首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The purpose of this study was to investigate the effect of weighted jump squat training with and without eccentric braking. Twenty male subjects were divided into two groups (n = 10 per group), Non-Braking Group and Braking Group. The subjects were physically active, but not highly trained. The program for Non-Braking Group consisted of 6 sets of 6 repetitions of weighted jump squats without reduction of eccentric load for 8 weeks. The training program for the Braking Group consisted of the same sets and repetitions, but eccentric load was reduced by using an electromagnetic braking mechanism. Jump and reach, countermovement jump, static jump, drop jump, one repetition maximum half squat, weighted jump squat, and isometric/isokinetic knee extension/flexion at several different positions/angular velocities were tested pre- and posttraining intervention. The Non-Braking Group exhibited greater improvement in peak torque during isokinetic concentric knee flexion at 300 degrees/s [Non-Braking Group: (mean +/- SD) 124.0 +/- 22.6 Nm at pre- and 134.1 +/- 18.4 Nm at posttraining, and Braking Group: 118.5 +/- 32.7 Nm at pre- and 113.2 +/- 26.7 Nm at posttraining]. Braking Group exhibited superior adaptations in peak power relative to body mass during weighted jump squat [Non-Braking Group: (mean +/- SD) 49.1 +/- 8.6 W/kg at pre- and 50.9 +/- 6.2 W/kg at posttraining, and Braking Group: 47.9 +/- 6.9 W/kg at pre- and 53.7 +/- 7.3 W/kg at posttraining]. It appears that power output in relatively slow movement (weighted jump squat) was improved more in the Braking Group, however strength in high velocity movements (isokinetic knee flexion at 300 degrees/s) was improved more in Non-Braking Group. This study supports load and velocity specific effects of weighted jump squat training.  相似文献   

2.
Serum levels of thyrotrophin (TSH), prolactin (PRL), free thyroxine (FT4) and free triiodothyronine (FT3) were determined before and after physical exercise in 21 normal male subjects. The subjects were divided into 3 groups as follows: group I--light exercise (exercise on the Mijnhardt bicycle ergometer at 100 Watts for 15 min); group II--moderate exercise (a 5 km marathon); group III--heavy exercise (a 10 km marathon). In group I, TSH level rose from 1.96 +/- 0.42 mu u/ml (mean +/- SEM) to 2.52 +/- 0.30 mu u/ml (p less than 0.01), and PRL levels rose from 11.0 +/- 2.0 ng/ml to 19.0 +/- 5.2 ng/ml (p less than 0.01). In group II, TSH rose from 2.11 +/- 0.51 mu u/ml to 2.62 +/- 0.56 mu u/ml (p less than 0.05), and PRL rose from 11.2 +/- 1.6 ng/ml to 24.0 +/- 5.2 ng/ml (p less than 0.01). In group III, TSH rose from 2.01 +/- 0.41 mu u/ml to 2.36 +/- 0.45 mu u/ml (p less than 0.02), and PRL rose from 12.1 +/- 2.0 ng/ml to 47.7 +/- 9.3 ng/ml (p less than 0.01). The serum levels of FT4 showed different results among the three groups: Group I showed an increased response from 1.60 +/- 0.12 ng/dl to 1.72 +/- 0.12 ng/dl (p less than 0.01); Group II showed no significant difference; and group III demonstrated a diminished response from 1.61 +/- 0.14 ng/dl to 1.45 +/- 0.16 ng/dl (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of processing prior to sex-sorting, re-freezing and thawing of frozen-thawed bull spermatozoa on in vitro sperm characteristics was investigated. Frozen-thawed bull spermatozoa (three bulls; three ejaculates per bull) were prepared for sorting by washing (FT-WASH) or gradient centrifugation (FT-GRADIENT) and evaluated for motility and forward progressive motility (FPM) after processing, staining, sorting and incubation (3 h; 37 degrees C). After frozen-thawed samples were processed and analyzed using a high-speed cell sorter, aliquots were removed and re-frozen and thawed (FTF-WASH; FTF-GRADIENT). Non-sorted frozen-thawed spermatozoa (FT-CONTROL) were also re-frozen and thawed (FTF-CONTROL). Spermatozoa from all treatments were assessed for penetration of an artificial cervical mucus at 0 h after sorting or thawing, and for motility, FPM and acrosomal status after 3-h incubation (37 degrees C). Frozen-thawed spermatozoa prepared by gradient centrifugation before sorting were sorted more efficiently than washed samples (P < 0.05). However, after sorting (FT) or thawing (FTF) and incubation, the percentage of motile spermatozoa and FPM rating was lower for GRADIENT than WASH (21.5 +/- 3.39%; 1.4 +/- 0.16 FPM versus 48.6 +/- 4.02%, 2.6 +/- 0.16 FPM; P < 0.01). Frozen-thawed sorted spermatozoa (FT) penetrated in greater numbers (151.0 +/- 19.50 spermatozoa) and distance (56.3 +/- 5.11 mm) in the artificial cervical mucus and had a higher proportion of motile spermatozoa (65.5 +/- 2.77%) and FPM rating (2.8 +/- 0.12) after incubation than spermatozoa that had been re-frozen and thawed after sorting (FTF: 14.0 +/- 3.67 spermatozoa, 21.6 +/- 3.05 mm, 12.2 +/- 1.31% and 1.2 +/- 0.10 FPM, respectively; P < 0.001). Regardless of processing prior to sorting, frozen-thawed sorted and non-sorted spermatozoa migrated similar distances in the artificial cervical mucus (FT-WASH: 60.0 +/- 1.2 mm; FT-GRADIENT: 57.2 +/- 0.76 mm; FT-CONTROL: 51.7 +/- 0.69 mm). The results of this preliminary study suggested that frozen-thawed bull spermatozoa can be efficiently sorted into high purity X- and Y-chromosome enriched samples with retained functional capacity.  相似文献   

