首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The responses to oxidative stress induced by chronic exercise (8-wk treadmill running) or acute exercise (treadmill running to exhaustion) were investigated in the brain, liver, heart, kidney, and muscles of rats. Various biomarkers of oxidative stress were measured, namely, lipid peroxidation [malondialdehyde (MDA)], protein oxidation (protein carbonyl levels and glutamine synthetase activity), oxidative DNA damage (8-hydroxy-2'-deoxyguanosine), and endogenous antioxidants (ascorbic acid, alpha-tocopherol, glutathione, ubiquinone, ubiquinol, and cysteine). The predominant changes are in MDA, ascorbic acid, glutathione, cysteine, and cystine. The mitochondrial fraction of brain and liver showed oxidative changes as assayed by MDA similar to those of the tissue homogenate. Our results show that the responses of the brain to oxidative stress by acute or chronic exercise are quite different from those in the liver, heart, fast muscle, and slow muscle; oxidative stress by acute or chronic exercise elicits different responses depending on the organ tissue type and its endogenous antioxidant levels.  相似文献   

2.
Oxygen free radicals are highly reactive species that are produced in increased quantities during strenuous exercise and can damage critical biological targets such as membrane phospholipids. The present study examined the effect of acute ascorbic acid supplementation on exercise-induced free radical production in healthy subjects. Results demonstrate increases in the intensity of the alpha-phenyl-tert-butylnitrone adduct (0.05 +/- 0.02 preexercise vs. 0.19 +/- 0.03 postexercise, P = 0.002, arbitrary units) together with increased lipid hydroperoxides (1.14 +/- 0.06 micromol/l preexercise vs. 1.62 +/- 0.19 micromol/l postexercise, P = 0.005) and malondialdehyde (0.70 +/- 0.04 micromol/l preexercise vs. 0.80 +/- 0.04 micromol/l postexercise, P = 0.0152) in the control phase. After supplementation with ascorbic acid, there was no significant increase in the electron spin resonance signal intensity (0.02 +/- 0. 01 preexercise vs. 0.04 +/- 0.02 postexercise, arbitrary units), lipid hydroperoxides (1.12 +/- 0.21 micromol/l preexercise vs. 1.12 +/- 0.08 micromol/l postexercise), or malondialdehyde (0.63 +/- 0.07 micromol/l preexercise vs. 0.68 +/- 0.05 micromol/l postexercise). The results indicate that acute ascorbic acid supplementation prevented exercise-induced oxidative stress in these subjects.  相似文献   

3.
1. The purpose of this study was to investigate the effects of vitamin E on serum levels of malondialdehyde following the acute exhaustive exercise in human, and to determine whether the magnitude of leakage of enzyme would be affected by vitamin E supplementation. 2. Increase of malondialdehyde after exercise before vitamin E supplementation was slight (but statistically significant), however after supplementation with vitamin E, malondialdehyde level after exercise was significantly decreased. 3. Leakage of enzyme was significantly increased after exercise before vitamin E supplementation, but it was lower following exercise after vitamin E supplementation. 4. Lipid peroxidation following a bout of acute heavy exercise can be inhibited by vitamin E supplementation.  相似文献   

4.
Oxidative stress resulting from an imbalance between pro-oxidants and anti-oxidants seems to play an important role in human breast carcinogenesis. There are conflicting reports regarding the tissue levels of malondialdehyde (MDA), ascorbic acid and superoxide dismutase (SOD) in breast cancer patients whereas few blood values have been reported. The present study was carried out to observe the changes in serum MDA, serum SOD and plasma ascorbic acid with the stage-wise progression of the disease. Serum MDA and serum SOD levels were found to be increased gradually from Stage I to Stage IV as compared to control group (p < 0.001). The maximum rise was in Stage IV patients. In contrast, mean plasma ascorbic acid levels were low in all stages compared to control group (p < 0.001). The decrease was more pronounced in Stage III and Stage IV. The study would be of immense help for establishing blood based biochemical marker in breast cancer patients.  相似文献   

