dependent adaptive behaviour is warranted. Chimeras provide a powerful tool to assay the contribution of genetic variance to stress intolerance during prenatal or post-natal development. Here, KCNJ11 KATP channel gene knockout<-->wild-type chimeras were engineered through diploid aggregation. Integration of wild-type embryonic stem cells into zona pellucida-denuded morula derived from knockout embryos achieved varying degrees of incorporation of stress-tolerant tissue within the KATP channel-deficient background. Despite the stress-vulnerable phenotype of the knockout, ex vivo derived mosaic blastocysts tolerated intrauterine transfer and implantation, followed by full-term embryonic development in pseudopregnant surrogates to produce live chimeric offspring. The development of adult chimerism from the knockout<-->wild-type mosaic embryo offers thereby a new paradigm to probe the ecogenetic control of the KATP channel-dependent stress response.  相似文献   

17.
Cheung CY  Tso AW  Cheung BM  Xu A  Fong CH  Ong KL  Law LS  Wat NM  Janus ED  Sham PC  Lam KS 《PloS one》2011,6(12):e28598

Context

The KCNJ11 E23K variant is associated with type 2 diabetes mellitus (T2DM) in cross-sectional studies, but conflicting findings have been reported from prospective studies.

Objective

This study aimed to evaluate whether the E23K variant could predict glycaemic progression in a Southern Chinese population.

Methods/Principal Findings

We performed a long-term prospective study on 1912 subjects from the Hong Kong Cardiovascular Risk Factors Prevalence Study (CRISPS). The KCNJ11 E23K variant was associated with the progression to prediabetes after a median interval of 12 years on multinomial logistic regression analysis, even after adjustment for traditional risk factors (OR 1.29, Page, sex, BMI and fasting plasma glucose [FPG] adjusted  = 0.02). Based on Cox proportional hazard regression analysis, the E23K variant also predicted incident prediabetes (HR 1.18, Page, sex, BMI and FPG adjusted  = 0.021). However, E23K was not associated with the progression to T2DM in either multinomial or Cox regression analysis, and the association of E23K with glycaemic progression to either prediabetes or T2DM was significant only in unadjusted Cox regression analysis (P = 0.039). In a meta-analysis of eight prospective studies including our own, involving 15680 subjects, the E23K variant was associated with incident T2DM (fixed effect: OR 1.10, P = 4×10−3; random effect: OR 1.11, P = 0.035).

Conclusions

Our study has provided supporting evidence for the role of the E23K variant in glycaemic progression in Chinese, with its effect being more evident in the early stage of T2DM, as the subjects progressed from normal glucose tolerance to prediabetes.  相似文献   

18.
19.
KCNJ11 is one of the candidate genes for type 2 diabetes, confirmed by genome wide association study, but there are little data on the relationship between KCNJ11 and impaired glucose regulation in essential hypertension patients. To identify the effect of E23K and I337V in the KCNJ11 gene on susceptibility to impaired glucose regulation, we conducted a case control study in 1125 essential hypertension patients with or without impaired glucose regulation among a Han Chinese population. We also evaluated the impact of two SNPs on insulin sensitivity and glucose tolerance estimated through an oral glucose tolerance test. In our case control study, no association of E23K and I337V with impaired glucose regulation was found using any genotypic models. However, lysine carriers of E23K showed a significant association with decreased insulin (30 min) and Cederholm index, and valine carriers of I337V showed association with a lower Cederholm index. All the quantitative tests were performed by linear regression, with adjustment for gender, age, body mass index, blood pressure, and angiotensin-converting enzyme inhibitor/angiotensin receptor blocker treatment. These findings provided evidence that the KCNJ11 gene plays a role in the pathogenesis of decreased insulin sensitivity in essential hypertension patients.  相似文献   

20.
《Endocrine practice》2021,27(7):736-742
ObjectiveThe KCNJ5 mutation is the most frequent mutation in aldosterone-producing adenoma (APA). We aimed to illustrate the relationship between KCNJ5 and prognosis after adrenalectomy as a guide for further treatment.MethodsOur study included 458 patients with APA. Tumor tissues were screened for somatic mutations in KCNJ5 hot-spot regions. We performed a retrospective analysis to identify correlations between KCNJ5 and clinical outcomes in 334 patients with adrenal venous sampling lateralization.ResultsSomatic KCNJ5 mutations were identified in 324 of 458 patients with APA (70.7%). Compared with the KCNJ5-wild type patients, patients with KCNJ5 mutations were younger, had a higher proportion of women, and had shorter durations of hypertension, lower body mass indexes (BMIs), and lower systolic blood pressure values (P < .05). During follow-up, among the 334 patients with APA with adrenal venous sampling lateralization, 320 (95.8%) presented complete biochemical success and 187 (56.0%) presented complete clinical success. One hundred eighty-seven patients with primary aldosteronism who achieved complete clinical success presented the following characteristics: age <40 years (78.7%), BMI <24 kg/m2 (71.0%), hypertension duration <5 years (78.4%), females (66.9%), and KCNJ5 mutation (65.5%). A multivariate logistic regression analysis identified BMI, hypertension duration, and KCNJ5 mutation as independent predictors of complete clinical success.ConclusionThe prevalence of KCNJ5 mutations was 70.7%. KCNJ5 mutation is a protective factor of complete clinical success, while BMI and hypertension duration were risk factors of incomplete clinical success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号