4.
Autonomic dysreflexia (AD) can occur during penile vibratory stimulation in men with spinal cord injury, but this is variable, and the association with lesion level is unclear. The purpose of this study was to characterize the cardiovascular responses to penile vibratory stimulation in men with spinal cord injury. We hypothesized that those with cervical injuries would demonstrate a greater degree of AD compared with men with thoracic injuries. We also questioned whether the rise in blood pressure could be attenuated by sildenafil citrate. Participants were classified as having cervical (n = 8) or thoracic (n = 5) injuries. While in a supine position, subjects were instrumented with an ECG, and arterial blood pressure was determined beat by beat. Subjects reported to the laboratory twice and received an oral dose of sildenafil citrate (25-100 mg) or no medication. Penile vibratory stimulation was performed using a handheld vibrator to the point of ejaculation. At ejaculation during the nonmedicated trials, the cervical group had a significant decrease in heart rate (-5-10 beats/min) and increase in mean arterial blood pressure (+70-90 mmHg) relative to resting conditions, whereas the thoracic group had significant increases in both heart rate (+8-15 beats/min) and mean arterial pressure (+25-30 mmHg). Sildenafil citrate had no effect on the change in heart rate or mean arterial pressure in either group. In summary, men with cervical injuries had more pronounced AD during penile vibratory stimulation than men with thoracic injuries. Administration of sildenafil citrate had no effect on heart rate or blood pressure during penile vibratory stimulation in men with spinal cord injury.  相似文献   