5.
Oxidative stress resulting from an imbalance between pro-oxidants and anti-oxidants seems to play an important role in human breast carcinogenesis. There are conflicting reports regarding the tissue levels of malondialdehyde (MDA), ascorbic acid and superoxide dismutase (SOD) in breast cancer patients whereas few blood values have been reported. The present study was carried out to observe the changes in serum MDA, serum SOD and plasma ascorbic acid with the stage-wise progression of the disease. Serum MDA and serum SOD levels were found to be increased gradually from Stage I to Stage IV as compared to control group (?p<0.001). The maximum rise was in Stage IV patients. In contrast, mean plasma ascorbic acid levels were low in all stages compared to control group (?p<0.001). The decrease was more pronounced in Stage III and Stage IV. The study would be of immense help for establishing blood based biochemical marker in breast cancer patients.  相似文献   

6.
To explore the mechanism of growth retardation under high temperature in Rauwolfia ( Rauvolfia vericillata), the effects of high temperature on membrane integrity, lipid peroxidation , and antioxidant ascorbic acid were examined by measuring the electric conductivity, membrane lipid peroxide malondialdehyde (MDA), and changes of ascorbic acid in Rauwolfia leaves. The results showed that exposure to high temperature (44℃ and 50℃) resulted in increases in electric conductivity and MDA, and decrease in levels of abscorbic acid. Heat acclimation, pretreatment at 37℃, however, maintains ascorbic acid at higher levels than that without heat acclimation , which may be helpful for Rauwolfia to resist heat stress.  相似文献   

7.
本实验分别在大鼠衰竭跑后即刻、0.5、1、3及24h同时检测了血清睾酮(T)、黄体生成素、睾丸组织脂质过氧化物丙二醛和超氧化物歧化酶。结果表明,大鼠衰竭跑后恢复30min时,伴随着睾丸组织丙二醛含量的明显升高及超氧化物歧化酶活性的显著降低,血清T水平也明显降低。提示,长时间衰竭跑后血清T浓度的降低很可能与缺血-再灌引起睾丸组织氧自由基剧增及脂质过氧化损伤,从而降低了酶的活性和抑制了T的合成有关。氧自由基清除剂能减轻和预防该损伤,并能有效地防止运动后血清T的降低。  相似文献   

8.
This study was designed to examine if diphenyl diselenide (PhSe)2, an organoselenium compound, attenuates oxidative stress caused by acute physical exercise in skeletal muscle and lungs of mice. Swiss mice were pre‐treated with (PhSe)2 (5 mg kg‐1 day‐1) for 7 days. At the 7th day, the animals were submitted to acute physical exercise which consisted of continuous swimming for 20 min. The animals were euthanized 1 and 24 h after the exercise test. The levels of thiobarbituric acid reactive species (TBARS), non‐protein thiols (NPSH) and ascorbic acid and the activity of catalase (CAT) were measured in the lungs and skeletal muscle of mice. Glycogen content was determined in the skeletal muscle of mice. Parameters in plasma (urea and creatinine) were determined. The results demonstrated an increase in TBARS levels induced by acute physical exercise in the skeletal muscle and lungs of mice. Animals submitted to exercise showed an increase in non‐enzymatic antioxidant defenses (NPSH and ascorbic acid) in the skeletal muscle. In lungs of mice, activity of CAT was increased. (PhSe)2 protected against the increase in TBARS levels and ameliorated antioxidant defenses in the skeletal muscle and lungs of mice submitted to physical exercise. These results indicate that acute physical exercise caused a tissue‐specific oxidative stress in the skeletal muscle and lungs of mice. (PhSe)2 protected against oxidative damage induced by acute physical exercise in mice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Reactive oxygen species have been implicated in the pathogenesis of acute pancreatitis. Few studies have focused on the loss of endogenous antioxidants and molecular oxidative damage. Two acute pancreatitis models in rats; taurocholate (3% intraductal infusion) and cerulein (10 microg/kg/h), were used to study markers of oxidative stress: Glutathione, ascorbic acid, and their oxidized forms (glutathione disulfide and dehydroascorbic acid), malondialdehyde, and 4-hydroxynoneal in plasma and pancreas, as well as 7-hydro-8-oxo-2'-deoxyguanosine in pancreas. In both models, pancreatic glutathione depleted by 36-46% and pancreatic ascorbic acid depleted by 36-40% (p <.05). In the taurocholate model, plasma glutathione was depleted by 34% (p <.05), but there were no significant changes in plasma ascorbic acid or in plasma and pancreas dehydroascorbic acid, malondialdehyde, and 4-hydroxynoneal, and no significant changes in the pancreas glutathione disulfide/glutathione ratio. While pancreas glutathione disulfide/glutathione ratio increased in the cerulein model, there were no significant changes in plasma glutathione, plasma, or pancreas ascorbic acid, dehydroascorbic acid, 4-hydroxynoneal, and malondialdehyde, or in pancreas 7-hydro-8-oxo-2'-deoxyguanosine. Reactive oxygen species have a minor role in the intermediate stages of pancreatitis models.  相似文献   