5.
Voluntary activation levels during lengthening, isometric, and shortening contractions (angular velocity 60 degrees/s) were investigated by using electrical stimulation of the femoral nerve (triplet, 300 Hz) superimposed on maximal efforts. Recruitment of fiber populations was investigated by using the phosphocreatine-to-creatine ratio (PCr/Cr) of single characterized muscle fibers obtained from needle biopsies at rest and immediately after a series of 10 lengthening, isometric, and shortening contractions (1 s on/1 s off). Maximal voluntary torque was significantly higher during lengthening (270 +/- 55 N.m) compared with shortening contractions (199 +/- 47 N.m, P < 0.05) but was not different from isometric contractions (252 +/- 47 N.m). Isometric torque was higher than torque during shortening (P < 0.05). Voluntary activation level during maximal attempted lengthening contractions (79 +/- 8%) was significantly lower compared with isometric (93 +/- 5%) and shortening contractions (92 +/- 3%, P < 0.05). Mean PCr/Cr values of all fibers from all subjects at rest were 2.5 +/- 0.6, 2.0 +/- 0.7, and 2.0 +/- 0.7, respectively, for type I, IIa, and IIax fibers. After 10 contractions, the mean PCr/Cr values for grouped fiber populations (regardless of fiber type) were all significantly different from rest (1.3 +/- 0.2, 0.7 +/- 0.3, and 0.8 +/- 0.6 for lengthening, isometric, and shortening contractions, respectively; P < 0.05). The cumulative distributions of individual fiber populations after either contraction mode were significantly different from rest (P < 0.05). Curves after lengthening contractions were less shifted compared with curves from isometric and shortening contractions (P < 0.05), with a smaller shift for the type IIax compared with type I fibers in the lengthening contractions. The results indicate a reduced voluntary drive during lengthening contractions. PCr/Cr values of single fibers indicated a hierarchical order of recruitment of all fiber populations during maximal attempted lengthening contractions.  相似文献   

6.
The purpose of this study was to examine the influence of myosin heavy chain (MHC) isoform composition and training status on the mechanomyographic (MMG) amplitude versus isometric torque relationship for the vastus lateralis. Five resistance-trained (mean +/- SD age = 23.2 +/- 3.7 years), 5 aerobically trained (mean +/- SD age = 32.6 +/- 5.2 years), and 5 sedentary (mean +/- SD age = 23.4 +/- 4.1 years) men performed isometric muscle actions of the leg extensors in 20% increments from 20% to 100% of the maximum voluntary contraction. Biopsies from the vastus lateralis revealed that the MHC composition for the resistance-trained subjects was 59.0 +/- 4.2% Type IIa, 0.1 +/- 0.1% Type IIx, and 40.9 +/- 4.3% Type I. The aerobically-trained subjects had 27.4 +/- 7.8% Type IIa, 0.0 +/- 0.0% Type IIx, and 72.6 +/- 7.8% Type I MHC. The sedentary subjects had 42.1 +/- 7.8% Type IIa, 17.8 +/- 6.4% Type IIx, and 40.1 +/- 10.9% Type I MHC. There were no consistent patterns of responses for the resistance-trained, aerobically trained, or sedentary subjects for MMG amplitude versus torque. Thus, differences in MHC isoform composition and training status did not explain the unique torque-related patterns for MMG amplitude.  相似文献   

7.
To compare physiological responses and propulsion technique of able bodied subjects with no prior experience of wheelchairs (AB) and wheelchair dependent subjects (WD), ten AB and nine WD performed a 30-s sprint test in a wheelchair ergometer. The WD had spinal cord injuries with a lesion at T8 or lower. The WD and AB did not show significantly different physiological responses. The power values averaged for the right wheel over the 30 s of the test were 50.2 (SD 14.7) W and 48.0 (SD 4.4) W for WD and AB, respectively. No significant differences in torque application could be discerned, although WD subjects seemed to have a more flattened torque curve with a smaller negative deflection at the beginning of the push. The WD applied a significantly higher horizontal propulsive force to the handrims but did not apply force more effectively. The percentages of effective force to total propulsive force were 61 (SD 16)% for WD and 57 (SD 4)% for AB. With regard to the kinematic parameters, AB followed the handrims significantly longer than WD (end angle AB 65°, WD 44°), started the push phase with their arms more in retroflexion and flexed their trunks further forward. The AB did however show a movement pattern comparable to that of wheelchair athletes measured in a comparable experiment. It could not be decided conclusively that inexperience in wheelchair propulsion led to a less effective propulsion technique. Despite the selection of WD with respect to lesion level, interindividual differences in terms of level of training may have been responsible for the absence of significant results.  相似文献   