10.
Short-term incomplete cerebral ischemia (5 min) was induced in the rat by the bilateral clamping of the common carotid arteries. Reperfusion was obtained by removing carotid clamping and was carried out for the following 10 min. Animals were sacrificed either at the end of ischemia or reperfusion. Controls were represented by a group of sham-operated rats. Peripheral venous blood samples were withdrawn from the femoral vein from rats subjected to cerebral reperfusion 5 min before ischemia, at the end of ischemia, and 10 min after reperfusion. Neutralized perchloric acid extracts of brain tissue were analyzed by a highly sensitive high-performance liquid chromatography (HPLC) method for the direct determination of malondialdehyde, oxypurines, nucleosides, nicotinic coenzymes, and high-energy phosphates. In addition, plasma concentrations of malondialdehyde, hypoxanthine, xanthine, inosine, uric acid, and adenosine were determined by the same HPLC technique. Incomplete cerebral ischemia induced the appearance of a significant amount (8.05 nmol/g w.w.; SD = 2.82) of cerebral malondialdehyde (which was undetectable in control animals) and a decrease of ascorbic acid. A further 6.6-fold increase of malondialdehyde (53.30 nmol/g w.w.; SD = 17.77) and a 18.5% decrease of ascorbic acid occurred after 10 min of reperfusion. Plasma malondialdehyde, which was present in minimal amount before ischemia (0.050 mumol/L; SD = 0.015), significantly increased after 5 min of ischemia (0.277 mumol/L; SD = 0.056) and was strikingly augmented after 10 min of reperfusion (0.682 mumol/L; SD = 0.094). A similar trend was observed for xanthine, uric acid, inosine, and adenosine, while hypoxanthine reached its maximal concentration after 5 min of incomplete ischemia, being significantly decreased after reperfusion. From the data obtained, it can be concluded that tissue concentrations of malondialdehyde and ascorbic acid, and plasma levels of malondialdehyde, oxypurines, and nucleosides, reflect both the oxygen radical-mediated tissue injury and the depression of energy metabolism, thus representing early biochemical markers of short-term incomplete brain ischemia and reperfusion in the rat. In particular, these results suggest the possibility of using the variation of malondialdehyde, oxypurines, and nucleosides in peripheral blood as a potential biochemical indicator of reperfusion damage occurring to postischemic tissues.  相似文献   

11.
Excess production of reactive oxygen species is involved in the pathogenesis of airway disorders in horses. Trace element antioxidants have a beneficial role in oxidant/antioxidant balance. The aim of the present study was to evaluate the effect of a combination of sodium selenite and ascorbic acid on clinical outcome, antioxidant enzymes, and trace elements status in horses with lower airway disease. For this purpose, 40 draft horses with lower airway disease were randomly selected (acute, n?=?20; chronic, n?=?20). Both acute and chronic cases were randomly allocated into two subgroups (ten each). Groups 1 and 2 were the horses with acute disease, while groups 3 and 4 were chronically ill. For all groups, each horse was administered antibiotic, non-steroidal anti-inflammatory, and mucolytic drug. In addition, groups 2 and 4 were injected with 15 mg/kg sodium selenite and 30 mg/kg ascorbic acid every 24 h for successive 4 weeks. Venous blood samples were obtained from diseased horses on three occasions; at first examination, and at 2 and 4 weeks post-treatment. Clinically, antioxidant supplementation improved the clinical signs with significant decrease (p?<?0.05) of the clinical index score in both acute and chronic cases. In supplemented groups compared with non-supplemented, there was a significant increase (p?<?0.05) in the levels of copper, zinc, selenium, and iron as well as in the activity of glutathione-S-transferase and catalase. Meanwhile, there was a significant decrease (p?<?0.05) in the levels of manganese, malondialdehyde, hydrogen peroxide, and low-density lipoprotein and in the activity of glutathione reductase. The results of the present study indicate that administration of sodium selenite and ascorbic acid may have beneficial effect on clinical outcome and antioxidant balance in horses with acute and chronic lower airway disease.  相似文献   