8.
The influence of an eccentric training on torque/angular velocity relationships and coactivation level during maximal voluntary isokinetic elbow flexion was examined. Seventeen subjects divided into two groups (Eccentric Group EG, n = 9 Control Group CG, n = 8) performed on an isokinetic dynamometer, before and after training, maximal isokinetic elbow flexions at eight angular velocities (from - 120 degrees s(-1) under eccentric conditions to 240 degrees s(-1) under concentric conditions), and held maximal and submaximal isometric actions. Under all conditions, the myoelectric activities (EMG) of the biceps and the triceps brachii muscles were recorded and quantified as the RMS value. Eccentric training of the EG consisted of 5x6 eccentric muscle actions at 100 and 120% of one maximal repetition (IRM) for 21 sessions and lasted 7 weeks. In the EG after training, torque was significantly increased at all angular velocities tested (ranging from 11.4% at 30 degrees (s-1) to 45.5% at - 120 degrees s(-1)) (p < 0.05). These changes were accompanied by an increase in the RMS activities of the BB muscle under eccentric conditions (from - 120 to - 30 degrees (s-1)) and at the highest concentric angular velocities (180 and 24 degrees s(-1)) (p < 0.05). The RMS activity of the TB muscle was not affected by the angular velocity in either group for all action modes. The influence of eccentric training on the torque gains under eccentric conditions and for the highest velocities was attributed essentially to neural adaptations.  相似文献   

9.
The purpose of this study was to determine the effect of an acute static stretching bout of the biceps brachii on torque, electromyography (EMG), and mechanomyography (MMG) during concentric isokinetic muscle actions. Eighteen (men, n = 10; women, n = 8) adult subjects (M +/- SD age = 22.7 +/- 2.8 years; weight = 78.0 +/- 17.0 kg; height = 177.9 +/- 11.0 cm) performed maximal isokinetic (30 and 270 degrees.s(-1)) forearm flexion strength testing on 2 occasions while EMG and MMG were recorded. Subjects were randomly assigned to stretching (STR) or nonstretching (NSTR) protocols before strength testing. Two-way ANOVAs with repeated measures revealed significantly (p < or = 0.05) greater torque for NSTR (M +/- SEM = 36.9 +/- 3.3 N.m) vs. STR (35.2 +/- 3.3 N.m), significantly greater MMG amplitude for STR vs. NSTR for 30 degrees.s(-1) (STR = 93.5 +/- 14.4 mV; NSTR = 63.1 +/- 10.6 mV) and 270 degrees.s(-1) (STR = 207.6 +/- 35.6 mV; NSTR = 136.4 +/- 31.7 mV), and no difference in EMG amplitude. These results indicate that a greater ability to produce torque without prior stretching is related to the musculotendinous stiffness of the muscle rather than the number of motor units activated. This suggests that performing activities that reduce muscle stiffness (such as stretching), may be detrimental to performance.  相似文献   

10.
We investigated the capacity for torque development and muscle activation at the onset of fast voluntary isometric knee extensions at 30, 60, and 90 degrees knee angle. Experiments were performed in subjects (n = 7) who had high levels (>90%) of activation at the plateau of maximal voluntary contractions. During maximal electrical nerve stimulation (8 pulses at 300 Hz), the maximal rate of torque development (MRTD) and torque time integral over the first 40 ms (TTI40) changed in proportion with torque at the different knee angles (highest values at 60 degrees ). At each knee angle, voluntary MRTD and stimulated MRTD were similar (P < 0.05), but time to voluntary MRTD was significantly longer. Voluntary TTI40 was independent (P > 0.05) of knee angle and on average (all subjects and angles) only 40% of stimulated TTI40. However, among subjects, the averaged (across knee angles) values ranged from 10.3 +/- 3.1 to 83.3 +/- 3.2% and were positively related (r2 = 0.75, P < 0.05) to the knee-extensor surface EMG at the start of torque development. It was concluded that, although all subjects had high levels of voluntary activation at the plateau of maximal voluntary contraction, among subjects and independent of knee angle, the capacity for fast muscle activation varied substantially. Moreover, in all subjects, torque developed considerably faster during maximal electrical stimulation than during maximal voluntary effort. At different knee angles, stimulated MRTD and TTI40 changed in proportion with stimulated torque, but voluntary MRTD and TTI40 changed less than maximal voluntary torque.  相似文献   