12.
Ascorbic acid levels are commonly reported to be decreased in alcoholics. Although this deficiency could be due to dietary factors, there is evidence that ascorbic acid may be involved in the metabolism and acute effects of ethanol, possibly related to the pathogenesis of alcoholism. Therefore, we examined ethanol preference in guinea pigs receiving an ascorbate deficient vs a normal diet. Brain and spleen ascorbic acid levels were dramatically decreased, but ethanol preference was not altered by the acute dietary deficiency of this vitamin. In addition, an acute stressor (cold water swim), alone or in combination with ascorbate deficiency, had no effect on ethanol preference. At termination of the experiment, two measures of brain aminergic function (MAO activity and 3H-spiroperidol binding), purportedly altered by ethanol or ascorbic acid or both, were not associated with tissue ascorbate levels.  相似文献   

13.
P Lijnen  P Hespel  E Vanden Eynde  A Amery 《Enzyme》1985,33(3):134-142
Nine normal young male students were studied during 2 days of relative rest, during 2 days of physical training and again during the succeeding 2 days of relative rest. 24-hour urine collections showed that the creatinine, creatine, uric acid, urea, calcium and magnesium excretion were similar during the resting and exercise days. The 24-hour urinary excretion of sodium and potassium was decreased during the exercise days, while the aldosterone excretion was increased. The hemoglobin concentration, hematocrit and red cell counts were decreased 14, as well as 42 h after exercise. The serum uric acid, creatine phosphokinase-MM (skeletal muscles) subfraction, glutamic oxalacetic transaminase and myoglobin levels were increased 14 h after exercise, but returned to baseline 42 h after this type of exercise. The mechanisms of these alterations were discussed and the data show that one should take into account previous exercise when interpreting the results of certain of these tests.  相似文献   

14.
The impairment of nitric oxide (NO)-mediated vasodilation in diabetes has been attributed to increased vascular oxidative stress. Lipoic acid has been shown to have substantial antioxidative properties. The aim of this study was to assess the effect of lipoic acid on NO-mediated vasodilation in diabetic patients in comparison with the well-recognized effect of ascorbic acid. Using venous occlusion plethysmography, we examined the effects of lipoic acid (0.2 mM) and ascorbic acid (1 and 10 mM) on forearm blood flow responses to acetylcholine, sodium nitroprusside and concomitant infusion of the NO-inhibitor, N(G)-monomethyl-L-arginine, in 39 diabetic patients and 11 control subjects. Plasma levels of antioxidants and parameters of lipid peroxidation were measured and correlated to endothelial function tests. Lipoic acid improved NO-mediated vasodilation in diabetic patients, but not in controls. NO-mediated vasodilation was improved by ascorbic acid at 10 mM, but not 1 mM. Improvements of endothelial function by ascorbic acid and lipoic acid were closely related. The beneficial effects of lipoic acid were positively related to plasma levels of malondialdehyde and inversely related to levels of ubiquinol-10. These findings support the concept that oxidative stress contributes to endothelial dysfunction and suggest a therapeutic potential of lipoic acid particularly in patients with imbalance between increased oxidative stress and depleted antioxidant defense.  相似文献   