11.
Fatigue resistance of knee extensor muscles is higher during voluntary isometric contractions at short compared with longer muscle lengths. In the present study we hypothesized that this would be due to lower energy consumption at short muscle lengths. Ten healthy male subjects performed isometric contractions with the knee extensor muscles at a 30, 60, and 90 degrees knee angle (full extension = 0 degrees ). At each angle, muscle oxygen consumption (m.VO2) of the rectus femoris, vastus lateralis, and vastus medialis muscle was obtained with near-infrared spectroscopy. m.VO2 was measured during maximal isometric contractions and during contractions at 10, 30, and 50% of maximal torque capacity. During all contractions, blood flow to the muscle was occluded with a pressure cuff (450 mmHg). m.VO2 significantly (P < 0.05) increased with torque and at all torque levels, and for each of the three muscles. m.VO2 was significantly lower at 30 degrees compared with 60 degrees and 90 degrees and m.VO2 was similar (P > 0.05) at 60 degrees and 90 degrees . Across all torque levels, average (+/- SD) m.VO2 at the 30 degrees angle for vastus medialis, rectus femoris, and vastus lateralis, respectively, was 70.0 +/- 10.4, 72.2 +/- 12.7, and 75.9 +/- 8.0% of the average m.VO2 obtained for each torque at 60 and 90 degrees . In conclusion, oxygen consumption of the knee extensors was significantly lower during isometric contractions at the 30 degrees than at the 60 degrees and 90 degrees knee angle, which probably contributes to the previously reported longer duration of sustained isometric contractions at relatively short muscle lengths.  相似文献   

12.
Medical professionals, physical therapists, product designers, and computational models all use cervical spine range of motion reference values. To support these functions, researchers have collected a plethora of data to determine the normal range of motion of the cervical spine of adult subjects. However, little to no data exists for subjects under the age of 14. This study utilized the cervical range of motion device, referenced with respect to the Frankfort Plane, to measure the active cervical spine range of motion in all three cardinal planes of the human body, for 106 subjects whose ages ranged from 8 to 10 years. The active range of motion for flexion, extension, lateral extension, and rotation was calculated as 66+/-13 degrees , 85+/-14 degrees , 58+/-8 degrees , and 77+/-7 degrees , respectively, using linear statistics. The observed data significantly differed from the published American Medical Association guidelines for adults but fell within the range of the reference values for 10 year olds. Stratifying and analyzing the range of motion data with respect to gender yielded no significant effect. Appendix A analyzes the data using angular statistics, and produces virtually identical results as those from linear statistics.  相似文献   

13.
Athletes with spinal cord injury (SCI), and in particular tetraplegia, have an increased risk of heat strain and consequently heat illness relative to able-bodied individuals. Strategies that reduce the heat strain during exercise in a hot environment may reduce the risk of heat illness. To test the hypotheses that precooling or cooling during intermittent sprint exercise in a heated environment would attenuate the rise in core temperature in tetraplegic athletes, eight male subjects with SCI (lesions C(5)-C(7); 2 incomplete lesions) undertook four heat stress trials (32.0 +/- 0.1 degrees C, 50 +/- 0.1% relative humidity). After assessment of baseline thermoregulatory responses at rest for 80 min, subjects performed three intermittent sprint protocols for 28 min. All trials were undertaken on an arm crank ergometer and involved a no-cooling control (Con), 20 min of precooling (Pre), or cooling during exercise (Dur). Trials were administered in a randomized order. After the intermittent sprint protocols, mean core temperature was higher during Con (37.3 +/- 0.3 degrees C) compared with Pre and Dur (36.5 +/- 0.6 degrees C and 37.0 +/- 0.5 degrees C, respectively; P < 0.01). Moreover, perceived exertion was lower during Pre (13 +/- 2; P < 0.01) and Dur (12 +/- 1; P < 0.01) compared with Con (14 +/- 2). These results suggest that both precooling and cooling during intermittent sprint exercise in the heat reduces thermal strain in tetraplegic athletes. The cooling strategies also appear to show reduced perceived exertion at equivalent time points, which may translate into improved functional capacity.  相似文献   

14.
To achieve maximal force output, clinicians and coaches have been experimenting with upper extremity plyometric exercises for years, without sufficient scientific validation of this training method. The goal of this study was to examine the effects of an 8-week course of high volume upper extremity plyometric training on the isokinetic strength and throwing velocity of a group of intercollegiate baseball players. Twenty-four Division I collegiate baseball players (age: 19.7 +/- 1.3 years; height: 183.9 +/- 5.9 cm; mass: 90.7 +/- 10.5 kg) were recruited to participate in this study. Throwing velocity, isokinetic peak torque, isokinetic functional strength ratios, and time to peak torque were measured pre- and posttraining. Subjects were rank-ordered according to concentric internal rotation (IR) strength and were assigned randomly to either the plyometric training group (PLY) or the control group (CON). Training consisted of 6 upper extremity plyometric exercises ("Ballistic Six") performed twice per week for 8 weeks. Subjects assigned to CON performed regular off-season strength and conditioning activities, but did not perform plyometric activities. PLY demonstrated significant increases (p < 0.05) in throwing velocity following 8 weeks of training when compared with CON (83.15 mph [pre] vs. 85.15 mph [post]). There were no statistically significant differences in any of the isokinetic strength measurements between PLY and CON groups pre- to posttraining. Statistically significant differences were seen within PLY for concentric IR and eccentric external rotation (ER) isokinetic strength at 180 degrees x s(-1) and 300 degrees x s(-1); and within CON for eccentric ER isokinetic strength at 300 degrees x s(-1) and concentric IR isokinetic strength at 180 degrees x s(-1). The Ballistic Six training protocol can be a beneficial supplement to a baseball athlete's off-season conditioning by improving functional performance and strengthening the rotator cuff musculature.  相似文献   

15.
The aim of the study was to jointly analyze temperature-induced changes in low-threshold single motor unit twitch torque and action potential properties. Joint torque, multichannel surface, and intramuscular electromyographic signals were recorded from the tibialis anterior muscle of 12 subjects who were instructed to identify the activity of a target motor unit using intramuscular electromyographic signals as feedback. The target motor unit was activated at the minimum stable discharge rate in seven 3-min-long contractions. The first three contractions (C1-C3) were performed at 33 degrees C skin temperature. After 5 min, the subject performed three contractions at 33 degrees C (T1), 39 degrees C (T2), and 45 degrees C (T3), followed by a contraction at 33 degrees C (C4) skin temperature. Twitch torque and multichannel surface action potential of the target motor unit were obtained by spike-triggered averaging. Discharge rate (mean +/- SE, 7.1 +/- 0.5 pulses/s), interpulse interval variability (35.8 +/- 9.2%), and recruitment threshold (4.5 +/- 0.4% of the maximal voluntary torque) were not different among the seven contractions. None of the investigated variables were different among C1-C3, T1, and C4. Conduction velocity and peak twitch torque increased with temperature (P < 0.05; T1: 3.53 +/- 0.21 m/s and 0.82 +/- 0.23 mN x m, T2: 3.93 +/- 0.24 m/s and 1.17 +/- 0.36 mN x m, T3: 4.35 +/- 0.25 m/s and 1.46 +/- 0.40 mN x m, respectively). Twitch time to peak and surface action potential peak-to-peak amplitude were smaller in T3 (61.8 +/- 2.0 ms and 27.4 +/- 5.1 microV, respectively) than in T1 (71.9 +/- 4.1 ms and 35.0 +/- 6.5 microV, respectively) (P < 0.05). The relative increase in conduction velocity between T1 and T3 was positively correlated (P < 0.05) with the increase in twitch peak amplitude (r2 = 0.48), with the decrease in twitch time to peak (r2 = 0.43), and with the decrease in action potential amplitude (r2 = 0.50). In conclusion, temperature-induced modifications in fiber membrane conduction properties may have a direct effect on contractile motor unit properties.  相似文献   