15.
Strenuous, long-duration aerobic exercise results in endotoxemia due to increased plasma levels of lipopolysaccharide (LPS) leading to cytokine release, oxidative stress, and altered gastrointestinal function. However, the effect of short-term strenuous aerobic exercise either with or without antioxidant supplementation on exercise-induced endotoxemia is unknown. A significant increase in the concentration of bacterial LPS (endotoxin) was noted in the venous circulation of healthy volunteers following maximal acute aerobic exercise (0.14(-1) pre-exercise vs. 0.24(-1) postexercise, p <0.01). Plasma nitrite concentration also increased with exercise (0.09 +/- 0.05 nM x ml(-1) vs. 0.14 +/- 0.01 nM x ml(-1), p <0.05) as did ascorbate free radical levels (0.02 +/- 0.001 vs. 0.03 +/- 0.002 arbitrary units, p <0.05). Oral ascorbic acid supplementation (1000 mg) significantly increased plasma ascorbic acid concentration (29.45 mM x l(-1) to 121.22 mM x l(-1), p <0.05), and was associated with a decrease in plasma LPS and nitrite concentration before and after exercise (LPS: 0.01(-1); nitrite: 0.02 +/- 0.02 nM x ml(-1) vs. 0.02 +/- 0.03 nM x ml(-1)). Ascorbic acid supplementation led to a significant increase in ascorbate free radical levels both before (0.04 +/- 0.01 arbitrary units) and after exercise (0.06 +/- 0.02 arbitrary units, p <0.05). In conclusion, strenuous short-term aerobic exercise results in significant increases in plasma LPS levels (endotoxemia) together with increases in markers of oxidative stress. Supplementation with ascorbic acid, however, abolished the increase in LPS and nitrite but led to a significant increase in the ascorbate radical in plasma. The amelioration of exercise-induced endotoxemia by antioxidant pretreatment implies that it is a free radical-mediated process while the use of the ascorbate radical as a marker of oxidative stress in supplemented systems is limited.  相似文献   

16.
Short-term incomplete cerebral ischemia was induced in the rat by bilaterally clamping for 5 min the common carotid arteries; subsequent reperfusion of 10 min was obtained by removing carotid occlusion. At the end of ischemia or reperfusion, animals were sacrificed by decapitation. A control group was represented by sham-operated rats. Peripheral venous blood samples were withdrawn from the femoral vein from rats subjected to cerebral reperfusion 5 min before ischemia, at the end of ischemia, and 10 min after reperfusion. A highly sensitive HPLC method for the direct determination of malondialdehyde, oxypurines, and nucleosides was used on 200 μL of brain tissue and plasma extracts. Incomplete cerebral ischemia induced the, appearance of a significant amout of tissue malondialdehyde (undetectable in control animals) and a decrease of ascorbic acid. A further 6.6-fold increase of malondialdehyde and a 18.5% decrease of ascorbic acid occurred after 10 min of reperfusion. Plasma malondialdehyde, which was present in minimal amount before ischemia, significantly increased after 5 min of ischemia, being strikingly augmented after 10 min of reperfusion. A similar trend was observed for oxypurines and nucleosides. From these data, it can be affirmed that tissue concentrations of malondialdehyde and ascorbic acid, and plasma levels of malondialdehyde, oxypurines, and nucleosides, reflect both the oxygen radical-mediated tissue injury and the depression of energy metabolism thus representing early biochemical markers of short-term incomplete brain ischemia, and reperfusion in the rat.  相似文献   

17.
Our aim was to investigate the effects of moderate load, regular swimming exercise on stress‐induced anxiety, and associated oxidative organ injury. Male Sprague‐Dawley rats (n = 48) were either kept sedentary or submitted to swimming exercise for 8 weeks. Rats were then divided as non‐stressed, acute stress, and chronic stress groups. After acute or chronic stress (electric foot shocks) applications, rats were placed on a holeboard and the exploratory behavior was recorded to assess the anxiety. Rats were decapitated after the stress application. Acute and chronic stress induction led to increased serum cortisol levels as compared to non‐stressed groups. Plasma aspartate aminotransferase levels that were elevated in sedentary rats with both stress exposures were lower in trained rats. Malondialdehyde levels and myeloperoxidase activity were increased in the cardiac muscle, liver, stomach, and brain of the stressed rats with a concomitant reduction in the glutathione levels, while stress‐induced changes in malondialdehyde, myeloperoxidase, and glutathione levels were reversed in the trained animals. Exercise, which led to increased malondialdehyde and reduced glutathione levels in the skeletal muscle of the non‐stressed rats, also protected against stress‐induced oxidative damage. Regular exercise with its anxiolytic and antioxidant effects ameliorates stress‐induced oxidative organ damage by a neutrophil‐dependent mechanism. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The present study aims to evaluate the effect of selenium supplementation on lipid peroxidation and lactate levels in rats subjected to acute swimming exercise. Thirty-two adult male rats of Sprague–Dawley type were divided into four groups. Group 1, control; group 2, selenium-supplemented; group 3, swimming control; group 4, selenium-supplemented swimming group. The animals in groups 2 and 4 were supplemented with (i.p.) 6 mg/kg/day sodium selenite for 4 weeks. The blood samples taken from the animals by decapitation method were analyzed in terms of erythrocyte-reduced glutathione (GSH), serum glutathione peroxidase (GPx) and superoxide dismutase (SOD), and plasma malondialdehyde (MDA) and lactate using the colorimetric method, and serum selenium values using an atomic emission device. In the study, the highest MDA and lactate values were found in group 3, while the highest GSH, GPx and SOD values were obtained in group 4 (p < 0,001). Group 2 had the highest and group 3 had the lowest selenium levels (p < 0,001). Results of the study indicate that the increase in free radical production and lactate levels due to acute swimming exercise in rats might be offset by selenium supplementation. Selenium supplementation may be important in that it supports the antioxidant system in physical activity.  相似文献   