16.
The effects of modafinil on heat thermoregulatory responses were studied in 10 male subjects submitted to a sweating test after taking 200 mg of modafinil or placebo. Sweating tests were performed in a hot climatic chamber (45 degrees C, relative humidity <15%, wind speed = 0.8 m x s(-1), duration 1.5 h). Body temperatures (rectal (Tre) and 10 skin temperatures (Tsk)), sweat rate, and metabolic heat production (M) were studied as well as heart rate (HR). Results showed that modafinil induced at the end of the sweating test higher body temperatures increases (0.50 +/- 0.04 versus 0.24 +/- 0.05 degrees C (P < 0.01) for deltaTre and 3.64 +/- 0.16 versus 3.32 +/- 0.16 degrees C (P < 0.05) for deltaTsk (mean skin temperature)) and a decrease in sweating rate throughout the heat exposure (P < 0.05) without change in M, leading to a higher body heat storage (P < 0.05). AHR was also increased, especially at the end of the sweating test (17.95 +/- 1.49 versus 12.52 +/- 1.24 beats/min (P < 0.01)). In conclusion, modafinil induced a slight hyperthermic effect during passive dry heat exposure related to a lower sweat rate, probably by its action on the central nervous system, and this could impair heat tolerance.  相似文献   

17.
This is a study of the ability of blindfolded human subjects to match the position of their forearms before and after eccentric exercise. The hypothesis tested was that the sense of effort contributed to forearm position sense. The fall in force after the exercise was predicted to alter the relationship between effort and force and thereby induce position errors. In the arms-in-front posture, subjects had their unsupported reference arm set to one of two angles from the horizontal, 30 or 60 degrees , and they matched its position by voluntary placement of their other arm. Matching errors were compared with a task where the arms were counterweighted, so could be moved in the vertical plane with minimal effort, and where the arms were moved in the horizontal plane. In these latter two tasks, the intention was to test whether removal of an effort sensation from holding the arm against gravity influenced matching performance. It was found that, although absolute errors for counterweighted and horizontal matching were no larger than for unsupported matching, their standard deviations, 6.1 and 6.8 degrees , respectively, were significantly greater than for unsupported matching (4.6 degrees ), indicating more erratic matching. The eccentric exercise led, the next day, to a fall in maximum voluntary muscle torque of >or=15%. This was accompanied by a significant increase in matching errors for the unsupported matching task from 2.7 +/- 0.5 to 0.8 +/- 0.7 degrees but not for counterweighted (1.4 +/- 0.2 to -0.2 degrees +/- 1.1 degrees ) or horizontal matching (-1.3 +/- 0.7 degrees to -1.8 +/- 0.7 degrees ). This, it is postulated, is because the reduced voluntary torque after exercise was accompanied by a greater effort required to support the arms, leading to larger matching errors. However, effort is only able to provide positional information for unsupported matching where gravity plays a role. In gravity-neutral tasks like counterweighted or horizontal matching, a change in the effort-force relationship after exercise leaves matching accuracy unaffected.  相似文献   

18.
A temperate environment heat tolerance test (HTT) was formerly reported (Shvartz et al. 1977b) to distinguish heat acclimatized humans from former heat stroke patients. The purpose of this investigation was to evaluate the ability of HTT to measure acute individual changes in the HR and Tre responses of normal subjects, induced by classical heat acclimation procedures, thereby assessing the utility and sensitivity of HTT as a heat tolerance screening procedure. On day 1, 14 healthy males performed HTT (23.2 +/- 0.5 degrees C db, 14.9 +/- 0.5 degrees C wb) by bench stepping (30 cm high, 27 steps x min-1) for 15 min at 67 +/- 3% VO2max. On days 2-9, all subjects underwent heat acclimation (41.2 +/- 0.3 degrees C db, 28.4 +/- 0.3 degrees C wb) via treadmill exercise. Heat acclimation trials (identical on days 2 and 9) resulted in significant decreases in HR (170 +/- 3 vs 144 +/- 5 beats x min-1), Tre (39.21 +/- 0.09 vs 38.56 +/- 0.17 degrees C), and ratings of perceived exertion; plasma volume expanded 5.2 +/- 1.7%. On day 10, subjects repeated HTT; day 1 vs day 10 HR were statistically similar (143 +/- 6 vs 137 +/- 6 beats x min-1, p greater than 0.05) but Tre decreased significantly (37.7 +/- 0.1 vs 37.5 +/- 0.1 degrees C, p less than 0.05). Group mean HTT composite score (day 1 vs day 10) was unchanged (63 +/- 5 vs 72 +/- 6, p greater than 0.05), and individual composite scores indicated that HTT did not accurately measure HR and Tre trends at 41.2 +/- degrees C in 6 out of 14 subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The hypothesis of pacemaker level origin of thermal compensation in heart rate was tested by recording action potentials (AP) in intact sinoatrial tissue and enzymatically isolated pacemaker cells of rainbow trout acclimated at 4 degrees C (cold) and 18 degrees C (warm). With electrophysiological recordings, the primary pacemaker was located at the base of the sinoatrial valve, where a morphologically distinct ring of tissue comprising myocytes and neural elements was found by histological examination. Intrinsic beating rate of this pacemaker was higher in cold-acclimated (46 +/- 6 APs/min) than warm-acclimated trout (38 +/- 3 APs/min; P < 0.05), and a similar difference was seen in beating rate of isolated pacemaker cells (44 +/- 6 vs. 38 +/- 6 APs/min; P < 0.05), supporting the hypothesis that thermal acclimation modifies the intrinsic pacemaker mechanism of fish heart. Inhibition of sarcoplasmic reticulum (SR) with 10 microM ryanodine and 1 microM thapsigargin did not affect heart rate in either warm- or cold-acclimated trout at 11 degrees C but reduced heart rate in warm-acclimated trout from 74 +/- 2 to 42 +/- 6 APs/min (P < 0.05) at 18 degrees C. At 11 degrees C, a half-maximal blockade of the delayed rectifier K+ current (I(Kr)) with 0.1 microM E-4031 reduced heart rate more in warm-acclimated (from 45 +/- 1 to 24 +/- 5 APs/min) than cold-acclimated trout (56 +/- 3 vs. 48 +/- 2 APs/min), whereas I(Kr) density was higher and AP duration less in cold-acclimated trout (P > 0.05). Collectively, these findings suggest that a cold-induced increase in AP discharge frequency is at least partly due to higher density of the I(Kr) in the cold-acclimated trout, whereas contribution of SR Ca2+ release to thermal compensation of heart rate is negligible.  相似文献   

20.
1. We determined the number of beta-receptors in the whole spinal cord of the adult rat and in the cervical, thoracal, and lumbal/sacral parts. 2. The undivided spinal cord contains 47 +/- 10 fmol/mg beta-receptors (KD = 2066 +/- 982 pmol/liter), and the cervical part of the spinal cord contains 53 +/- 8 fmol/mg protein (KD = 3224 +/- 1775 pmol/liter). The thoracal part shows 40 +/- 1 fmol/mg protein (KD = 3229 +/- 104 pmol/liter), and the lumbal/sacral spinal cord contains 48 +/- 8 fmol/mg protein (KD = 3610 +/- 1610 pmol/liter). 3. Competitive inhibition studies with l-practolol, dl-atenolol, and ICI 118,551 were performed and we calculated by a computer program in the whole spinal cord the following ratio of beta-receptor subtypes: 80 +/- 5% Beta 1-receptors and 20 +/- 5% beta 2-receptors. 4. The basal and (-)-isoproterenol- and NaF-stimulated activity of adenylate cyclase was highest in the cervical part of the spinal cord and equally distributed between the thoracal and the lumbal/sacral parts. 5. The whole synaptosomal protein of the cervical part of the spinal cord contained 132 +/- 20 fmol, the thoracal part 117 +/- 3 fmol, and the lumbal/sacral part 133 +/- 22 fmol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号