19.
Factors affecting the balance between pro- and antioxidant effects of ascorbic acid and glutathione were studied in soybean phosphatidylcholine liposomes challenged with Fe2+/H2O2. Effective antioxidant protection by alpha-tocopherol appeared to be due to efficient reaction with lipid oxy-radicals in the bilayer rather than to interception of initiating oxygen radicals. At concentrations above a threshold level of approximately 0.2 mol % (based on phospholipid content), alpha-tocopherol completely suppressed lipid oxy-radical propagation, which was measured as malondialdehyde production. Both ascorbic acid and glutathione, alone or in combination, enhanced lipid oxy-radical propagation. Alpha-Tocopherol, incorporated into liposomes at concentrations above its threshold protective level, reversed the pro-oxidant effects of 0.1-1.0 mM ascorbic acid but not those of glutathione. Ascorbic acid also prevented alpha-tocopherol depletion. The combination of ascorbic acid and subthreshold levels of alpha-tocopherol only temporarily suppressed lipid oxy-radical propagation and did not maintain the alpha-tocopherol level. Glutathione antagonized the antioxidant action of the alpha-tocopherol/ascorbic acid combination regardless of alpha-tocopherol concentration. These observations indicate that membrane alpha-tocopherol status can control the balance between pro- and antioxidant effects of ascorbic acid. The data also provide the most direct evidence to date that ascorbic acid interacts directly with components of the phospholipid bilayer.  相似文献   

20.
The effects of cadmium on performance, antioxidant defense system, liver and kidney functions, and cadmium accumulation in selected tissues of broiler chickens were studied. Whether the possible adverse effects of cadmium would reverse with the antioxidant ascorbic acid was also investigated. Hence, 4 treatment groups (3 replicates of 10 chicks each) were designed in the study: control, ascorbic acid, cadmium, and cadmium plus ascorbic acid. Cadmium was given via the drinking water at a concentration of 25 mg/L for 6 wk. Ascorbic acid was added to the basal diet at 200 mg/kg either alone or with cadmium. Cadmium decreased the body weight (BW), body weight gain (BWG), and feed efficiency (FE) significantly at the end of the experiment, wheras its effect on feed consumption (FC) was not significant. Cadmium increased the plasma malondialdehyde (MDA) level as an indicator of lipid peroxidation and lowered the activity of blood superoxide dismutase (SOD). Liver function enzymes, aspartate amino transferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and gamma glutamyl transferase (GGT) activities were not changed by cadmium. Cadmium ingestion did not alter serum creatinine levels. Although the serum cadmium level was not elevated, cadmium mainly accumulated in the kidneys, liver, pancreas, and muscle. Ascorbic acid supplementation resulted in a reduction of MDA level previously increased by cadmium and a restoration in SOD activity. However, ascorbic acid did not ameliorate the growth inhibitory effect of cadmium nor did it prevent accumulation of cadmium in analyzed tissues. These data indicate that oxidative stress, induced by cadmium, plays a role in decreasing the performance of broilers and that dietary supplementation by ascorbic acid might be useful in reversing the lipid peroxidation induced by cadmium and partly alleviating the adverse effect of cadmium on performance of broilers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号